Supplemental Figure 2: The CB1 antagonist rimonabant impairs within-session extinction. Animals were extinguished in a manner similar to those shown in figure 2D and the data between the two groups was normalized similarly. Animals received either vehicle (100% DMSO) or rimonabant (5 mg/kg, i.p.), an antagonist at the CB1 receptor, 30 minutes prior to extinction training/testing. Note that in these experiments, CB1 antagonist-treated animals demonstrate a deficit in within-session extinction. Additionally, CB1 antagonist-treated animals have been previously shown to demonstrate robust deficits in extinction retention20,21. Further, it has been shown that post-extinction training administration of a CB1 antagonist does not block extinction20, indicating that the endocannabinoid system is likely not involved in the consolidation of extinction. This differs markedly from the pattern of extinction seen in TrkBt1-infected animals (present study), where within-session extinction is normal but extinction retention is selectively impaired. This suggests that within-session extinction may be cannabinoid dependent, whereas consolidation of extinction (but not within session extinction) may be dependent upon BDNF-mediated activation of the TrkB receptor. Notably, blocking either within-session extinction (e.g., with CB1 antagonist treatment) or the consolidation of extinction (e.g., with TrkBt1 infection of the amygdala) lead to deficits in extinction retention, suggesting that within-session extinction may be a necessary-but-not sufficient condition for extinction retention.