Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

The genetic background modifies the effects of the obesity mutation, ‘fatty’, on apolipoprotein gene regulation in rat liver

Abstract

BACKGROUND: Obesity is associated with disorders of plasma lipid transport in many, but not in all obese subjects. The effects of obesity on the regulation of genes involved in plasma lipid transport may depend on specific mutations causing or contributing to obesity and/or on interactions of a specific obesity mutation with the genetic background. The ‘fatty’ (Glu269Pro) leptin receptor mutation causes severe obesity associated with hypertriglyceridaemia and altered hepatic apolipoprotein gene regulation in Zucker fatty rats.

OBJECTIVE: To determine whether the effects of the obesity mutation ‘fatty’ on apolipoprotein gene regulation in rat liver depend on the genetic background.

METHODS: We studied hepatic apolipoprotein (apo) A-IV, A-I, and C-III gene expression in obese rats carrying the ‘fatty’ mutation on the background of the Zucker or Wistar strain.

RESULTS: Basal apoA-IV gene expression was increased in fatty rats of both strains, whereas apoA-I and apoC-III gene expression differed between Wistar and Zucker fatty rats: apoA-I gene transcription was reduced to half and apoC-III mRNA was increased two-fold in Wistar fatty, but not in Zucker fatty rats vs lean controls. A fish oil diet suppressed apoA-IV, but not apoA-I gene transcription in Wistar fatty rats, whereas in Zucker fatty rats apoA-IV transcription was unaffected, but apoA-I transcription was suppressed.

CONCLUSIONS: Interactions of the ‘fatty’ leptin receptor mutation with the genetic background significantly affect the basal and diet-induced regulation of the apoA-IV, C-III and A-I genes in rat liver. The genetic background may therefore be a major determinant of the consequences of a specific obesity mutation for plasma lipid transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4

Similar content being viewed by others

References

  1. Comuzzie AG, Allison DB . The search for human obesity genes Science 1998 280: 1274–1377.

    Article  Google Scholar 

  2. Patsch W, Gotto AM . Apolipoproteins : pathophysiology and clinical implications Meth Enzymol 1996 263: 3–32.

    Article  CAS  Google Scholar 

  3. Haddad A, Ordovas JM, Fitzpatrick TK, Karathanasis SK . Linkage, evolution and expression of the rat apolipoprotein A-I, C-III and A-IV genes J Bio1 Chem 1986 261:: 13268–13277.

    Google Scholar 

  4. Rees A, Stocks J, Sharpe CR, Vella MA, Shoulders CC, Katz J, Jowett NI, Baralle FE, Galton D . Desoxyribonucleic acid polymorphisms in the apolipoprotein A-I/C-III/A-IV gene cluster: association with hypertriglyceridaemia J Clin Invest 1984 76: 1090–1095.

    Article  Google Scholar 

  5. Oppert JM, Fumeron F, Moreel JF, Apfelbaum M . Association of a DNA polymorphism of the A-I/C-III/A-IV gene cluster with hypertriglyceridaemia in obese people Int J Obes Relat Metabol Disord 1992 16: 891–896.

    CAS  Google Scholar 

  6. Mata P, Ordovas JM, Lopez-Miranda J, Lichtenstein AH, Clevidence B, Judd JT, Schaefer EJ . Apolipoprotein A-IV phenotype affects diet induced plasma low density lipoprotein cholesterol lowering Arterioscler Thromb 1994 14:: 884–891.

    Article  Google Scholar 

  7. Patsch W, Sharrett AR, Chen IY, Lin-Lee YC, Brown SA, Gotto Jr AM, Boerwinkle E . Association of allelic differences at the apolipoprotein A-I/C-III/A-IV gene cluster with carotid artery intima media thickness and plasma lipid transport in hypercholesteremic–hypertriglyceridemic humans Arterioscler Thromb 1994 14: 874–883.

    Article  CAS  Google Scholar 

  8. Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchard JC, Steinmetz A, Denefle P . Protection against atherogenesis in mice mediated by human apolipoprotein A-I Science 1996 273: 966–968.

    Article  CAS  Google Scholar 

  9. Steinmetz G, Barbaras R, Clavey V, Fuchart JC, Ailhaud G . Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells J Biol Chem 1990 265: 7859–7863.

    CAS  PubMed  Google Scholar 

  10. Rubin EM, Krauss RM, Spangler EA, Verstuyft JG, Clift SM . Inhibition of early atherogenesis in transgenic mice by human apolipoprotein A-I Nature 1991 253: 265–267.

    Article  Google Scholar 

  11. Huang YA, von Eckardstein A, Wu S, Assmann G . Cholesterol efflux, cholesterol esterification, and cholesteryl ester transfer by LPA-I and LPA-I/A-II in native plasma Arterioscler Thromb Vase Biol 1995 15: 1412–1418.

