Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Highlight
  • Published:

Reduced antioxidant status in obese children with multimetabolic syndrome

Abstract

BACKGROUND: In our previous study, the negative correlation found between plasma insulin levels and plasma α-tocopherol concentrations suggested that decreased antioxidant vitamin levels and reduced antioxidant capacity might be a characteristic feature of obese children with multimetabolic syndrome (MMS).

OBJECTIVE: To investigate lipid-soluble antioxidant vitamin levels and total antioxidant status (TAS) in obese children with and without MMS and in controls.

SUBJECTS: In total, 16 control children (age: 16.2±1.1 y, BMI: 20.7±1.9 kg/m2, body fat (BF): 25.6±5.7%; mean±s.d.), 15 obese children (age: 13.4±2.1 y, BMI: 34.2±3.1 kg/m2, BF: 36.9±5.8%,) and 17 obese children without MMS (age: 14.4±2.3 y, BMI: 30.4±6.2 kg/m2, BF: 36.3±5.8%) were included in the study.

METHODS: Body composition was determined by anthropometric methods. Vitamin analysis was carried out by high-performance liquid chromatography and TAS of the plasma was measured with commercially available kits. Plasma glucose, lipids and insulin were measured by standard laboratory methods.

RESULTS: Plasma α-tocopherol and β-carotene levels corrected for plasma lipids (cholesterol + triglyceride) were significantly (P<0.05) lower in obese children with MMS (2.4 (3.1) μmol/mmol and 12.3 (24.0) pmol/mmol, respectively, median (range from the first to the third quartile)), than in the obese without MMS (3.7 (0.9) μmol/mmol and 48.2 (27.7) pmol/mmol) and in the control group (3.8 (0.7) μmol/mmol and 86.6 (44.5) pmol/mmol). Plasma TAS values of the MMS group (1.2 (0.4) mmol/l) were also significantly (P<0.05) reduced as compared to obese children without MMS (1.62 (0.14) mmol/l) and to controls (1.58 (0.21) mmol/l).

CONCLUSION: Obese children with MMS are prone to oxidative stress. Further investigations are necessary to determine if these children may benefit from vitamin E and β-carotene supplementation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH . Longterm morbidity and mortality of overweight adolescents. N Engl J Med 1992; 327: 1350–1355.

    Article  CAS  PubMed  Google Scholar 

  2. Nieto FJ, Szklo M, Comstock GW . Childhood weight and growth rate as predictors of adult mortality. Am J Epidemiol 1992; 136: 201–213.

    Article  CAS  PubMed  Google Scholar 

  3. DiPietro L, Mossberg H-O, Stunkard AJ . A 40-year history of overweight children in Stockholm: life-time overweight, morbidity, and mortality. Int J Obes Relat Metab Disord 1994; 18: 585–590.

    CAS  PubMed  Google Scholar 

  4. Gunnell DJ, Frankel SJ, Nanchahal K, Peters TJ, Smith GD . Childhood obesity and adult cardiovascular mortality: a 57-y follow-up study based on the Boyd Orr cohort. Am J Clin Nutr 1998; 67: 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  5. Witztum JL . The oxidation hypothesis of atherosclerosis. Lancet 1994; 344: 793–795.

    Article  CAS  PubMed  Google Scholar 

  6. Steinberg D, Lewis A Conner Memorial Lecture. Oxidative modification of LDL and atherosclerosis. Circulation 1997; 95: 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  7. Decsi T, Molnár D, Koletzko B . Reduced plasma concentrations of alpha-tocopherol and beta-carotene in obese boys. J Pediatr 1997; 130: 653–655.

    Article  CAS  PubMed  Google Scholar 

  8. Kuno T, Hozumi M, Morinobu T, Murata T, Mingci Z, Tamai H . Antioxidant vitamin levels in plasma and low density lipoprotein of obese girls. Free Radic Res 1998; 28: 81–86.

    Article  CAS  PubMed  Google Scholar 

  9. Strauss RS . Comparison of serum concentrations of α-tocopherol and β-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). J Pediatr 1999; 134: 160–165.

    Article  CAS  PubMed  Google Scholar 

  10. Decsi T, Molnár D, Koletzko B . Lipid corrected plasma α-tocopherol values are inversely related to fasting insulinaemia in obese children. Int J Obes Relat Metab Disord 1996; 20: 970–972.

    CAS  PubMed  Google Scholar 

  11. Cole TJ, Bellizzi MC, Flegal M, Dietz WH . Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J 2000; 320: 1240–1243.

    Article  CAS  Google Scholar 

  12. Parizkova J, Roth Z . Assessment of depot fat in children from skinfold measurements by Holtain caliper. Hum Biol 1972; 44: 613–616.

    CAS  PubMed  Google Scholar 

  13. Eiben O, Pantó E . Body measurement in the Hungarian youth at the 1980 s, based on the Hungarian National Growth Study. Antropol Közl 1987-l988; 31: 49–68.

    Google Scholar 

  14. Tanner JM . Growth at adolescence, 2nd edn. Blackwell: Oxford; 1962.

    Google Scholar 

  15. Report of the Second Task Force on Blood Pressure Control in Children—1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics 1987; 79: 1–25.

