Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Polymorphisms in the insulin response element of APOC-III gene promoter influence the correlation between insulin and triglycerides or triglyceride-rich lipoproteins in humans

Abstract

OBJECTIVE: To assess whether the −455 and −482 mutations in APOC-III gene insulin response element affect the relationships between plasma insulin and triglyceride-rich lipoprotein levels.

DESIGN: Population-based studies.

SUBJECTS: The population sample was composed of 983 subjects (485 men and 498 women), aged between 35 and 65 y, randomly sampled from the electoral rolls in Northern France and stratified on gender and 10 y age groups.

MEASUREMENTS: Plasma triglyceride, apolipoprotein C-III, apoB, LpC-III:B and LpE:B lipoprotein particles and insulin levels were measured. Two polymorphisms in APOC-III gene insulin response element (T→C at −455 and/or C→T at −482) were determined.

RESULTS: Plasma insulin was positively correlated to triglyceride levels (P<0.0001), apo C-III (P<0.003), LpC-III:B (P<0.0001), apoB (P<0.0001) and LpE:B (P<0.0001). This association differed significantly according to APOC-III insulin response element polymorphisms. The relationship between insulin and LpC-III:B (P<0.02) or apoB (P<0.02) was greater in women bearing the C allele of −455 than the T allele. Similarly, the relationship between insulin and LpC-III:B (P<0.02) or LpE:B (P<0.05) was greater in women bearing the T allele of −482 than the C allele. There was no evidence for any effect in men.

CONCLUSION: These results suggest that the relationship between plasma insulin and triglyceride-rich lipoprotein levels is partly influenced by polymorphisms in APOC-III insulin response element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Steiner G . Hyperinsulinaemia and hypertriglyceridaemia J Intern Med Suppl 1994 736: 23–26.

    CAS  PubMed  Google Scholar 

  2. Lewis GF, Zinman B, Uffelman KD, Szeto L, Weller B, Steiner G . VLDL production is decreased to a similar extent by acute portal vs. peripheral venous insulin Am J Physiol 1994 267: E566–E572.

    CAS  PubMed  Google Scholar 

  3. Steiner G, Haynes FJ, Yoshino G, Vranic M . Hyperinsulinemia and in vivo very-low-density lipoprotein-triglyceride kinetics Am J Physiol 1984 246: E187–E192.

    CAS  PubMed  Google Scholar 

  4. Laws A . Free fatty acids, insulin resistance and lipoprotein metabolism Curr Opin Lipidol 1996 7: 172–177.

    Article  CAS  Google Scholar 

  5. Ginsberg HN . Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis Diabetes Care 1991 14: 839–855.

    Article  CAS  Google Scholar 

  6. Shimada M, Ishibashi S, Gotoda T, Kawamura M, Yamamoto K, Inaba T, Harada K, Ohsuga J, Perrey S, Yazaki Y . Overexpression of human lipoprotein lipase protects diabetic transgenic mice from diabetic hypertriglyceridemia and hypercholesterolemia Arterioscler Thromb Vasc Biol 1995 15: 1688–1694.

    Article  CAS  Google Scholar 

  7. Chen M, Breslow JL, Li W, Leff T . Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels J Lipid Res 1994 35: 1918–1924.

    CAS  PubMed  Google Scholar 

  8. Li WW, Dammerman MM, Smith JD, Metzger S, Breslow JL, Leff T . Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. [See comments.] J Clin Invest 1995 96: 2601–2605.

    Article  CAS  Google Scholar 

  9. Wang CS, McConathy WJ, Kloer Hu, Alaupovic P . Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III J Clin Invest 1985 75: 384–390.

    Article  CAS  Google Scholar 

  10. Aalto-Setala K, Fisher EA, Chen X, Chajek-Shaul T, Hayek T, Zechner R, Walsh A, Ramakrishnan R, Ginsberg HN, Breslow JL . Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo CIII and reduced apo E on the particles J Clin Invest 1992 90: 1889–1900.

    Article  CAS  Google Scholar 

  11. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J . Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia J Biol Chem 1994 269: 23610–23616.