    Article  CAS  Google Scholar 

  12. Ebara T, Ramakrishnan R, Steiner G, Shachter NS . Chylomicronemia due to apolipoprotein C-III overexpression in E null mice: apolipoprotein C-III induced hypertriglyceridaemia is not mediated by effects on apolipoprotein E Eur J Clin Invest 1997 99: 2672–2681.

    Article  CAS  Google Scholar 

  13. Barakat HA, Mooney N, O'Brien K, Long S, Khazani PG, Pories W, Caro JF . Coronary artery disease risk factors in morbidly obese women with normal glucose tolerance Diabetes Care 1993 16: 144–149.

    Article  CAS  Google Scholar 

  14. Hayakawa KT, Shimizu T, Ohba T, Tomioka S . Lifestyle factors affecting intrapair differences of serum apolipoproteins and cholesterol concentrations in adult identical twins Atherosclerosis 1987 66: 1–9.

    Article  CAS  Google Scholar 

  15. Zucker LM, Zucker TF . Fatty, a new mutation in the rat. J Hered 1961 52: 275–278.

    Article  Google Scholar 

  16. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT, Hess JF . Phenotypes of mouse diabetes and rat fatty due to mutations in the ob (leptin) receptor Science 1996 271: 994–996.

    Article  Google Scholar 

  17. Witztum JL, Schonfeld G . Lipoproteins in the plasma and hepatic perfusates of the Zucker fatty rat Diabetes 1979 28: 509–516.

    Article  CAS  Google Scholar 

  18. Pessah M, Salvat S, Wang S, Infante R . In vitro synthesis of apoA-IV and apo C by liver and intestinal mRNAs from lean and obese Zucker rats Biochem Biophys Res Commun 1987 142: 78–85.

    Article  CAS  Google Scholar 

  19. Sparks JD, Sparks CE . Obese (fa/fa) Zucker rats are resistant to insulin's inhibitory effect on hepatic apo B secretion Biochem Biophys Res Commun 1994 205: 417–422.

    Article  CAS  Google Scholar 

  20. Bourgeois CS, Wiggins D, Hems R, Gibbons GF . VLDL output by hepatocytes from obese Zucker rats is resistant to the inhibitory effect of insulin Am J Physiol 1995 296:: E208–E215.

    Google Scholar 

  21. Strobl W, Knerer B, Gratzl R, Arbeiter K, Lin-Lee Y, Patsch W . Altered regulation of apolipoprotein A-IV gene expression in the liver of the genetically obese Zucker rat J Clin Invest 1993 92: 1766–1773.

    Article  CAS  Google Scholar 

  22. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z . A new genetically obese-hyperglycemic rat (Wistar fatty) Diabetes 1981 30: 1045–1050.

    Article  CAS  Google Scholar 

  23. Lin-Lee Y, Tanaka Y, Lin T, Chan L . Effects of atherogenic diet on apolipoprotein E biosynthesis in rat Biochemistry 1981 20: 6474–6480.

    Article  CAS  Google Scholar 

  24. Radosavljevic M, Lin-Lee YC, Soyal SM, Strobl W, Seelos C, Gotto AM, Patsch W . Effect of sucrose diet on expression of apolipoprotein genes A-I, C-III and A-IV in rat liver Atherosclerosis 1992 95: 147–156.

    Article  CAS  Google Scholar 

  25. Daniel F, Morello D, Le Bay O, Chambon P, Cayre Y, Kourilsky P . Structure and expression of the mouse β-2 microglobulin gene isolated from somatic and non-expressing teratocarcinoma cells EMBO J 1983 2: 1061–1065.

    Article  CAS  Google Scholar 

  26. Strobl W, Gorder NL, Lin-Lee Y, Gotto AM, Patsch W . Role of thyroid hormone in apolipoprotein A-I gene expression in rat liver J Clin Invest 1990 85: 659–667.

    Article  CAS  Google Scholar 

  27. Northemann W, Heisig M, Kunz D, Heinrich PC . Molecular cloning of cDNA sequences for rat α2 macroglobulin and measurement of its transcription during inflammation J Biol Chem 1985 260: 6200–6205.

    CAS  PubMed  Google Scholar 

  28. Birch HE, Schreiber G . Transcriptional regulation of plasma protein synthesis during inflammation J Biol Chem 1986 26: 8077–8080.

    Google Scholar 

  29. Lin-Lee Y, Strobl W, Soyal S, Radosavljevic M, Song M, Gotto AM, Patsch W . Role of thyroid hormone in the expression of apolipoprotein A-IV, and C-III genes in rat liver. J Lipid Res 1993 34: 249–259.

