Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>TEST USED</th>
<th>WHICH TEST?</th>
<th>n</th>
<th>SECTION & PARAGRAPH #</th>
<th>EXACT VALUE</th>
<th>DEFINED?</th>
<th>SECTION & PARAGRAPH #</th>
<th>REPORTED?</th>
<th>DESCRIPITIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>10, 10 Mice from two groups</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Blood Na+: p = 0.0001</td>
<td>Fig. legend</td>
<td>U = 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>15</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>t(28) = 2.808</td>
<td>Results para 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Methods para 8</td>
<td>error bars are mean +/- SEM</td>
<td>Methods para 8</td>
<td>Methods para 8</td>
<td>Methods para 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td>Results para 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4463
<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>13, 13</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1b</td>
<td>10</td>
<td>Mice</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1b</td>
<td>10, 10</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1c</td>
<td>13, 13</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1c</td>
<td>10, 10</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1d</td>
<td>10, 10</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>1e</td>
<td>10, 10</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
</tbody>
</table>
| - 1f | Mann-Whitney U-test | Fig. legend | 8, 8 | Mice from three groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | WT, water: \(p = 0.0009 \)
WT, NaCl: \(p = 0.0009 \)
AT1a-KO, water: \(p = 0.0009 \)
AT1a-KO, NaCl: \(p = 0.0661 \)
Water (WT vs. AT1a-KO): \(p = 0.9581 \)
NaCl (WT vs. AT1a-KO): \(p = 0.0100 \) | Fig. legend | WT, water: \(U = 0 \)
WT, NaCl: \(U = 0 \)
AT1a-KO, water: \(U = 14 \)
AT1a-KO, NaCl: \(U = 33 \)
NaCl (WT vs. AT1a-KO): \(U = 57 \) |
| - 2a | Mann-Whitney U-test | Fig. legend | 5, 5, 5 | Mice from three groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | SFO (Na-depleted): \(p = 0.0090 \)
SFO (Water-depleted): \(p = 0.0946 \)
OVLT (Na-depleted): \(p = 0.0090 \)
OVLT (Water-depleted): \(p = 0.6761 \)
OVLT (Water-depleted): \(p = 0.0090 \) | Fig. legend | SFO (Na-depleted): \(U = 0 \)
SFO (Water-depleted): \(U = 0 \)
OVLT (Na-depleted): \(U = 10 \)
OVLT (Water-depleted): \(U = 0 \) |
| - 2b | Mann-Whitney U-test | Fig. legend | 5, 5, 5 | Mice from two groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | Water: \(p = 0.0341 \)
NaCl: \(p = 0.0011 \) | Fig. legend | Water: \(U = 65 \)
NaCl: \(U = 78 \) |
| - 2e | Mann-Whitney U-test | Fig. legend | 9, 9 | Mice from two groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | WT/Cre: \(p = 0.9780 \)
AT1aflox/flox/Cre: \(p = 0.0009 \) | Fig. legend | WT/Cre: \(r = -0.5188 \)
AT1aflox/flox/Cre: \(r = -0.2685 \) |
| - 2h | Mann-Whitney U-test | Fig. legend | 8, 8 | Mice from two groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | Water: \(p = 0.8748 \)
NaCl: \(p = 0.6742 \) | Fig. legend | Water: \(U = 34 \)
NaCl: \(U = 27.5 \) |
| - 2h | Pearson correlation | Fig. legend | 11, 11 | Mice from two groups | Fig. legend | Error bars are mean +/- SEM | Fig. legend | WT/Cre: \(p = 0.1019 \)
AT1aflox/flox/Cre: \(p = 0.4247 \) | Fig. legend | WT/Cre: \(r = -0.5188 \)
AT1aflox/flox/Cre: \(r = -0.2685 \) |
<p>| - 3g | Mann-Whitney U-test | Fig. legend | 8 | Mice | Fig. legend | Error bars are mean +/- SEM | Fig. legend | p = 0.0054 | Fig. legend | U = 59 |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>Time</th>
<th>Test</th>
<th>Fig.</th>
<th>Mice</th>
<th>Fig.</th>
<th>Error bars</th>
<th>Fig.</th>
<th>Water: p</th>
<th>NaCl: p</th>
<th>Fig.</th>
<th>Water: U</th>
<th>NaCl: U</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3h</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>8</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: 0.4306</td>
<td>NaCl: 0.2271</td>
<td>Fig. legend</td>
<td>Water: U = 24</td>
<td>NaCl: U = 20</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3j</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>7</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water(0-10 min vs. 10-20 min.): p = 0.0017</td>
<td>Water(10-20 min vs. 20-30 min.): p = 0.0019</td>
<td>Fig. legend</td>
<td>Water(0-10 min vs. 10-20 min.): U = 0</td>
