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LETTERS TO THE EDITOR. 
[The Editor does not hold himself responsible for opinions ex

pressed by his correspondents. Neither can he undertake 
to return, or to correspond with the writers of, rejected 
manuscripts intended for this or any other part of NATURE. 
No notice is taken of anonymous comlllltllications.] 

Velocity of Propagation of Electrostatic Force. 

As we may have to wait some time for the experimental solu
tion of Lord Kelvin's very instructive and suggestive problem 
concerning two pairs of spheres charged with electricity (see 
NATURE of February 6, p. 316), it may be interesting to see 
what the solution would be from the standpoint of existing 
electrical theories. 

In applying Maxwell's theory to the problem, it will be con
venient to suppose the dimensions of both pairs of spheres very 
small in comparison with the unit of length, and the distance 
between the two pairs very great in comparison with the same 
unit. These conditions, which greatly simplify the equations 
which represent the phenomena, will hardly be regarded as 
affecting the essential nature of the question proposed. 

Let us first consider what would happen on the discharge of 
{A, B), if the system (c, d) were absent. 

Let m0 be the initial value of the moment of the charge of the 
system (A, B), (this term being used in a sense analogous to 
that in which we speak of the moment of a magnet), and m the 
value of the moment at any instant. If we set 

m "" F(t), .....•..• (I) 

and suppose the discharge to commence when t = o, and to be 
completed when t = h, we shall have 

F(t) = m0 when f< o, . (z) 
and 

F(t) = o when t> h, . (3) 

Let us set the origin of coordinates at the centre of the 
system (A, B), and the axis of X in the direction of the centre of 
the positively charged sphere. A unit vector in this direction 
we shall call i, and the vector from the origin to the point 
considered p. At any point outside of a sphere of unit radius 
about the origin, the electrical displacement (!D) is given by the 
vector equation 

4""!D = [3r- 5F(t- cr) + 3cr· 4F'(t- cr) + c2r- 3F"(t-.- cr)]XP 
- [r-3 F(t- cr) + cr 2F'(t - cr) + c2r-1F"(t- cr)]i, . (4) 

where F denotes the function determiner! by equation (I), F' 
and F" its derivatives, and c the ratio of the electrostatic and 
electromagnetic units of electricity, or the reciprocal of the 
velocity oflight. For this satisfies the general equation 

- v2:D = c2d2!Djdt2, ....•.. (S) 

as well as the so-called "equation of continuity," and also 
satisfies the special conditions that when t < o 

4""!D = m0(3r- 5xp - r-3i) 

outside of the unit sphere, and that at any time at the surface of 
this sphere 

4""!D = 11Z(3XP- i), 
if we consider the terms containing the factor c as negligible, 
when not compensated by large values of r. That equation (4) 
satisfies the general condition> is easily verified, if we set 

u = r· 1 F(t - cr), . (6) 
and observe that 

. (7) 
and that the three components of !D are given by the equations 

41rj = -:; d 2ufdy2 
- d 2ufdz2 • . . / 

41rg = d·ujdxdy . . . . . . . . ( (8) 
4d = d 2ufdxdz . • • . • • . . ) 

Equation (4) shows that the changes of the electrical displace
ment are represented by three systems of spherical waves, of 
forms determined by the rapidity of the discharge of the system 
(A, B), which expand with the velocity of light with amplitudes 
diminishing as r-3, r· 2, and r·', respectively. Outside of these 
waves, the electrical displacement is unchanged, inside of them 
it is zero. 

If we write (with Maxwell) - d&jdt for the force of electro
dynamic induction at any point, and suppose its rectangular 
components calculated from those of - d''J:Jjdt2 by the formula 
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used in calculating the potential of a mass from 
shall have by Poisson's theorem 

or by (5), 

whence 

v 2(d&fdt) = 4id2!Djdt2 , 

'V2(d'.}{jdt) = - 41rc-2v 2!D, 

d'JXjdt = - 411"C- 2!D 
From this, with (4), and thE' general equation 

d'JXjdt + 4,.c-2!D + VV = o, 

its density, we 

•..• (9) 

we see that during the discharge of the system (A, B) the 
electrostatic force - vV vanishes throughout all space, while its 
place is taken by a precisely equal electrodynamic force 
- d&jdt. 

This electrodynamic force remains unchanged at every point 
until the passage of the waves, after' which the electrostatic 
force, the electrodynamic force, and the displacement, have the 
permanent value zero. 

If we write Curl for the differentiating vector operator which 
Maxwell calls by that name, equations (8) may be put in the 
form 

whence 
4"":D = Curl Curl (iu ), 

d'J:Jjdt = (4,.)"1 Curl Curl (idufdt). 

From d'J:Jjdt we may calculate the magnetic induction !8 by 
an operation which is the inverse of (4,.)-1 Curl. We have 
therefore 

!8 = Curl (idufdt), 
or 

!8 = [r-3F'(t - cr) + cr-2F"(t - cr)](yk - zj). 

The magnetic induction is therefore zero except in the waves. 
Equations (4) and (9) give the value of d'll/dt as function of 

(t and r). By integration, we may find the value of &, Max
well's " vector potential." This will be of the form of the 
second member of (4) multipled by - c-2, if we should give 
P-ach F one accent less, and for an unaccented F should write 
F,, to denote the primitive of F which vanishes for the argu
ment ao. 

That which seems most worthy of notice is that although 
simultaneously with the discharge of the system (A, B) the 
values of what we call the electric potential, the electrodynamic 
force of induction, and the "vector potential," are changed 
throughout all space, this does not appear connected with any 
physical change outside of the waves, which advance with the 
velocity of light. 

If we now suppose that there is a second pair of charged 
spheres (c, d), as in the original problem, the discharge of this 
pair will evidently occur when the relaxation of electrical dis
placement reaches it. The lime between the discharges is, 
therefore, by Maxwell's theory, the time required for light to pass 
from one pair to the other. 

It may also be interesting to observe that in the axis of x, on 
both sides of the origin, XP = r 2i, and equation (4) reduces to 

41r'J:J = [zr- 3F(t - cr) + zcr· 2F'(t- cr)]i. 

Here, therefore, the oscillations are normal to the wave-surfaces• 
This might seem to imply that plane waves of normal oscilla
tions may be propagated, since we are accustomed to regard a 
part of an infinite sphere as equivalent to a part of an infinite 
plane. Of course, such a result would be contrary to Maxwell's 
theory. The paradox is explained if we consider that the parts 
of the wave-motion, expressed by F and F', diminish more 
rapidly than those expressed by F", so that it is unsafe to take 
the displacements in the axis of X as approximately representing 
those at a moderate distance from it. In fact, if we consider the 
displacements not merely in the axis of x, but within a cylinder 
about that axis, and follow the waves to an infinite distance 
from the origin, we find no approximation to what is usually 
meant by plane waves with normal oscillations. 

New Haven, Conn., March IZ. 
J. WILLARD GIBBS. 

An Unusual Solar-Halo. 
ON March I 7, at Gottingen, a curious solar halo was observed 

by a friend and myself towards the time of sunset. The weather 
that day had been beautifully fine, but towards 5h. p.m. (Mean 
European Time) thin light clouds began to form, which covered 
the heavens with a thin white raiment. \Vhen the sun was 
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