    CAS  PubMed  Google Scholar 

  12. Dammerman M, Sandkuijl LA, Halaas JL, Chung W, Breslow JL . An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3 untranslated region polymorphisms Proc Natl Acad Sci USA 1993 90: 4562–4566.

    Article  CAS  Google Scholar 

  13. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A . Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents Circulation 1994 90: 583–612.

    Article  CAS  Google Scholar 

  14. Helbecque N, Dallongeville J, Codron V, Arveiler D, Ruidavets JB, Evans A, Cambien F, Fruchart JC, Amouyel P . The role of a triplet repeat sequence of the very low density lipoprotein receptor gene in plasma lipid and lipoprotein level variability in humans Arterioscler Thromb Vasc Biol 1997 17: 2759–2764.

    Article  CAS  Google Scholar 

  15. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells Nucleic Acids Res 1988 16: 1215.

    Article  CAS  Google Scholar 

  16. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N . Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia Science 1985 230: 1350–1354.

    Article  CAS  Google Scholar 

  17. Dallongeville J, Meirhaeghe A, Cottel D, Fruchart JC, Amouyel P, Helbecque N . Gender related association between genetic variations of APOC-III gene and lipid and lipoprotein variables in northern France Atherosclerosis 2000 150: 149–157.

    Article  CAS  Google Scholar 

  18. Kee F, Amouyel P, Arveiler D, Cambou JP, Ducimetiere P, Evans A, Fruchart JC, Cambien F, Dallongeville J . Lack of association between genetic variations of apo A-1, C-III, A-IV gene cluster and myocardial infarction in a sample of European males: ECTIM study Atherosclerosis 1999 145: 187–195.

    Article  CAS  Google Scholar 

  19. Peacock RE, Temple A, Gudnason V, Rosseneu M, Humphries SE . Variation at the lipoprotein lipase and apolipoprotein AI-CIII gene loci are associated with fasting lipid and lipoprotein traits in a population sample from Iceland: interaction between genotype, gender, and smoking status Genet Epidemiol 1997 14: 265–282.

    Article  CAS  Google Scholar 

  20. Porkka KV, Taimela S, Kontula K, Lehtimaki T, Aalto-Setala K, Akerblom HK, Viikari JS . Variability gene effects of DNA polymorphisms at the apo B, apo A I/C III and apo E loci on serum lipids: the Cardiovascular Risk in Young Finns Study Clin Genet 1994 45: 113–121.

    Article  CAS  Google Scholar 

  21. Kessling A, Ouellette S, Bouffard O, Chamberland A, Betard C, Selinger E, Xhignesse M, Lussier-Cacan S, Davignon J . Patterns of association between genetic variability in apolipoprotein (apo) B, apo AI-CIII-AIV, and cholesterol ester transfer protein gene regions and quantitative variation in lipid and lipoprotein traits: influence of gender and exogenous hormones Am J Hum Genet 1991 50: 92–106.

    Google Scholar 

  22. Xu CF, Angelico F, Del Ben M, Humphries S . Role of genetic variation at the apo AI-CIII-AIV gene cluster in determining plasma apo AI levels in boys and girls Genet Epidemiol 1993 10: 113–122.

    Article  CAS  Google Scholar 

  23. Anderson RA, Burns TL, Lee J, Swenson D, Bristow JL . Restriction fragment length polymorphisms associated with abnormal lipid levels in an adolescent population Atherosclerosis 1989 77: 227–237.

    Article  CAS  Google Scholar 

  24. Haviland MB, Kessling AM, Davignon J, Sing CF . Cladistic analysis of the apolipoprotein AI-CIII-AIV gene cluster using a healthy French Canadian sample. I. Haploid analysis Ann Hum Genet 1995 59: 211–231.

    Article  CAS  Google Scholar 

  25. Dallongeville J, Bauge E, Lebel P, Fruchart JC . Fat ingestion is associated with increased levels of apoC-III- and apoE- B-containing lipoprotein particles in humans Eur J Clin Invest 1997 27: 1055–1060.

    Article  CAS  Google Scholar 

  26. Alaupovic P . Apolipoprotein composition as the basis for classifying plasma lipoproteins. Characterization of ApoA- and ApoB-containing lipoprotein families Prog Lipid Res 1991 30: 105–138.