<td>Water(10-20 min vs. 20-30 min.): U = 49</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>4d</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>6, 6 Mice from two groups</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: 0.2615</td>
<td>NaCl: 0.0051</td>
<td>Fig. legend</td>
<td>Water: U = 10.5</td>
<td>NaCl: U = 36</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td>Pearson correlation</td>
<td>Fig. legend</td>
<td>13, 13 Mice from two groups</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>WT/Cre: p = 0.0924</td>
<td>AT1aflox/flox/Cre: p = 0.0008</td>
<td>Fig. legend</td>
<td>WT/Cre: r = 0.0295</td>
<td>AT1aflox/flox/Cre: r = -0.8103</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>4f</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>10</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: 0.1859</td>
<td>NaCl: 0.0002</td>
<td>Fig. legend</td>
<td>Water: U = 68</td>
<td>NaCl: U = 100</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>4f</td>
<td>Pearson correlation</td>
<td>Fig. legend</td>
<td>14</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Opt. (-): p = 0.2080</td>
<td>Opt. (+): p = 0.0002</td>
<td>Fig. legend</td>
<td>Opt. (-): r = 0.3586</td>
<td>Opt. (+): p = -0.8407</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>4g</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>5</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 1.0000</td>
<td>Fig. legend</td>
<td>U = 12</td>
<td>Fig. legend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4h</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>7</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.4432</td>
<td>Fig. legend</td>
<td>U = 18</td>
<td>Fig. legend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>9</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water (0 M NaCl): p = 0.6588</td>
<td>Water (0.15 M NaCl): p = 0.7911</td>
<td>Fig. legend</td>
<td>Water (0 M NaCl): U = 46</td>
<td>Water (0.15 M NaCl): U = 44</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>5c</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>9</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water (0.15 M NaCl): p = 0.00046</td>
<td>Water (0.20 M NaCl): p = 0.0006</td>
<td>Fig. legend</td>
<td>Water (0.30 M NaCl): U = 1</td>
<td>Water (0.30 M NaCl): U = 0</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>5d</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>9</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water (0.15 M NaCl): p = 0.0006</td>
<td>Water (0.30 M NaCl): p = 0.0004</td>
<td>Fig. legend</td>
<td>Water (0.15 M NaCl): U = 15</td>
<td>Water (0.30 M NaCl): U = 3</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>5e</td>
<td>Mann-Whitney U-test</td>
<td>Fig. legend</td>
<td>7</td>
<td>Mice</td>
<td>Fig. legend</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.8983</td>
<td>Fig. legend</td>
<td>U = 26</td>
<td>Fig. legend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Fig.</td>
<td>Test</td>
<td>legend</td>
<td>N</td>
<td>Mice from</td>
<td>Error bars are</td>
<td>Fig.</td>
<td>legend</td>
<td>N</td>
<td>Mice from</td>
<td>Error bars are</td>
<td>Fig.</td>
<td>legend</td>
</tr>
<tr>
<td>6a</td>
<td>8, 8, 8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8, 8, 8</td>
<td>Mice from four groups</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: p = 0.0100 WT vs. AT1a-KO: p = 0.0086 WT vs. Nax/AT1a-DKO: p = 0.0036</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: U = 7 WT vs. AT1a-KO: U = 57 WT vs. Nax/AT1a-DKO: U = 60</td>
<td>Fig.</td>
</tr>
<tr>
<td>6b</td>
<td>8, 8, 8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8, 8, 8</td>
<td>Mice from four groups</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: p = 0.0028 WT vs. AT1a-KO: p = 0.0074 WT vs. Nax/AT1a-DKO: p = 0.0013</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: U = 3 WT vs. AT1a-KO: U = 58 WT vs. Nax/AT1a-DKO: U = 63</td>
<td>Fig.</td>
</tr>
<tr>
<td>6c</td>
<td>5, 5, 4</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8, 8, 8</td>
<td>Mice from four groups</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: p = 0.0009 WT vs. AT1a-KO: p = 0.0199</td>
<td>Fig.</td>
<td>legend</td>
<td>WT vs. Nax-KO: U = 25 WT vs. AT1a-KO: U = 20</td>
<td>Fig.</td>
</tr>
<tr>
<td>7e</td>
<td>8, 8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8, 8</td>
