Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes

Abstract

OBJECTIVE: To investigate mechanisms for the regulation of glucose incorporation into triacylgycerols in adipocytes by ceramides, which mediate some actions of tumour necrosis factor-alpha (TNFα).

DESIGN: The effects of C2- and C6-ceramides (N-acetyl- and N-hexanoyl-sphingosines, respectively) on glucose uptake and incorporation into triacylglycerols and pathways of signal tansduction were measured in 3T3-L1 adipocytes.

RESUTLS: C6-ceramide increased basal 2-deooxyglucose uptake but decreased insulin-stimulated uptake without changing the EC50 for insulin. Incubating 3T3-L1 adipocytes from 2 to 24 h with C2-ceramide progressively increased glucose incorporation into the fatty acid and especially the glycerol moieties of triacylglycerol. These effects were accompanied by increased GLUT1 synthesis resulting from ceramide-induced activation phosphatidylinositol 3-kinase, ribosomal S6 kinase and mitogen-activated protein kinase. C2-ceramide also increased p21-activated kinase and protein kinase B activities. However, C2-ceramide decreased the insulin-stimulated component of these signalling pathways and also glucose incorporation into triacylglycerol after 2 h.

CONCLUSIONS: Cell-permeable ceramides can mimic some effects of TNFα in producing insulin resistance. However, ceramides also mediate long-term effects that enable 3T3 L1 adipocytes to take up glucose and store triacylglycerols in the absence of insulin. These observations help to explain part of the nature and consequence of TNFα-induced insulin resistance and the control of fat accumulation in adipocytes in insulin resistance and obesity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kahn C . Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43: 1066–1084.

    Article  CAS  Google Scholar 

  2. Brindley DN & Wang C-N . Role of fatty acids, glucocorticoids and insulin resistance in the dyslipidemia of the metabolic syndrome. In: Angel A, Anderson H, Bouchard C, Lau D, Leiter L, MendelsonR (eds). Progress in Obesity Research, Vol. 7. John Libbey: London; 1996; pp. 505–510.

    Google Scholar 

  3. Hotamisligil GS & Spiegelman BM . Tumour necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994; 43: 1271–1278.

    Article  CAS  Google Scholar 

  4. Hotamisligil GS, Shargill GS & Spiegelman BM . Adipose expression of tumour necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.

    Article  CAS  Google Scholar 

  5. Hotamisligil GS, Arner P, Caro JF, Atkinson RL & Spiegelman BM . Increased adipose tissue expression of tumour necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–2415.

    Article  CAS  Google Scholar 

  6. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R & Simsolo RB . The expression of tumour necrosis factor-α in human adipose tissue: regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111–2119.

    Article  CAS  Google Scholar 

  7. Hotamisligil GS, Murray DL, Choy LN & Spiegelman BM . Tumour necrosis factor-α inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA 1994; 91: 4854–4858.

    Article  CAS  Google Scholar 

  8. Hofmann C, Lorenz K, Braithwaite SS, Colca JR, Palazuk BJ, Hotamisligil GS & Spiegelman BM . Altered gene expression for tumour necrosis factor-α and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 314: 264–270.

    Article  Google Scholar 

  9. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF & Spiegelman BM . IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 1996; 271: 665–668.

    Article  CAS  Google Scholar 

  10. Feinstein R, Kanety H, Papa MZ, Lunenfeld B & Karasik A . Tumour necrosis factor-α suppresses insulin-induced tyrosine phosporylation of insulin receptor and its substrates. J Biol Chem 1993; 268: 26055–26058.

    CAS  PubMed  Google Scholar 

  11. Kanety H, Feinstein R, Papa MZ, Hemi R & Karasik A . Tumour necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). J Biol Chem 1995; 270: 23780–23784.

    Article  CAS  Google Scholar 

  12. Hannun YA . The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    CAS  PubMed  Google Scholar 

  13. Kolesnick R & Golde DW . The sphingomyelin pathway in tumour necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325–328.

    Article  CAS  Google Scholar 

  14. Wiegmann K, Schutze S, Machleidt T, Witte D & Krönke D . Functional dichotomy of neutral and acidic sphinogomyelinases in tumour necrosis factor signaling. Cell 1994; 78: 1005–1015.

