Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Reduced oxidized low-density lipoprotein after weight reduction in obese premenopausal women

Abstract

BACKGROUND: Several studies support the hypothesis that oxidation of low-density lipoprotein (LDL) promotes atherogenesis. Obesity is one of the risk factors of atherosclerosis, but it is not known whether obesity is related to LDL oxidation.

OBJECTIVE AND DESIGN: We investigated the effect of weight reduction and subsequent weight maintenance program on LDL oxidation in 77 obese premenopausal women (BMI 29–46 kg/m2). Another group of seven obese women served as a control group. Oxidized LDL was measured as baseline concentration of conjugated dienes in LDL lipids (ox-LDL). The weight reduction was performed in 12 weeks, using a very-low-energy diet.

RESULTS: The mean weight loss was 13 kg (92 vs 79 kg). During weight reduction, the concentration of LDL cholesterol decreased by 11%, the concentration of ox-LDL decreased by 40%, and the ratio of ox-LDL to LDL by 33%. The concentration of LDL antioxidant capacity (LDL-TRAP) decreased by 8%, but the decrease was caused by the decrease in LDL. The concentration of LDL, ox-LDL or LDL-TRAP did not change in the control group. The weight reduction correlated with the decrease of ox-LDL. During the subsequent 9 month weight maintenance programme, the concentrations of serum LDL (10%), ox-LDL (11%), LDL-TRAP (29%), and the ratio of LDL-TRAP to LDL (21%) decreased.

CONCLUSION: This study strengthens the evidence that the risk of atherogenesis is influenced favourably by weight reduction in obese women. This risk reduction is associated with a reduced oxidation of LDL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL . Increasing prevalence of overweight among US adults: the National Health and Nutrition Examination Surveys, 1960–1991 JAMA 1994 272: 205–211.

    Article  CAS  Google Scholar 

  2. Willett WC, Manson JE . Epidemiologic studies of health risks due to excess weight. In: Brownell KD, Fairburn CG (eds) Eating Disorders and Obesity. A Comprehensive Handbook The Guilford Press: New York 1995 396–400.

    Google Scholar 

  3. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, Speizer FE, Hennekens CH . A prospective study of obesity and risk of coronary heart disease in women New Engl J Med 1990 322: 882–889.

    Article  CAS  Google Scholar 

  4. Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B, Speitzer FE, Speizer FE, Hennekens CH . Weight, weight change, and coronary heart disease in women: risk within the ‘normal’ weight range JAMA 1995 273: 461–465.

    Article  CAS  Google Scholar 

  5. Jousilahti P, Tuomilehto J, Vartiainen E, Pekkanen J, Puska P . Body weight, cardiovascular risk factors, and coronary mortality. 15-year follow-up of middle-aged men and women in eastern Finland Circulation 1996 93: 1372–1379.

    Article  CAS  Google Scholar 

  6. Hubert HB, Feinleib M, McNamara PM, Castelli WP . Obesity as an independent risk factor for coronary heart disease: a 26-years follow-up of participants in the Framingham Heart Study Circulation 1983 67: 968–977.

    Article  CAS  Google Scholar 

  7. Rimm EB, Stampfer MJ, Giovanucci E, Ascherio A, Spiegelman D, Colditz GA, Willett WC . Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men Am J Epidemiol 1995 141: 1117–1127.

    Article  CAS  Google Scholar 

  8. Tran ZV, Weltman A . Differential effects of exercise on serum lipid and lipoprotein levels seen with changes in body weight JAMA 1985 254: 919–924.

    Article  CAS  Google Scholar 

  9. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL . Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity New Engl J Med 1989 320: 915–924.

    Article  CAS  Google Scholar 

  10. Witztum JL . The oxidation hypothesis of atherosclerosis Lancet 1994 344: 793–795.

    Article  CAS  Google Scholar 

  11. Steinberg D, Lewis A . Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis Circulation 1997 95: 1062–1071.

    Article  CAS  Google Scholar 

  12. Regnström J, Nilsson J, Tornvall P, Landou C, Hamsten A . Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man Lancet 1992 339: 1183–1186.

    Article  Google Scholar 

  13. Kleinveld HA, Hak-Lemmers HLM, Stalenhoef AFH, Demacker PNM . Improved measurement of low-density lipoprotein is susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein Clin Chem 1992 38: 2066–2072.

    CAS  Google Scholar 

  14. Hodis HN, Kramsch DM, Avogaro P . Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL) J Lipid Res 1994 35: 669–677.

    CAS  PubMed  Google Scholar 

  15. Juul K, Nielsen LB, Munkholm K, Stender S, Nordestgaard BG . Oxidation of plasma low-density lipoprotein accelerates its accumulation and degradation in the arterial wall in vivo Circulation 1996 94: 1698–1704.

    Article  CAS  Google Scholar 

  16. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM . Minimally modified low density lipoprotein stimulates monocyte endothelial interactions J Clin Invest 1990 85: 1260–1266.

    Article  CAS  Google Scholar 

  17. Mehta JL, Li DY . Identification and autoregulation of receptor for OX-LDL in cultured human coronary artery endothelial cells Biochem Biophys Res Commun 1998 248: 511–514.

    Article  CAS  Google Scholar 

  18. Nagase M, Hirose S, Fujita T . Unique repetitive sequence and unexpected regulation of expression of rat endothelin receptor for oxidized low-density lipoprotein (LOX-1) Biochem J 1998 330: 1417–1422.

    Article  CAS  Google Scholar 

  19. Ahotupa M, Ruutu M, Mäntylä E . Simple methods for quantifying oxidation products and antioxidant potential of low density lipoproteins Clin Biochem 1996 29: 139–144.

