Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes

Abstract

OBJECTIVE: Adipocyte hypertrophy combined with hyperplasia, observed during the growth of adipose tissue in obesity, might promote the occurrence of hypoxic areas within the tissue. The aim of the present study is to assess the influence of hypoxia on the expression and secretion of adipocyte-derived proangiogenic factors.

DESIGN AND METHODS: Differentiated 3T3-F442A adipocytes were submitted either to ambient hypoxia (5% O2) or to chemically induced hypoxia by treatments with cobalt chloride or desferrioxamine. The activities of the matrix metalloproteinases 2 and 9 (MMP-2 and -9) were determined by gelatin zymography. The expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 α (HIF-1α), leptin, MMP-2 and -9 were studied by the use of Western blotting and RT-PCR analyses.

RESULTS: Low oxygen pressure exposure and hypoxia mimics treatments were associated with increased glucose consumption and release of lactate in differentiated 3T3-F442A adipocytes. They also led to an upregulation of the expression of leptin, VEGF and MMPs. An enhanced accumulation of HIF-1α protein was observed in the hypoxic adipocyte nuclei.

CONCLUSION: Hypoxia, in adipocytes, markedly enhances the expression of leptin, VEGF and MMPs and stimulates the HIF-1 pathway. The present data demonstrate that hypoxic adipocytes express more proangiogenic factors and suggest that hypoxia, if occuring in adipose tissue, might be a modulator of the angiogenic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK . Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–257.

    Article  CAS  Google Scholar 

  2. Rupnick MA, Panigrahy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman MJ . Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 2002; 29: 29.

    Google Scholar 

  3. Bouloumie A, Drexler HC, Lafontan M, Busse R . Leptin, the product of Ob gene, promotes angiogenesis. Circ Res 1998; 83: 1059–1066.

    Article  CAS  Google Scholar 

  4. Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC, Madge LA, Schechner JS, Schwabb MB, Polverini PJ, Flores-Riveros JR . Biological action of leptin as an angiogenic factor. Science 1998; 281: 1683–1686.

    Article  CAS  Google Scholar 

  5. Bouloumie A, Sengenes C, Portolan G, Galitzky J, Lafontan M . Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 2001; 50: 2080–2086.

    Article  CAS  Google Scholar 

  6. Chang C, Werb Z . The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11: S37–S43.

    Article  CAS  Google Scholar 

  7. Claffey KP, Wilkison WO, Spiegelman BM . Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J Biol Chem 1992; 267: 16317–16322.

    CAS  PubMed  Google Scholar 

  8. Brahimi-Horn C, Berra E, Pouyssegur J . Hypoxia: the tumor's gateway to progression along the angiogenic pathway. Trends Cell Biol 2001; 11: S32–S36.

    Article  CAS  Google Scholar 

  9. Wang GL, Jiang BH, Rue EA, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  Google Scholar 

  10. Hirsch J, Batchelor B . Adipose tissue cellularity in human obesity. Clin Endocrinol Metab 1976; 5: 299–311.

    Article  CAS  Google Scholar 

  11. Wang GL, Semenza GL . General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90: 4304–4308.

    Article  CAS  Google Scholar 

  12. Wang GL, Semenza GL . Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 1993; 82: 3610–3615.

    CAS  PubMed  Google Scholar 

  13. Chomczynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  CAS  Google Scholar 

  14. Poltorak Z, Cohen T, Sivan R, Kandelis Y, Spira G, Vlodavsky I, Keshet E, Neufeld G . VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix. J Biol Chem 1997; 272: 7151–7158.

    Article  CAS  Google Scholar 

  15. Wenger RH . Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16: 1151–1162.

    Article  CAS  Google Scholar 

  16. Cooper JD, Pearson FG, Patterson GA, Todd TR, Ginsberg RJ, Goldberg M, DeMajo WA . Technique of successful lung transplantation in humans. J Thorac Cardiovasc Surg 1987; 93: 173–181.