<td>Slices from two groups</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron (WT): p = 0.0009 (145 vs. 160) GABAergic neuron (Nax-KO): p = 1.0419 (145 vs. 160) Projection neuron (WT): p = 0.0009 (145 vs. 160) Projection neuron (Nax-KO): p = 0.7128 (145 vs. 160)</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron (WT): U = 0 GABAergic neuron (Nax-KO): U = 32 Projection neuron (WT): U = 64 Projection neuron (Nax-KO): U = 36</td>
<td>Fig.</td>
</tr>
<tr>
<td>7f</td>
<td>8, 8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8, 8</td>
<td>Slices from two groups</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron (WT): p = 0.6742 (145 vs. 160) GABAergic neuron (Nax-KO): p = 0.8748 (145 vs. 160) Projection neuron (WT): p = 0.9459 (145 vs. 160) Projection neuron (Nax-KO): p = 0.9163 (145 vs. 160)</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron (WT): U = 36.5 GABAergic neuron (Nax-KO): U = 30 Projection neuron (WT): U = 22.5 Projection neuron (Nax-KO): U = 33.5</td>
<td>Fig.</td>
</tr>
<tr>
<td>7g</td>
<td>7</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>7</td>
<td>Mice</td>
<td>Fig.</td>
<td>legend</td>
<td>Water: p = 0.0208 0.3 M NaCl: p = 0.0049</td>
<td>Fig.</td>
<td>legend</td>
<td>Water: U = 43 0.3 M NaCl: U = 47</td>
<td>Fig.</td>
</tr>
<tr>
<td>7j</td>
<td>8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8</td>
<td>Slices</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron: p = 0.0009 Projection neuron: p = 0.0009</td>
<td>Fig.</td>
<td>legend</td>
<td>GABAergic neuron: U = 0 Projection neuron: U = 64</td>
<td>Fig.</td>
</tr>
<tr>
<td>7k</td>
<td>8</td>
<td>Mann-Whitney U-test</td>
<td>Fig.</td>
<td>legend</td>
<td>8</td>
<td>Slices</td>
<td>Fig.</td>
<td>legend</td>
<td>p = 0.9163</td>
<td>Fig.</td>
<td>legend</td>
<td>U = 33.5</td>
<td>Fig.</td>
</tr>
<tr>
<td>Fig.</td>
<td>p</td>
<td>Mann-Whitney U-test</td>
<td>Mann-Whitney U-test</td>
<td>Mann-Whitney U-test</td>
<td>Mann-Whitney U-test</td>
<td>Pearson correlation</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>5i</td>
<td>0.0210</td>
<td>(AP)</td>
<td>0.5308</td>
<td>(PVN)</td>
<td>0.0810</td>
<td>NaCl: p = 0.0024</td>
<td>Water: U = 15</td>
<td>p = 0.0090</td>
<td>Control vs. Water-depleted: p = 0.6761</td>
<td>Control vs. Water-depleted: U = 0</td>
<td>Control vs. Water-depleted: U = 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>58</td>
<td>5, 5</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: U = 38 NaCl: U = 48</td>
<td>Fig. legend</td>
<td>Water: U = 38 NaCl: U = 38</td>
<td></td>
</tr>
<tr>
<td>S3a</td>
<td>5, 5</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: p = 0.0090 AT1a-KO: p = 0.8789</td>
<td>Fig. legend</td>
<td>Water: U = 4.5 AT1a-KO: U = 52.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3b</td>
<td>5, 5</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: p = 0.0090 OVLT: p = 0.0090</td>
<td>Fig. legend</td>
<td>Water: U = 4.5 AT1a-KO: U = 52.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S8a</td>
<td>10, 10</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: U = 50 NaCl: U = 63</td>
<td>Fig. legend</td>
<td>Water: U = 50 NaCl: U = 63</td>
<td></td>
</tr>
<tr>
<td>S8b</td>
<td>7, 7</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.0022</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S8c</td>
<td>8</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.0074</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10a</td>
<td>5, 5</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.0216</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10c</td>
<td>8, 8</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>Water: p = 0.0658 NaCl: p = 0.0013</td>
<td>Fig. legend</td>
<td>Water: p = 0.0658 NaCl: p = 0.0013</td>
<td></td>
</tr>
<tr>
<td>S10d</td>
<td>11, 14</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.5547</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10e</td>
<td>9, 9</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.3142</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10f</td>
<td>8, 9</td>
<td>Mice from two groups</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.8174</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10g</td>
<td>7</td>
<td>Mice</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.8054</td>
<td>Fig. legend</td>
<td></td>
</tr>
<tr>
<td>S10h</td>
<td>9</td>
<td>Slices</td>
<td>Error bars are mean +/- SEM</td>
<td>Fig. legend</td>
<td>p = 0.6785</td>
<td>Fig. legend</td>
<td></td>
</tr>
</tbody>
</table>
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?
 If so, what figure(s)?