    CAS  PubMed  Google Scholar 

  30. Kardassis D, Tzameli I, Hadzopopulou-Cladaras M, Taliandis I, Zannis V . Distal apolipoprotein C-III regulatory elements F to J act as a general modular enhancer for proximal promoters that contain hormone response elements. Synergism between hepatic nuclear factor-4 molecules bound to the proximal promoter and distal enhancer sites Arterioscler Thromb Vas Biol 1997 17: 222–232.

    Article  CAS  Google Scholar 

  31. Reue K, Purcell-Huynh DA, Leete TH, Doolittle MH, Durstenfeld A, Lusis AJ . Genetic variation in mouse apolipoprotein A-IV is determined pre- and posttranscriptionally J Lipid Res 1993 34: 893–903.

    CAS  PubMed  Google Scholar 

  32. Reue K, Leete TH . Genetic variation in mouse apolipoprotein A-IV due to insertion and deletion in a region of tandem repeats J Biol Chem 1993 266: 12715–12721.

    Google Scholar 

  33. Nishina PM, Naggert JK, Verstuyft J, Paigen B . Atherosclerosis in genetically obese mice: the mutants obese, diabetes, fat, tubby and lethal yellow Metabolism 1994 43: 554–558.

    Article  CAS  Google Scholar 

  34. Coleman DL . The Influence of the genetic background on the expression of mutations at the diabetes (db) locus in the mouse IV: Hepatic malic enzyme activity is associated with diabetes severity Metabolism 1992 41: 1134–1136.

    Article  CAS  Google Scholar 

  35. Koh G, Seino Y, Usami M, Matsuo T, Ikeda H, Yamamoto T, Tsuda K, Taminato T, Imura H . Importance of impaired insulin-gene expression in occurence of diabetes in obese rats. Diabetes 1990 30: 1050–1056.

    Article  CAS  Google Scholar 

  36. Fürnsinn C, Komjati M, Madsen OD, Schneider B, Waldhäusl W . Lifelong sequential changes in glucose tolerance and insulin secretion in genetically obese Zucker rats (fa/fa) fed a diabetogenic diet Endocrinology 1991 128: 1093–1099.

    Article  Google Scholar 

  37. Inui Y, Keno Y, Fukuda K, Igura T, Makamura T, Tokunaga K, Kawata S, Matsuzawa Y . Modulation of apolipoprotein gene expression in fatty liver of obese rats: enhanced apo A-IV but not apo-B expression by high sucrose diet Int J Obes 1997 21: 231–238.

    Article  CAS  Google Scholar 

  38. Fujimoto K, Fukagawa K, Sakata T, Tso P . Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats J Clin Invest 1993 91: 1830–1833.

    Article  CAS  Google Scholar 

  39. Weinstock PH, Bisgaier CL, Hajek T, Aalto-Setala K, Sehayek E, Wu L, Sheiffele P, Markel M, Essenburg AD, Breslow JL . Decreased HDL cholesterol levels but normal lipid absorption, growth and feeding behaviour in apolipoprotein A-IV knock out mice J Lipid Res 1997 38: 1782–1794.

    CAS  PubMed  Google Scholar 

  40. Jump DB, Clarke SD, Thelen A, Liimatta M . Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids J Lipid Res 1994 35: 1076–1084.

    CAS  PubMed  Google Scholar 

  41. Berthou L, Saladin R, Yaqoob P, Brannellec D, Calder P, Fruchard JC, Denefle P, Auwerx J, Staels B . Regulation of apolipoprotein A-I, apolipoprotein A-II, and acyl coenzyme A oxidase gene expression by fibrates and dietary fatty acids Eur J Biochem 1995 232: 179–187.

    Article  CAS  Google Scholar 

  42. Phillips FC, Cleary MP . Metabolic measurements among homozygous (fa/fa) obese, heterozygous (Fa/fa) lean and homozygous (Fa/Fa) lean Zucker rats J Nutr 1994 124: 1230–1237.

    Article  CAS  Google Scholar 

  43. Cleary MP, Phillips FC . The presence of the “fa” gene in heterozygous (Fa/fa) lean female rats effects on body weight, body fat and serum leptin Obes Res 1999 7: 293–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ‘Jubiläumsfonds der Österreichischen Nationalbank’, grant no. 6110, and by a research grant from the Austrian Pediatric Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Strobl.

Additional information

Part of this work has appeared in abstract form (E Schuller et al (1997) Atherosclerosis 130: S26).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, E., Patel, N., Item, C. et al. The genetic background modifies the effects of the obesity mutation, ‘fatty’, on apolipoprotein gene regulation in rat liver. Int J Obes 24, 460–467 (2000). https://doi.org/10.1038/sj.ijo.0801179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801179

Keywords

This article is cited by

Search

Quick links