    Article  CAS  Google Scholar 

  15. Singh IN, Stromberg LM, Bourgoin SG, Sciorra VA, Morris AJ & Brindley DN . Ceramide inhibition of mammalian phospholipase D1 and D2 activities is antagonized by phosphatidylinositol 4,5-biphosphate. Biochemistry 2001; 40: 11227–11233.

    Article  CAS  Google Scholar 

  16. Law B & Rossie S . The dimeric and catalytic subunit forms of protein phosphatase 2A from rat brain are stimulated by C2-ceramide. J Biol Chem 1995; 270: 12808–12813.

    Article  CAS  Google Scholar 

  17. Peraldi P, Hotamisligil GS, Buurman WA, White MF & Spiegelman BM . Tumour necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 1996; 271: 13018–13022.

    Article  CAS  Google Scholar 

  18. Kanety H, Hemi R, Papa MZ & Karasik A . Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J Biol Chem 1996; 271: 9895–9897.

    Article  CAS  Google Scholar 

  19. Begum N & Ragolia L . Effect of tumour necrosis factor-alpha on insulin action in cultured rat skeletal muscle cells. Endocrinology 1996; 137: 2441–2446.

    Article  CAS  Google Scholar 

  20. Liu LS, Spelleken M, Rohrig K, Hauner H & Eckel J . Tumour necrosis factor-α acutely inhibits insulin signaling in human adipocytes: implication of the p80 tumour necrosis factor receptor. Diabetes 1998; 47: 515–522.

    Article  CAS  Google Scholar 

  21. Stephens JM, Lee J & Pilch PF . Tumour necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem 1997; 272: 971–976.

    Article  CAS  Google Scholar 

  22. Wang C-N, O'Brien L & Brindley DN . Effects of cell-permeable ceramides and tumour necrosis factor-α on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes 1998; 47: 24–31.

    Article  CAS  Google Scholar 

  23. Hanna AN, Chan EYW, Xu J, Stone JC & Brindley DN . A novel pathway for tumour necrosis factor-α and ceramide signaling involving sequential activation of tyrosine kinase, p21ras andphosphatidylinositol 3-kinase. J Biol Chem 1999; 274: 12722–12729.

    Article  CAS  Google Scholar 

  24. Hanna A, Berthiaume LG, Kikuchi Y, Begg D, Bourgoin S & Brindley DN . Tumour necrosis factor-α induces stress fiber formation through ceramide production: role of sphingosine kinase. Mol Biol Cell 2001; 12: 3618–3630.

    Article  CAS  Google Scholar 

  25. Guo D & Donner DB . Tumour necrosis factor promotes phosphorylation and binding of insulin receptor ssubstrate-1 to phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 1996; 271: 615–618.

    Article  CAS  Google Scholar 

  26. Ibitayo AI, Tsunoda Y, Nozu F, Owyang C & Bitar KN . Src kinase and PI 3-kinase as a transduction pathway in ceramide-induced contraction of colonic smooth muscle. Am J Physiol 1998; G705–G711.

    Article  CAS  Google Scholar 

  27. Hajduch E, Balendran A, Batty IH, Litherland GJ, Blair AS, Downes CP & Hundal HS . Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 2001; 44: 173–183.

    Article  CAS  Google Scholar 

  28. Summers SA, Garza LA, Zhou H & Birnbaum MJ . Regulation of insulin-stimulated glucise transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 1998; 18: 5457–5464.

    Article  CAS  Google Scholar 

  29. Cornelius P, Marlowe M, Lee MD & Pekala PH . The growth factor-like effects of tumour necrosis factor-alpha. Stimulation of glucose transporter activity and induction of glucose transporter and immediate early gene expression in 3T3-L1 preadipocytes. J Biol Chem 1990; 265: 20506–20516.

    CAS  PubMed  Google Scholar 

  30. McGowan KM, Police S, Winslow JB & Pekala PH . Tumour necrosis factor-α regulation of glucose transporter (GLUT1) mRNA turnover. J Biol Chem 1997; 272: 1331–1337.

    Article  CAS  Google Scholar 

  31. Frost Sc & Lane MD . Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3-L1 adipocytes. J Biol Chem 1985; 260: 2646–2652.