  16. Soergel M, Kirschtein M, Busch C, Danne T, Gellermann J, Holl R, Krull F, Reichert H, Reusz GS, Rascher W . Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr 1997; 130: 178–184.

    Article  CAS  PubMed  Google Scholar 

  17. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997; 20: 1183–1197.

  18. Mathews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC . Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–419.

    Article  Google Scholar 

  19. Steele RW, Rochler DF, Azar M . Enzymatic determination of cholsterol in high density lipoprotein fractions prepared by precipitation technique. Clin Chem 1976; 22: 98–102.

    CAS  PubMed  Google Scholar 

  20. Romics L, Szollár L, Zajkás G . Treatment of disturbances of fat metabolism associated with atherosclerosis (in Hungarian with English summary). Orv Hetil 1993; 134: 227–238.

    CAS  PubMed  Google Scholar 

  21. Göbel Y, Schaffer C, Koletzko B . Simultaneous determination of low plasma concentrations of retinol and tocopherols in preterm infants by HPLC micromethod. J Chromatogr B Biomed Sci Appl 1997; 688: 57–62.

    Article  PubMed  Google Scholar 

  22. Csábi G, Török K, Jeges S, Molnár D . Presence of metabolic cardiovascular syndrome in obese children. Eur J Pediatr 2000; 159: 91–94.

    Article  PubMed  Google Scholar 

  23. Baillie GM, Sherer JT, Weart CW . Insulin and coronary artery disease: is syndrome X the unifying hypothesis? Ann Pharmacother 1998; 32: 233–247.

    Article  CAS  PubMed  Google Scholar 

  24. Liese AD, Mayer-Davis EJ, Haffner SM . Development of the multiple metabolic syndrome: an epidemiologic perspective. Epidemiol Rev 1998; 20: 157–172.

    Article  CAS  PubMed  Google Scholar 

  25. Squadrito GL, Cueto R, Splenser AE, Valavanidis A, Zhang H, Uppu RM, Pryor WA . Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 2000; 376: 333–337.

    Article  CAS  PubMed  Google Scholar 

  26. Morinobu T, Murata T, Takaya R, Tamai H . Nutritional status of beta-carotene, alpha-tocopherol and retinol in obese children. Int J Vitam Nutr Res 2002; 72: 119–123.

    Article  CAS  PubMed  Google Scholar 

  27. Moor de Burgos A, Wartanowicz M, Ziemlanski S . Blood vitamin and lipid levels in overweight and obese women. Eur J Clin Nutr 1992; 46: 803–808.

    CAS  PubMed  Google Scholar 

  28. Beltowski J, Wojcicka G, Gorny D, Marciniak A . The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes and total plasma antioxidant capacity. J Physiol Pharmacol 2000; 51: 883–896.

    CAS  PubMed  Google Scholar 

  29. Capel ID, Dorell HM . Abnormal antioxidant defence in some tissues of congenitally obese mice. Biochemistry 1984; 219: 41–49.

    Article  CAS  Google Scholar 

  30. Öhrwall M, Tengblood S, Vessby B . Lower tocopherol serum levels in subjects with abdominal adiposity. J Intern Med 1993; 234: 53–56.

    Article  Google Scholar 

  31. Török K, Járai D, Szalay N, Bíró L, Molnár D . Antioxidant vitamin intake in obese children (in Hungarian with English summary). Orv Hetil 2003; 144: 259–262.

    PubMed  Google Scholar 

  32. Bakker SJL, Ijzerman RG, Teerlink T, Westerhoff HV, Gans ROB, Heine RJ . Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excesive atherosclerosis, endothelial dysfunction, and β-cell failure? Atherosclerois 2000; 148: 17–21.

    Article  CAS  Google Scholar 

  33. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P . Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2000; 85: 2970–2973.

    Article  CAS  PubMed  Google Scholar 

  34. Rifici VA, Schneider SH, Khachadurian AK . Stimulation of low-density lipoprotein oxidation by insulin and insulin-like growth factor I. Atherosclerosis 1994; 107: 99–108.

    Article  CAS  PubMed  Google Scholar 

  35. Efe H, Deger O, Kirci D, Karahan SC, Orem A, Calapoglu M . Decreased neutrophil antioxidative enzyme activities and increased lipid peroxidation in hyperlipoproteinemic human subjects. Clin Chim Acta 1999; 279: 155–165.

    Article  CAS  PubMed  Google Scholar 

  36. Xu L, Badr MZ . Enhanced potential for oxidative stress in hyperinsulinemic rats: imbalance between hepatic peroxisomal hydrogen peroxide production and decomposition due to hyperinsulinemia. Horm Metab Res 1999; 31: 278–282.

    Article  CAS  PubMed  Google Scholar 

  37. Bieri JG, Poukla Evart R . Effect of plasma lipid levels and obesity on tissue stores of α-tocopherol. Proc Soc Exp Biol Med 1975; 149: 500–502.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Health (ETT 113/2003 to D Molnár and 137/2003 to T Decsi) and by National Research Fund (OTKA T016065 and T33006 to D Molnár and T031948 to T Decsi and by MSTT-31/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Molnár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molnár, D., Decsi, T. & Koletzko, B. Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes 28, 1197–1202 (2004). https://doi.org/10.1038/sj.ijo.0802719

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802719

Keywords

This article is cited by

Search

Quick links