    Article  CAS  Google Scholar 

  27. Kandoussi A, Cachera C, Parsy D, Bard JM, Fruchart JC . Quantitative determination of different apolipoprotein B containing lipoproteins by an enzyme linked immunosorbent assay: apo B with apo C-III and apo B with apo E J Immunoassay 1991 12: 305–323.

    Article  CAS  Google Scholar 

  28. Clavey V, Lestavel-Delattre S, Copin C, Bard JM, Fruchart JC . Modulation of lipoprotein B binding to the LDL receptor by exogenous lipids and apolipoproteins CI, CII, CIII, and E Arterioscler Thromb Vasc Biol 1995 15: 963–971.

    Article  CAS  Google Scholar 

  29. Agnani G, Bard JM, Candelier L, Delattre S, Fruchart JC, Clavey V . Interaction of LpB, LpB:E, LpB:C-III, and LpB:C-III:E lipoproteins with the low density lipoprotein receptor of HeLa cells Arterioscler Thromb 1991 11: 1021–1029.

    Article  CAS  Google Scholar 

  30. Lussier-Cacan S, Bard JM, Boulet L, Nestruck AC, Grothe AM, Fruchart JC, Davignon J . Lipoprotein composition changes induced by fenofibrate in dysbetalipoproteinemia type III Atherosclerosis 1989 78: 167–182.

    Article  CAS  Google Scholar 

  31. Alaupovic P, McConathy WJ, Fesmire J, Tavella M, Bard JM . Profiles of apolipoproteins and apolipoprotein B-containing lipoprotein particles in dyslipoproteinemias Clin Chem 1988 34: B13–B27.

    CAS  PubMed  Google Scholar 

  32. Hegele RA, Connelly PW, Hanley AJ, Sun F, Harris SB, Zinman B . Common genomic variants associated with variation in plasma lipoproteins in young aboriginal Canadians Arterioscler Thromb Vasc Biol 1997 17: 1060–1066.

    Article  CAS  Google Scholar 

  33. Hegele RA, Connelly PW, Hanley AJ, Sun F, Harris SB, Zinman B . Common genomic variation in the APOC3 promoter associated with variation in plasma lipoproteins Arterioscler Thromb Vasc Biol 1997 17: 2753–2758.

    Article  CAS  Google Scholar 

  34. Surguchov AP, Page GP, Smith L, Patsch W, Boerwinkle E . Polymorphic markers in apolipoprotein C-III gene flanking regions and hypertriglyceridemia Arterioscler Thromb Vasc Biol 1996 16: 941–947.

    Article  CAS  Google Scholar 

  35. Shoulders CC, Grantham TT, North JD, Gaspardone A, Tomai F, de Fazio A, Versaci F, Gioffre PA, Cox NJ . Hypertriglyceridemia and the apolipoprotein CIII gene locus: lack of association with the variant insulin response element in Italian school children Hum Genet 1996 98: 557–566.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mrs V Codron, Mr X Hermant, Mr Eric Baugé for technical assistance. Mrs A Meirhaeghe was supported by a grant from the Ministère de I'Enseignement Supérieur et de la Recherche. The WHO-MONICA population study developed in the North of France was supported by unrestricted grants from the Conseil Régional du Nord-Pas de Calais, ONIVINS, Parke-Davies Laboratory, the Mutuelle Généale de I'Education Nationale (MGEN), Groupe Fournier, the Réseau National de Santé Publique, the Direction Générale de la Santé, the Institut National de la Santé Et de la Recherche Médicale (INSERM), the Institut Pasteur de Lille and the Unité d'Evaluation du Centre Hospitalier et Universitaire de Lille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Dallongeville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallongeville, J., Meirhaeghe, A., Cottel, D. et al. Polymorphisms in the insulin response element of APOC-III gene promoter influence the correlation between insulin and triglycerides or triglyceride-rich lipoproteins in humans. Int J Obes 25, 1012–1017 (2001). https://doi.org/10.1038/sj.ijo.0801658

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801658

Keywords

This article is cited by

Search

Quick links