    CAS  PubMed  Google Scholar 

  32. Al-Sieni AII, Plested CP, Rolland Y & Brindley DN . Decreased incorporation of glucose into lipids and increased lactate production by adipose tissue after long-term treatment of rats with D-fenfluramine. Biochem Pharmac 1989; 38: 3661–3667.

    Article  CAS  Google Scholar 

  33. Brindley DN, Hales P, Al-Sieni AII & Russell JC . Decreased serum lipids, serum insulin and triacylglycerol synthesis in adipose tissue of JCR: LA-corpulent rats treated with benfluorex. Biochim Biophys Acta 1991; 1085: 119–125.

    Article  CAS  Google Scholar 

  34. Piper RC, Hess LJ & James DE . Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am J Physiol 1991; 260: C570–C580.

    Article  CAS  Google Scholar 

  35. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  CAS  Google Scholar 

  36. Tsakirids T, Taha C, Grinstein S & Klip A . Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem 1996; 271: 19664–19667.

    Article  Google Scholar 

  37. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG & Denton RM . Regulation of protein kinase B and glycogensynthase kinase-3 by insulin and β-adrenergic agonistsin rat epididymal fat cells. J Biol Chem 1997; 272: 7713–7719.

    Article  CAS  Google Scholar 

  38. Boudewijn M, Burgering T & Coffer PJ . Protein Kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995; 376: 599–602.

    Article  Google Scholar 

  39. Gómex-Muñoz A, Duffy PA, Martin A, O'Brien L, Byun HS, Bittman R & Brindley DN . Short-chain ceramides are novel stimulators of DNA synthesis and cell division; antaginism by cell-permeable ceramides. Mol Pharmac 1995; 47: 883–889.

    Google Scholar 

  40. Wijkander J, Rahn-Landström T, Manganiello V, Belfrage P & Degerman E . Insulin-induced phosphorylation and activation of phosphodiesterase 3B in rat adipocytes: possible role for protein kinase B but not mitogen-activated protein or p70 S6 kinase. Endocrinology 1998; 139: 219–227.

    Article  CAS  Google Scholar 

  41. De Lean A, Munson PJ, Guardabaso V & Robard D . A user's guidetoALLFIT, National Institute of Health: Bethesda, MD; 1992.

    Google Scholar 

  42. Taha C, Mitsumoto Y, Liu Z, Skolnik EY & Klip A . The insulin-dependent biosynthesis of GLUT1 and GLUT3 glucose transporters in L6 muscle cells is mediated by distinct pathways. J Biol Chem 1995; 270: 24678–24681.

    Article  CAS  Google Scholar 

  43. Chung J, Grammer T, Lemon KP, Kaslauskas A & Blenis J . PDGF- and insulin-dependent pp70S6K activation mediated by phosphatidylinositol -OH kinase. Nature 1994; 370: 71–75.

    Article  CAS  Google Scholar 

  44. Hausdorff SF, Frangioni JV & Birnbaum MJ . Role of p21ras in insulin-stimulated glucose transport in 3T3-L1 adipocytes. J Biol Chem 1994; 269: 21391–21394.

    CAS  PubMed  Google Scholar 

  45. Lee SE, Chung WJ, Kwak HB, Chung C-H, Kwack K, Lee ZH & Kim H-H . Tumour necrosis factor-alpha supports the survival of osteoclasts through the activation of Akt and ERK. J Biol Chem 2001; 276: 49343–49349.

    Article  CAS  Google Scholar 

  46. Monick MM, Mallampalli RK, Carter AB, Flaherty DM, McCoy D, Robeff PK, Peterson MW & Hunninghake GW . Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol 2001; 167: 5977–5985.

    Article  CAS  Google Scholar 

  47. Duckworth BC & Cantley LC . PI 3-kinase and receptor-linked signal transduction. In: Bell RM (ed). Handbook of Lipid Research, Lipid Second Messengers, 3. Plenum Press: New York; 1996; pp. 125–175.

    Chapter  Google Scholar 

  48. Zhang J, King WG, Dillon S, Hall A, Feig L & Rittenhouse SE . Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem 1993; 268: 22251–22254.

