Supplemental Figure 2. Fgfr1 mutants have specific deficits in the formation of dorsal telencephalic commissures. (a–f) Representative BDA tracing in control and Fgfr1f/f;NesCre adults. (b) and (e) are 4x magnifications of (a) and (d), respectively. BDA injections into the frontal cortex (insets) label fibers of the corpus callosum and contralateral white matter in control (a,b) but not in Fgfr1 mutant mice (d,e). However, the ipsilateral white matter and striatum (St) (b,e) and cortical projections to the thalamic medial dorsal (arrowhead) and ventromedial nuclei (small arrow) (c,f) are labeled in both control and mutant mice. P, Probst bundles; red arrowhead, labeled fibers in contralateral white matter. (g–n) Axonal tracing from motor (Dil, red) or somatosensory (DiA, yellow-green) cortex in control (g–i) and Fgfr1f/f;hGfapCre (k–n) neonatal mice. Implant sites shown in inside panel in (g,k). (h,i) High magnification of the midline showing absence of callosal axons in Fgfr1f/f;hGfapCre mice. Axons from motor cortex innervate the ventral-medial (VM) thalamic nuclei, and axons from somatosensory cortex innervate ventro-basal (VB) nuclear complex in both controls (i) and Fgfr1f/f;hGfapCre (m) mice. Projections from motor cortex innervate the dorsolateral striatum in both control (j) and Fgfr1f/f;hGfapCre (n) mice. (o–r) DiA (yellow-green signal) was implanted into the hippocampus of control (o,p) and Fgfr1f/f;hGfapCre (q,r) brains. Inserts in (o,p) show implantation sites. (p,r) High magnification of the midline showing absence of hippocampal commissural axons in Fgfr1f/f;hGfapCre mice. Scale bar is 400 μm in g,k,o,q and 100 μm in the other panels.