    Article  CAS  Google Scholar 

  20. American Dietetic Association . Position of the American Dietetic Association: very-low-calory weight loss diets J Am Diet Assoc 1990 90: 722–726.

    Google Scholar 

  21. Nguyen T, Warnick GR . Improved methods of total HDL and subclasses Clin Chem 1989 35: 1086.

    Google Scholar 

  22. Weiland H, Seidel D . A simple specific method for precipitation of low density lipoproteins J Lipid Res 1983 24: 904–909.

    Google Scholar 

  23. Ahotupa M, Marniemi J, Lehtimäki T, Talvinen K, Raitakari OT, Vasankari T, Viikari J, Luoma J, Yla-Herttuala S . Baseline diene conjugation in LDL lipids as a direct measure of in vivo LDL oxidation Clin Biochem 1998 31: 257–261.

    Article  CAS  Google Scholar 

  24. Fogelholm GM, Sievänen HT, van Marken Lichtenbelt W, Westerterp KR . Assessment of fat-mass loss during weight reduction in obese women Metabolism 1998 46: 968–975.

    Article  Google Scholar 

  25. Siri WE . The gross composition of the body. In: Tobias CA, Lawrence JH (eds) Advances in Biological and Medical Physics Academic Press: New York 1956 239–280.

    Google Scholar 

  26. Vasankari T, Ahotupa M, Toikka J, Mikkola J, Irjala K, Pasanen P, Neuvonen K, Raitakari O, Viikari J . Increased circulating oxidized LDL in middle-aged men with coronary and carotid atherosclerosis not on statin therapy. Atherosclerosis (in press)

  27. Vasankari TJ, Kujala UM, Vasankari TM, Ahotupa M . Reduced oxidized LDL levels after a ten-month exercise program Med Sci Sports Exercise 1998 30: 1496–1501.

    Article  CAS  Google Scholar 

  28. Kujala UM, Ahotupa M, Vasankari T, Kaprio J, Tikkanen MJ . Low LDL oxidation in veteran endurance athletes Scand J Med Sci Sports 1996 6: 303–308.

    Article  CAS  Google Scholar 

  29. Vasankari TJ, Kujala UM, Vasankari TM, Vuorimaa T, Ahotupa M . Effects of acute prolonged exercise on serum and LDL oxidation and antioxidant defences Free Radical Biol Med 1997 22: 509–513.

    Article  CAS  Google Scholar 

  30. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkoff RK, Adams PW . Relation of body fat distribution to metabolic complications of obesity J Clin Endocrinol 1982 54: 254–260.

    Article  CAS  Google Scholar 

  31. Kannel WB, Cupples LA, Ramaswami R, Stokes J, Kreger BE, Higgins M . Regional obesity and risk of cardiovascular disease; the Framingham study J Clin Epidemiol 1991 44: 183–190.

    Article  CAS  Google Scholar 

  32. Vasankari TJ, Lehtonen-Veromaa M, Möttönen T, Ahotupa M, Irjala K, Heinonen O, Leino A, Viikari J . Reduced circulating minimally oxidized LDL in young female athletes Atherosclerosis 2000 151: 399–405.

    Article  CAS  Google Scholar 

  33. Jialal I, Devaraj S . Low-density lipoprotein oxidation, antioxidants, and atherosclerosis: a clinical biochemistry perspective Clin Chem 1996 42: 498–506.

    CAS  PubMed  Google Scholar 

  34. Esterbauer H, Gebicki J, Puhl H, Jurgens G . The role of lipid peroxidation and antioxidants in oxidative modification of LDL Free Radical Biol Med 1992 13: 341–390.

    Article  CAS  Google Scholar 

  35. Parks EJ, German JB, Davis PA, Frankel EN, Kappagoda CT, Rutledge JC, Hyson DA, Schneeman BO . Reduced oxidative susceptibility of LDL from patients participating in an intensive atherosclerosis treatment program Am J Clin Nutr 1998 68: 778–785.

    Article  CAS  Google Scholar 

  36. Toikka JO, Niemi P, Ahotupa M, Niinikoski H, Viikari JSA, Rönnemaa T, Hartiala JJ, Raitakari O . Large artery elastic properties in young men: relationship to serum lipoproteins and oxidized low-density lipoproteins Arterioscler Thromb Vasc Biol 1999 19: 436–441.

    Article  CAS  Google Scholar 

  37. Cao G, Booth SL, Sadowski JA, Prior RL . Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables Am J Clin Nutr 1998 68: 1081–1087.

    Article  CAS  Google Scholar 

  38. Vasankari TJ, Kujala UM, Vasankari TM, Vuorimaa T, Ahotupa M . Increased serum and LDL antioxidant potential after antioxidant supplementation in endurance athletes Am J Clin Nutr 1997 65: 1052–1056.

    Article  CAS  Google Scholar 

  39. Porkkala-Sarataho EK, Nyyssönen MK, Kaikkonen JE, Poulsen HE, Hayn EM, Salonen RM, Salonen JT . A randomized, single-blind, placebo-controlled trial of the effects of 200 mg α-tocopherol on the oxidation resistance of atherogenic lipoproteins Am J Clin Nutr 1998 68: 1034–1041.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Juho Vainio Foundation; the Finnish Foundation for Cardiovascular Research; the Turku University Foundation; the Finnish Heart Association; the Yrjö Jahnsson Foundation; the Finnish Ministry of Education; Leiras Oy, Turku, Finland; and Nycomed Pharma AS, Oslo, Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Vasankari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasankari, T., Fogelholm, M., Kukkonen-Harjula, K. et al. Reduced oxidized low-density lipoprotein after weight reduction in obese premenopausal women. Int J Obes 25, 205–211 (2001). https://doi.org/10.1038/sj.ijo.0801533

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801533

Keywords

This article is cited by

Search

Quick links