 Representative images of virus and retrograde-tracer injection sites, lesioned areas, and immunohistochemistry are shown in Fig. 2a-c, f and 3a-f, i and 4a-c, e and 5a, 6c, 7a, and S1, S2, S3b, S4, S5, S6, S7b, c and S9, and S10a, b. Injection sites were checked for all experiments.

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?
 If so, where is this reported (section, paragraph #)?

 No statement, but it is clear from n numbers. The infection site has been validated for each animal used for the behavioral test and the electrophysiological test.

Statistics and general methods

1. Is there a justification of the sample size?
 If so, how was it justified?
 Where (section, paragraph #)?

 Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

 Based on previous experiments and publications, we have performed the power calculation to determine sample size that allow acceptable variability in order to draw valid conclusion. For each analysis, sample size was determined using a power > 0.8 and alpha error = 0.05. It is described in methods section headed ‘Statistical analysis’.

2. Are statistical tests justified as appropriate for every figure?
 Where (section, paragraph #)?

 a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?

 Yes

 b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?

 Where is this described (section, paragraph #)?

 Mann Whitney test (a non-parametric test) was used, because it does not require the assumption of normality.

 c. Is there any estimate of variance within each group of data?

 Is the variance similar between groups that are being statistically compared?

 Where is this described (section, paragraph #)?

 No

 d. Are tests specified as one- or two-sided?

 Yes, two-sided tests were used for all the experiments.

 e. Are there adjustments for multiple comparisons?

 NA
3. To promote transparency, *Nature Neuroscience* has stopped allowing bar graphs to report statistics in the papers it publishes. If you have bar graphs in your paper, please make sure to switch them to dot-plots (with central and dispersion statistics displayed) or to box-and-whisker plots to show data distributions.

4. Are criteria for excluding data points reported?
 - Was this criterion established prior to data collection?
 - Where is this described (section, paragraph #)?

 When the virus infection to the target site was not successful, the behavioral data were excluded from the analyses. It is described in methods section headed 'Surgery'.

5. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.
 - If no randomization was used, state so.
 - Where does this appear (section, paragraph #)?

 For behavioral experiments, recording chambers were randomized.

6. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 - If no blinding was done, state so.
 - Where (section, paragraph #)?

 For all the behavioral experiments, the intake volumes were monitored automatically, and the experimenter was aware of the conditions being tested.

7. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

8. Is the species of the animals used reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

9. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

10. Is the sex of the animals/subjects used reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

11. Is the age of the animals/subjects reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

12. For animals housed in a vivarium, is the light/dark cycle reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.

13. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 - Where (section, paragraph #)?

 Yes, it is described in the methods, 'Experimental animals'.
14. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 Yes, all the behavioral experiments were performed during the light period. This is described in the methods, 'Experimental animals'.

15. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 Yes, it is described that all animals had no special previous history before the surgeries or behavioral analyses.

16. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 Yes, it is reported in the methods section headed 'Surgery'.

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
 The animals were excluded if no virus infection was detected at the end of the experiment.

 b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?
 NA

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 Yes, the antibodies used in the study were validated in IHC and WB experiments in the mouse.

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Yes, in the Methods.

 b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 The validation data are reported in the data sheet of the company.

 Where does this appear (section, paragraph #)?

2. Cell line identity
 a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?
 Where (section, paragraph #)?
 NA

 b. If yes, include in the Methods section a scientific justification of their use--indicate here in which section and paragraph the justification can be found.
 NA
c. For each cell line, include in the Methods section a statement that specifies:
- the source of the cell lines
- have the cell lines been authenticated? If so, by which method?
- have the cell lines been tested for mycoplasma contamination?
Where (section, paragraph #)?

Data availability

Provide a Data availability statement in the Methods section under "Data availability", which should include, where applicable:
- Accession codes for deposited data
- Other unique identifiers (such as DOIs and hyperlinks for any other datasets)
- At a minimum, a statement confirming that all relevant data are available from the authors
- Formal citations of datasets that are assigned DOIs
- A statement regarding data available in the manuscript as source data
- A statement regarding data available with restrictions

See our data availability and data citations policy page for more information.

Data deposition in a public repository is mandatory for:
a. Protein, DNA and RNA sequences
b. Macromolecular structures
c. Crystallographic data for small molecules
d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

Where is the Data Availability statement provided (section, paragraph #)?

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

NA
2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under “Code availability” to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

Human subjects

1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?
2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Where (section, paragraph #)?
 NA

3. Is the length of each trial and interval between trials specified?
 NA

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
 NA

5. Is the task design clearly described?
 Where (section, paragraph #)?
 NA

6. How was behavioral performance measured?
 NA

7. Is an ANOVA or factorial design being used?
 NA

8. For data acquisition, is a whole brain scan used?
 If not, state area of acquisition.
 a. How was this region determined?
 NA

9. Is the field strength (in Tesla) of the MRI system stated?
 a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 NA
 b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?
 NA

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?
 NA

11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?
 NA

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?
 NA

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?
 NA
14. Were any additional regressors (behavioral covariates, motion etc) used?
NA

15. Is the contrast construction clearly defined?
NA

16. Is a mixed/random effects or fixed inference used?
NA

a. If fixed effects inference used, is this justified?
NA

17. Were repeated measures used (multiple measurements per subject)?
NA

a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?
NA

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?
NA

19. Are statistical inferences corrected for multiple comparisons?
NA

a. If not, is this labeled as uncorrected?
NA

20. Are the results based on an ROI (region of interest) analysis?
NA

a. If so, is the rationale clearly described?
NA

b. How were the ROI’s defined (functional vs anatomical localization)?
NA

21. Is there correction for multiple comparisons within each voxel?
NA

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?
NA

Additional comments

Additional Comments
NA