Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE NUMBER</td>
<td>WHICH TEST?</td>
<td>SECTION & PARAGRAPH #</td>
<td>EXACT VALUE</td>
<td>DEFINED?</td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>9, 9, 10, 15</td>
<td>mice from at least 3 litters/group</td>
</tr>
<tr>
<td>results para 6</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>15</td>
<td>slices from 10 mice</td>
</tr>
<tr>
<td>1c</td>
<td>one-way ANOVA</td>
<td>Methods sec 4</td>
<td>33</td>
<td>editing rates</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4337
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2b</td>
<td>Spearman's rank correlation</td>
<td>Res. para 2</td>
<td>33</td>
<td>log2(RPKM)</td>
<td>Methods sec 2</td>
<td>regression line</td>
<td>Fig. 2b</td>
<td>mean: 0.01 (ADAR1), 0.02 (ADAR2)</td>
<td>p = 0.56(ADAR1), 0.51 (ADAR2)</td>
</tr>
<tr>
<td>Res. para 5</td>
<td>chi-square</td>
<td>Res. para 5</td>
<td>163 (5''), 163 (3')</td>
<td>count of nucleotides</td>
<td>Res. para 5</td>
<td>proportion</td>
<td>Suppl. Tab. 5</td>
<td>p = 0.59 (5''), p = 0.29 (3')</td>
<td>Suppl. Tab. 5 legend</td>
</tr>
<tr>
<td>Res. para 5</td>
<td>one-way ANOVA</td>
<td>Res. para 5</td>
<td>163</td>
<td>distance between an editing sites and double-stranded structure</td>
<td>Methods sec 6</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig. 3</td>
<td>p = 0.0218</td>
<td></td>
</tr>
<tr>
<td>Res. para 5</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 5</td>
<td>65, 58</td>
<td>distance between an editing sites and double-stranded structure (low vs. increasing)</td>
<td>Methods sec 6</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig. 3</td>
<td>p = 0.04384</td>
<td>Suppl. Fig. 5 legend</td>
</tr>
<tr>
<td>Res. para 5</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 5</td>
<td>58, 40</td>
<td>distance between an editing sites and double-stranded structure (increasing vs. high)</td>
<td>Methods sec 6</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig. 3</td>
<td>p = 0.4658</td>
<td>Suppl. Fig. 3 legend</td>
</tr>
<tr>
<td>2c</td>
<td>one-way ANOVA</td>
<td>Res. para 5</td>
<td>163</td>
<td>double-strand degree</td>
<td>Methods sec 6</td>
<td>density plot (mean)</td>
<td>Fig. 2c</td>
<td>p = 3.11e-13</td>
<td>F(2,160)=34.66</td>
</tr>
<tr>
<td>2c</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>65, 58</td>
<td>double-strand degree (low vs. increasing)</td>
<td>Methods sec 6</td>
<td>density plot (mean)</td>
<td>Fig. 2c</td>
<td>p = 1.086e-7</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>2c</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>58, 40</td>
<td>double-strand degree (increasing vs. high)</td>
<td>Methods sec 6</td>
<td>density plot (mean)</td>
<td>Fig. 2c</td>
<td>p = 0.00968</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>2d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>28, 28</td>
<td>knockdown effect (ADAR1)</td>
<td>Res. para 5</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 2d</td>
<td>p = 2.427e-15</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>2d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>28, 28</td>
<td>knockdown effect (ADAR2)</td>
<td>Res. para 5</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 2d</td>
<td>p = 0.02386</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>150</td>
<td>Mean editing rate difference (brain)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p < 2e-16</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>82</td>
<td>Mean editing rate difference (heart)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 0.693</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>95</td>
<td>Mean editing rate difference (liver)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 0.0004</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>111</td>
<td>Mean editing rate difference (lung)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 0.00112</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>99</td>
<td>Mean editing rate difference (kidney)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 0.561</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>91</td>
<td>Mean editing rate difference (muscle)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 0.0111</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>52, 38</td>
<td>Mean editing rate difference (increasing Vs. high in brain)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 2.2e-16</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>52, 60</td>
<td>Mean editing rate difference (increasing Vs. low in brain)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p = 2.2e-16</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>26,23</td>
<td>Mean editing rate difference (increasing Vs. high in liver)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p=0.1954</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>26,46</td>
<td>Mean editing rate difference (increasing Vs. low in liver)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p=0.0002459</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>40,25</td>
<td>Mean editing rate difference (increasing Vs. high in lung)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p=0.05838</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 3d</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>40, 46</td>
<td>Mean editing rate difference (increasing Vs. low in lung)</td>
<td>Fig. legend</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 3d</td>
<td>p=0.000566</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 4a</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>217 (fetal), 259 (adult)</td>
<td>Editing rate (cluster 1)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 4a</td>
<td>p=2.2e-16</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 4a</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>110 (fetal), 151 (adult)</td>
<td>Editing rate (cluster 2)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 4a</td>
<td>p=2.2e-16</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 4a</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>54 (fetal), 67 (adult)</td>
<td>Editing rate (cluster 3)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 4a</td>
<td>3.752e-12</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 4a</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>34 (fetal), 48 (adult)</td>
<td>Editing rate (cluster 4)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 4a</td>
<td>1.224e-9</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 4a</td>
<td>two-sided t-test (Welch)</td>
<td>Fig. legend</td>
<td>11 (fetal), 16 (adult)</td>
<td>Editing rate (cluster 5)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Fig. 4a</td>
<td>0.5268</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>55 (fetal), 57 (adult)</td>
<td>Editing rate (L.Low)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 8</td>
<td>0.02365</td>
<td>Suppl. Fig 8 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>41 (fetal), 47 (adult)</td>
<td>Editing rate (II.Increasing)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 8</td>
<td>p=2.2e-16</td>
<td>Suppl. Fig 8 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>13 (fetal), 22 (adult)</td>
<td>Editing rate (III.High)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 8</td>
<td>0.2061</td>
<td>Suppl. Fig 8 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>110 (fetal neurons), 62 (astrocytes)</td>
<td>log2(count)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 9</td>
<td>0.2106 (ADAR1), 0.1258 (ADAR2)</td>
<td>Suppl. Fig 9 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>110 (fetal neurons), 38 (oligoden drocytes)</td>
<td>log2(count)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 9</td>
<td>0.1119 (ADAR1), 5.015e-5 (ADAR2)</td>
<td>Suppl. Fig 9 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>110 (fetal neurons), 16 (microglia)</td>
<td>log2(count)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 9</td>
<td>0.005341 (ADAR1), 0.001059 (ADAR2)</td>
<td>Suppl. Fig 9 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>130 (adult neurons), 62 (astrocytes)</td>
<td>log2(count)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 9</td>
<td>0.0009247 (ADAR1), 4.757e-10 (ADAR2)</td>
<td>Suppl. Fig 9 legend</td>
</tr>
<tr>
<td>+ Res. para 8</td>
<td>two-sided t-test (Welch)</td>
<td>Res. para 8</td>
<td>130 (adult neurons), 38 (oligoden drocytes)</td>
<td>log2(count)</td>
<td>Methods sec 8</td>
<td>boxplot (mean & quartile)</td>
<td>Suppl. Fig 9</td>
<td>0.0009067 (ADAR1), 4.757e-10 (ADAR2)</td>
<td>Suppl. Fig 9 legend</td>
</tr>
</tbody>
</table>