    CAS  PubMed  Google Scholar 

  17. Murdoch C, Finn A . Chemokine receptors and their role in vascular biology. J Vasc Res 2000; 37: 1–7.

    Article  CAS  Google Scholar 

  18. Green H, Kehinde O . Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells. Cell 1976; 7: 105–113.

    Article  CAS  Google Scholar 

  19. Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ . Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc Natl Acad Sci USA 1994; 91: 6496–6500.

    Article  CAS  Google Scholar 

  20. Loike JD, Cao L, Brett J, Ogawa S, Silverstein SC, Stern D . Hypoxia induces glucose transporter expression in endothelial cells. Am J Physiol 1992; 263: C326–C333.

    Article  CAS  Google Scholar 

  21. Jansson PA, Smith U, Lonnroth P . Evidence for lactate production by human adipose tissue in vivo. Diabetologia 1990; 33: 253–256.

    Article  CAS  Google Scholar 

  22. de Glisezinski I, Crampes F, Harant I, Havlik P, Gardette B, Jammes Y, Souberbielle JC, Richalet JP, Riviere D . Decrease of subcutaneous adipose tissue lipolysis after exposure to hypoxia during a simulated ascent of Mt Everest. Pflugers Arch 1999; 439: 134–140.

    Article  CAS  Google Scholar 

  23. Zhang QX, Magovern CJ, Mack CA, Budenbender KT, Ko W, Rosengart TK . Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 1997; 67: 147–154.

    Article  CAS  Google Scholar 

  24. Ailhaud G, Grimaldi P, Negrel R . Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992; 12: 207–233.

    Article  CAS  Google Scholar 

  25. Grosfeld A, Zilberfarb V, Turban S, Andre J, Guerre-Millo M, Issad T . Effects of hypoxia on human PAZ6 adipocytes. Diabetologia 2002; 45: 527–530.

    Article  CAS  Google Scholar 

  26. Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A . Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 2002; 90: 784–791.

    Article  CAS  Google Scholar 

  27. Canning MT, Postovit LM, Clarke SH, Graham CH . Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Exp Cell Res 2001; 267: 88–94.

    Article  CAS  Google Scholar 

  28. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin Jr WG . HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  Google Scholar 

  29. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ . Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.

    Article  CAS  Google Scholar 

  30. Ogata Y, Enghild JJ, Nagase H . Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 1992; 267: 3581–3584.

    CAS  PubMed  Google Scholar 

  31. Stetler-Stevenson WG . Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest 1999; 103: 1237–1241.

    Article  CAS  Google Scholar 

  32. Semenza GL . Oxygen-regulated transcription factors and their role in pulmonary disease. Respir Res 2000; 1: 159–162.

    Article  CAS  Google Scholar 

  33. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A . Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529–32537.

    Article  CAS  Google Scholar 

  34. Ambrosini G, Nath AK, Sierra-Honigmann MR, Flores-Riveros J . Transcriptional activation of the human leptin gene in response to hypoxia: involvement of hypoxia-inducible factor 1. J Biol Chem 2002; 25: 25.

    Google Scholar 

  35. Grosfeld A, Turban S, André J, Cauzac M, Challier J-C, Hauguel-de Mouzon S, Guerre-Millo M . Transcriptional effect of hypoxia on placental leptin. FEBS 2001; 502: 122–126.

    Article  CAS  Google Scholar 

  36. Minchenko A, Salceda S, Bauer T, Caro J . Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 1994; 40: 35–39.

    CAS  PubMed  Google Scholar 

  37. Dachs GU, Tozer GM . Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer 2000; 36: 1649–1660.

    Article  CAS  Google Scholar 

  38. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL . Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christine Arragon for excellent technical assistance and Dr Cecilia Holm (Department of Cell and Molecular Biology, Lund University, Sweden) for providing us polyclonal chicken antibody against the hormone-sensitive lipase (HSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Lolmède.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lolmède, K., Durand de Saint Front, V., Galitzky, J. et al. Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes 27, 1187–1195 (2003). https://doi.org/10.1038/sj.ijo.0802407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802407

Keywords

This article is cited by

Search

Quick links