to be useful in photochemical work. The values of the function e^{-x} are tabulated in thirteen pages from $x=0$ to $x=10$, and fifty-six pages are assigned to tables by Dr. N. Rosanow showing the reciprocal of the wave length and the frequency for every \AA ngström unit from $\lambda 2000$ to λ sooo.
H. S. A.

The Economics of Everyday Life. Part i. By
T. H. Penson. Pp. xiv +174 . (Cambridge

University Press, 19³.) Price 3 s. net.
It is surprising how difficult it apparently is to write a good short text-book of economics, but Mr. Penson has been eminently successful in doing so. He has fully grasped the fact that the first need for such a book is to be simple and elementary as well as short. Where possible, he rightly prefers the ordinary terms of everyday use to the technical phrases of economics. For instance, instead of production, exchange and distribution, he talks of the "source of income," "buying and selling," and the "individual income." These, in my opinion, are far more intelligible to the beginner. Moreover, his definitions are nearly always both clear and adequate, those of demand and supply affording a good example.

The method of treatment follows, on the whole, that of the modern school, of which Prof. Marshall may be regarded as the head, and exchange is treated before, and not after, distribution. The subjects of consumption, taxation, trade unions and cooperative societies are left to the second part of this book, which has yet to be published.

The present volume clearly marks Mr. Penson as possessing great capacity as a teacher. He chooses wisely not only his terms, but the subjects of which he treats. Omitting nothing that is essential, he has avoided thorny and difficult subjects likely to confuse the beginner. His definitions, too, are both concise and complete. A new and valuable feature of the book is found in the simple tables and diagrams by which the argument is rendered easy to understand, but mathematical methods are rigidly, and in such a book rightly, avoided. Occasionally, however, the author treats unimportant matters somewhat too fully. Usually he is neither too long nor too short, but, like Sidney Godolphin, "is never in the way, and never out of it."
N. B. Dearle.

Dent's Practical Notebooks of Regional Geography. By H. Piggott and R. J. Finch. Book i., The Americas. Pp. 64. (London: J. M. Dent and Sons, Ltd., 1913.) Price 6 d. net.
If every geography teacher set the same practical exercises, this conveniently arranged notebook would have a wide circulation; but naturally a teacher's exercises should reflect his own individuality. The little book may be commended, however, as affording a good example of the way in which pupils can be led to acquire an intelligent knowledge of geography as the result of their own activities.

LETTERS TO THE EDITOR.

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, or to correspond with the weriters of, rejected manuscripts intended for this or any other part of Nature. No notice is taken of anonymous communications.]

An Application of Mathematics to Law.

I have attempted to apply mathematical symbolism to some of the difficult problems of patent law. The question to be decided by the Court in a patent law suit is usually this : assuming that the alleged invention deals with " a manner of manufacture". (i.e. is, or yields, something concrete), was there ingenuity and utility in the step from what was already known? Ingenuity means inventive or creative ingenuity as apart from the normal dexterity of the craftsman, which of itself is insufficient to support a patent, as otherwise patents would unduly hamper industry. It will be seen at once that it is a most subtle question for any court to determine whether a given act, the selection of one out of many alternatives, the assemblage of various old elements, the adaptation of old elements to new uses-whether such an act is one which calls for ingenuity as apart from the expected skill of the craftsman.
To express the problem symbolically I will start from an admirable dictum of Lord Justice Fletcher Moulton (Hickton Pat. Syn. v. Patents Improvements). He stated that invention might reside in the idea, or in the way of carrying it out, or in both; but if there was invention in the idea plus the way of carrying it out, then there was good subject-matter for a patent. I express this by representing any idea as a functional operator, and the way of carrying it out (i.e. the concrete materials adopted) as a variable. Calling result I:

$$
\mathrm{I}=f(x)
$$

Here I represents what the Germans call the "technical effect" of the invention, or what Frost calls the manufacturing "art," and we see at once that a patent cannot be obtained for a mere principle or idea (f. which is not concrete) unless some way of carrying it out (x) is also given. But the invention may reside either in f or in x.

Let us express in general terms a manufacture (M) which is not an invention. We will use f to represent a known operator or idea, ϕ to represent a new operator or idea. $a, b \ldots$ will represent known variables, ways of carrying out an invention (e.g., valves, chemical substances, \&c.), and x, y, new variables.

It is obvious that $f(a)$ is not an invention, nor will it normally be an invention to add $f(b)$ to it. Moreover, the craftsman is not to be tied down to this. He is at perfect liberty, within limits, to make variations in his variables, to alter the size of a crank, to substitute one alkali for another, and so on; in other words, he can take $f(a+\delta a)$.

Generalising, we may say :

$$
\mathrm{M}=\Sigma f(a+\delta a) .
$$

Developing this by Taylor's theorem, and proceeding from an infinitesimal to a finite change, we have, neglecting quantities of the second order:

$$
\mathrm{M}=\Sigma f(a)+\Sigma \delta f(a) .
$$

This is the general equation for a manufacture which is not an invention. To be an invention, ingenuity (i) must be involved.

$$
\begin{gathered}
\mathrm{I}=\mathrm{M}+i \text { or } \mathrm{I}=\psi(\mathrm{M}), \\
\mathrm{I}=\psi[\Sigma f(a)+\Sigma \delta f(a)]=\Sigma f(a)+\Sigma \delta f(a)+i
\end{gathered}
$$

thus:

