Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE NUMBER</td>
<td>WHICH TEST?</td>
<td>SECTION & PARAGRAPH #</td>
<td>EXACT VALUE</td>
<td>DEFINED?</td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Methods para 8</td>
<td>error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3a</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
</tr>
<tr>
<td>8d</td>
<td>unpaired t-test</td>
<td>fig. legend</td>
<td>serial slices from 3 mice in each group</td>
<td>fig. legend</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4462
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?

 If so, what figure(s)?

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?

 If so, where is this reported (section, paragraph #)?

Yes. Histochemical figures in 5d,e,g, 6b-h1, 7b and 8a,d.

We have clearly described the number of mice used for each experiment, and for which stainings, in the expanded (online) methods section. The analysis in Fig. S1 is to show the quality of raw data (b,c) and the high level of reproducibility across different biological samples (a). Moreover, a statement is made on male vs. female differences, including a figure (Fig. S2).
1. Is there a justification of the sample size?
 If so, how was it justified?
 Where (section, paragraph #)?
 Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

1) Here, we used unbiased mathematical approaches to identify cell type variability in the specific brain region. To get a substantial amount of cells per cluster originally we hypothesized (partially based on previous experience as reported by Zeisel et al., 2015) that 3,000 high-quality cells (where only 30% expected to be neurons, thus around 800-1,000 neurons with the predicted number of clusters in the 20-90 range) should be the expected amount of cells for final analysis to reveal genuine group diversity. To avoid "batch"-dependent effects, we controlled (as reported) that any of clusters was not dominated by cells from a particular animal (Fig. S1a).

2) For the statistical analysis presented in Fig. 8d,e we used power calculation to minimize the animal number (to n = 3 + 3 and n = 4 +4) in order to obtain significant results with the predicted difference of more than 50% based on our preliminary observations.

3) We constructed a cumulative distribution function (CDF) graph of day/night dependence of phospho-TH levels in >300 cells per condition (Fig. 8e). This approach allowed us to minimize the number of animals yet yielding statistically robust data.

2. Are statistical tests justified as appropriate for every figure?
 Where (section, paragraph #)?

1) Conventional statistical tests were used for the experiments shown in Fig. 8d,e and Fig. S7c: t-test for Fig. 8d; rank sum test for results shown in Fig. S7c since t-test is not applicable at this point because of the normality test (Shapiro-Wilk) failed; two-sample Kolmogorov-Smirnov test for Fig. 8e.

2) For the data presentation to evaluate the level and specificity of the expression of genes in individual clusters we used the approach described in detail in "Error-bar plots". Briefly, we transformed the data by log2(x+1) to calculate the means ± s.e.m. Likewise, we computed the fraction of positive cells per cluster. We considered meaningful expression if the mean exceeded 2x s.e.m. above zero. We show two levels of stringency (bold in figures): i) with power = 0, where there is no correction to the fraction of positive cells and ii) with power = 1, where the average is multiplied by the fraction of positive cells to avoid heterogeneous groups.

Next we used the standard non-parametric Wilcoxon rank-sum test for Figures 4, 5c, 6j, 7a,a2, 8c, 55c,d, 56b,c, 88c. For each gene, we have tested each group vs. the pool of cells from all other groups, a total of 62 comparisons. Secondly, for each gene we have corrected for multiple testing everywhere by using the Benjamin-Hochberg procedure for 62 clusters to control the false discovery rate (FDR). If a test was performed, we reported P and q values and indicate significance at a false discovery rate of 5% (i.e. when q < 0.05).

Values are presented in Figures, Supplementary tables 4, 5 and 6.

3) Results shown in Fig. 5b were built on the analysis described in "Dendrogram construction and split point listing", the corresponding p and q values are present in Supplementary table 3.
a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?

Yes, all methods are described in detail including sections: "Selection of cluster-enriched genes and markers", "Dendrogram construction and split point listing", "Error-bar plots", "Calculating significance using the Wilcoxon rank-sum test", "Statistical analysis of histochemical and imaging data".

b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?

For the analysis of gene expression we used the non-parametric Wilcoxon rank-sum test (Matlab, "ranksum").

In case of statistical analysis of histochemical and imaging data, we first checked raw data for normality (Shapiro-Wilk test) and equal variance. If these tests were passed, we used Student's t-test. Otherwise, we analysed our data with the Wilcoxon rank-sum test (another name - Mann-Whitney rank sum test). We analysed two distributions shown in Figure 8e using the two-sample Kolmogorov-Smirnov test. All statistical procedures are described in the Online Methods.

c. Is there any estimate of variance within each group of data? Is the variance similar between groups that are being statistically compared?

Yes, see above. We do not give a detailed description of this procedure, which is part of the analysis routine provided by SigmaPlot.

d. Are tests specified as one- or two-sided?

One-sided for 8d, all rank sum tests are one-sided

e. Are there adjustments for multiple comparisons?

Yes, for gene expression data (Benjamini-Hochberg procedure for each gene among 62 clusters).

3. To promote transparency, Nature Neuroscience has stopped allowing bar graphs to report statistics in the papers it publishes. If you have bar graphs in your paper, please make sure to switch them to dot-plots (with central and dispersion statistics displayed) or to box-and-whisker plots to show data distributions.

The submission contains bar graphs for mean values of representative gene expressions with individual data shown as dot density plots in Figs. 1b, 2b and 4. Also, we provide on-line processing service on our website linnarssonlab.com/hypothalamus where graphs for requested genes can be automatically plotted. Bar graphs in Fig. 8 were changed to dot-plots.

4. Are criteria for excluding data points reported? Was this criterion established prior to data collection?

Yes, in the "Online Methods" when analyzing the boundaries of neuronal clusters. Criteria for manual cluster analysis, delineation and merging are reported. In addition, false discovery rates were reported.

5. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data. If no randomization was used, state so.

For single-cell transcriptome analysis, and in a large number of animals of both sexes, tissues were dissociated and sampled in a blinded fashion. This allowed maximum randomization to preclude bias. In other experiments, tissue samples were randomly processed (e.g. brain slices). Description is reported in Online Methods. We also analysed the "batch-dependent" enrichment of clusters (Fig. S1a), see above.
6. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 If no blinding was done, state so.
 Where (section, paragraph #)?
 Given the above, all experiments were performed in a blinded fashion, which is clearly reported.

7. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 Yes, "Online Methods", 1st paragraph ("Animals, tissue preparation and histochemistry").

8. Is the species of the animals used reported?
 Where (section, paragraph #)?
 Yes, same paragraph as above, for mice.

9. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?
 Yes, C57BL/6N mice were used. Transgenic mice were also described in the "Online Methods" and extensively referenced.

10. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes, all transcriptome data shows X- and Y-chromosome-specific genes. Circuit mapping was performed in male mice only.

11. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes, for each experiment see "Online Methods".

12. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes, see the "Online Methods".

13. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 No. All animals were group housed, usually with littermates to avoid social stress.

14. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 Yes.

15. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 No, particularly since none of the animals were re-used from earlier experiments.

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 Not applicable.

16. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 Not applicable. Non excluded.
a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
 Not applicable.

b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?
 Not applicable.

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 Yes, in all cases.

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Yes, in Online Methods, "Animals, tissue preparation and histochemistry". 2nd paragraph. For non-commercial antibodies we referenced the original papers and acknowledged our collaborators. Moreover, we reference the Human Protein Atlas project and Synaptic Systems GmbH (who co-authored this study) for specific antibodies that are quality-controlled as shown on their respective websites.

 b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Where does this appear (section, paragraph #)?
 We have extensively referenced the paper for quality controls on both procedures and individual antibodies. These appear primarily in the "Results" section.

2. Cell line identity
 None used.

 a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?
 Where (section, paragraph #)?
 Not applicable.

 b. If yes, include in the Methods section a scientific justification of their use--indicate here in which section and paragraph the justification can be found.

 c. For each cell line, include in the Methods section a statement that specifies:
 - the source of the cell lines
 - have the cell lines been authenticated? If so, by which method?
 - have the cell lines been tested for mycoplasma contamination?
 Where (section, paragraph #)?
 Not applicable.
Data availability

Provide a Data availability statement in the Methods section under "Data availability", which should include, where applicable:

- Accession codes for deposited data
- Other unique identifiers (such as DOIs and hyperlinks for any other datasets)
- At a minimum, a statement confirming that all relevant data are available from the authors
- Formal citations of datasets that are assigned DOIs
- A statement regarding data available in the manuscript as source data
- A statement regarding data available with restrictions

See our data availability and data citations policy page for more information.

Data deposition in a public repository is mandatory for:

- Protein, DNA and RNA sequences
- Macromolecular structures
- Crystallographic data for small molecules
- Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

Where is the Data Availability statement provided (section, paragraph #)?

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

 These include the BaskSpinV2 algorithm developed for cell clustering (as reported by Zeisel et al., Science 2015; Romanov et al., EMBO J 2015, Marques et al., Science 2016). The software code is available as part of the Zeisel et al., Science 2015, which we exhaustively referenced. Moreover, we provided all key variables for our calculations in the "Online Methods".

2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under "Code availability" to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

 Not applicable; see above.

Human subjects
1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?
 TUKEB 84/2014, Hungary and Semmelweis University, Hungary.

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?
 Yes, in "Online Methods".

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?
 Yes, in "Online Methods".

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?
 No subject was excluded.

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?
 These are proof-of-principle data in n = 2 subjects, therefore group matching was deemed non-relevant.

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?
 Not applicable.

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?
 Not applicable.

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 Not applicable.

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?
 Not applicable.

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Not applicable.

 Where (section, paragraph #)?

3. Is the length of each trial and interval between trials specified?
 Not applicable.

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
 Not applicable.
5. Is the task design clearly described?
 Where (section, paragraph #)?
 Not applicable.

6. How was behavioral performance measured?
 Not applicable.

7. Is an ANOVA or factorial design being used?
 Not applicable.

8. For data acquisition, is a whole brain scan used?
 If not, state area of acquisition.
 Not applicable.
 a. How was this region determined?
 Not applicable.

9. Is the field strength (in Tesla) of the MRI system stated?
 Not applicable.
 a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 Not applicable.
 b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?
 Not applicable.

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?
 Not applicable.

11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?
 Not applicable.

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?
 Not applicable.

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?
 Not applicable.

14. Were any additional regressors (behavioral covariates, motion etc) used?
 Not applicable.

15. Is the contrast construction clearly defined?
 Not applicable.

16. Is a mixed/random effects or fixed inference used?
 Not applicable.
 a. If fixed effects inference used, is this justified?
 Not applicable.

17. Were repeated measures used (multiple measurements per subject)?
 Not applicable.
a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?

Not applicable.

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

Not applicable.

19. Are statistical inferences corrected for multiple comparisons?

Not applicable.

 a. If not, is this labeled as uncorrected?

 Not applicable.

20. Are the results based on an ROI (region of interest) analysis?

 Not applicable.

 a. If so, is the rationale clearly described?

 Not applicable.

 b. How were the ROI’s defined (functional vs anatomical localization)?

 Not applicable.

21. Is there correction for multiple comparisons within each voxel?

 Not applicable.

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

 Not applicable.

Additional comments

Additional Comments

None considered relevant.