    CAS  PubMed  Google Scholar 

  49. Chou MM & Blenis J . The 70 kDa S6 kinase complexes with and is activated by the Rho family of G proteins Cd 42 and Rac1. Cell 1996; 85: 573–583.

    Article  CAS  Google Scholar 

  50. Manser E, Leung T, Salihuddin H, Zhao ZS & Lim L . A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994; 367: 40–46.

    Article  CAS  Google Scholar 

  51. Knaus UG, Morris S, Dong HJ, Chernoff J & Bokoch GM . Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science 1995; 269: 221–223.

    Article  CAS  Google Scholar 

  52. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC Jr & Abraham RT . Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 1996; 15: 5256–5267.

    Article  CAS  Google Scholar 

  53. Kohn AD, Summers SA, Birnbaum MJ & Roth RA . Expression of a constitutively active Akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372–31378.

    Article  CAS  Google Scholar 

  54. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM, Coffer PJ, Komuro I, Akanuma Y, Yazaki Y & Kadowaki T . Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998; 273: 5315–5322.

    Article  CAS  Google Scholar 

  55. O'Toole A, Moule SK, Lockyer PJ & Halestrap AP . Tumour necrosis factor-alpha activation of protein kinase B in WEHI-164 cells is accompanied by increased phosphorylation of Ser473 but not Thr308. Biochem J 2001; 359: 119–127.

    Article  CAS  Google Scholar 

  56. Stratford S, Dewald DB & Summers SA . Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem J 2001; 354: 359–368.

    Article  CAS  Google Scholar 

  57. Zhou H, Summers SA, Birnbaum MJ & Pittman RN . Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998; 273: 16568–16575.

    Article  CAS  Google Scholar 

  58. Mei J, Holst LS, Landstrom TR, Brindley DN, Manganiello V & Degerman E . C2-ceramide influences the expression and insulin-mediated regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 adipocytes. Diabetes 2002; 51: 631–637.

    Article  CAS  Google Scholar 

  59. Rahn-Lundstrom T, Mei J, Karlsson M, Manganiello V & Degeman E . Down regulation of cyclic nucleotide phosphodieterase 3B in 3T3-L1 adipocytes induced by tumour necrosis factor-alpha and cAMP. Biochem J 2000; 346: 337–343.

    Article  Google Scholar 

  60. Feingold KR, Doerrler W, Dinarello CA, Fires W & Grunfeld C . Stimulation of lipolysis in cultured fat cells by tumour necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology 1992; 130: 10–16.

    Article  CAS  Google Scholar 

  61. Green A, Dobias SB, Walters DJA & Brasier AR . Tumour necrosis factor increases the rate of lipolysis in primary cultures of adipocytes without altering levels of hormone-sensitive lipase. Endocrinology 1994; 134: 2581–2588.

    Article  CAS  Google Scholar 

  62. Szalkowski D, White-Carrington S, Berger J & Zhang B . Antidiabetic thiazolidinediones block the inhibitory effect of tumour necrosis factor-α on differentiation, insulin-stimulated glucose uptake, and gene expression in 3T3-L1 cells. Endocrinology 1995; 136: 1474–1481.

    Article  CAS  Google Scholar 

  63. Evans DA, Jacobs DO & Wilmore DW . Tumour necrosis factor enhances glucose uptake by peripheral tissues. Am J Physiol 1989; 257: R1182–R1189.

    CAS  PubMed  Google Scholar 

  64. Marette A, Atgié C, Liu Z, Bukowiecki UJ & Klip A . Differential regulation of GLUT1 and GLUT4 glucose transporters in skeletal muscle of a new model of type II diabetes. Diabetes 1993; 42: 1195–1201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work supported by grants from the Canadian Diabetes Association (in honour of the late Stanislawa Markiewicz) and the Alberta Heart and Stroke Foundation. DNB is a Medical Scientist of the Alberta Heritage Foundation for Medical Research. JM was also awarded financial support from the Swedish Medical Research Council, Swedish Medical Society, Medical Faculty of Lund University, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Brindley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, J., Wang, CN., O'Brien, L. et al. Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes. Int J Obes 27, 31–39 (2003). https://doi.org/10.1038/sj.ijo.0802183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802183

Keywords

This article is cited by

Search

Quick links