Methods:
- t-test (Welch) for Welch's t-test
- t-test (two-sided) for two-sided t-test
- log2(count) for log2-transformed counts
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?
No

If so, what figure(s)?

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?
N/A

If so, where is this reported (section, paragraph #)?

Statistics and general methods

1. Is there a justification of the sample size?
If so, how was it justified?
Where (section, paragraph #)?
Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

The sample size was restricted by available tissues for the study. However, these samples allow adequate effect sizes to characterize global patterns of our measurements, as shown in the replication of results in multiple previously-available data sets.

2. Are statistical tests justified as appropriate for every figure?
Where (section, paragraph #)?

Yes, statistical tests for every figure were described and justified in the main text of each section and figure legends.

a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?
Yes, multiple sections in the Methods clearly describe statistical tests.
b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?
 Where is this described (section, paragraph #)?

 We mainly used ANOVA for a parametric test, which is known to be robust against the normality assumption. In addition, we confirmed that results from ANOVA and t-test were similar with outputs from non-parametric tests (Kruskal-Wallis H test and Wilcoxon rank test respectively). We used a nonparametric test for correlation analyses: Spearman's correlation. These are described in section 8 in the Methods.

c. Is there any estimate of variance within each group of data?
 Is the variance similar between groups that are being statistically compared?
 Where is this described (section, paragraph #)?

 No, we didn’t estimate variance. However, we present distribution plots for measurements when we compared groups, in order to visualize and compare variances. Again, our main statistical results were checked by nonparametric tests to make sure that different variance does not affect final results.

d. Are tests specified as one- or two-sided?

e. Are there adjustments for multiple comparisons?

 Two-sided

 Yes, we used false discovery rate (FDR).

3. Are criteria for excluding data points reported?
 Was this criterion established prior to data collection?
 Where is this described (section, paragraph #)?

 We did not exclude data points unless specified in the main text or legends. When points were excluded, the criteria were based on predetermined value such as sequencing depth or quality. These are described in each section in the main text and Methods.

4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.
 If no randomization was used, state so.
 Where does this appear (section, paragraph #)?

 All tissues were uniformly processed. Details were described in the section 1 in the Methods by referring the previous reference managing similar samples from the same institution.

5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 If no blinding was done, state so.
 Where (section, paragraph #)?

 No, but the generation of the RNA-seq data is unbiased.

6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?

 N/A

7. Is the species of the animals used reported?
 Where (section, paragraph #)?

 N/A

8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?

 N/A

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?

 N/A
10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 N/A

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 N/A

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 N/A

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 N/A

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 N/A

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 N/A

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?

 b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 N/A

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Where does this appear (section, paragraph #)?

2. Cell line identity
 a. Are any cell lines used in this paper listed in the database of commonly misidentified cell lines maintained by ICLAC and NCBI Biosample?
 Where (section, paragraph #)?

 b. If yes, include in the Methods section a scientific justification of their use--indicate here in which section and paragraph the justification can be found.

 c. For each cell line, include in the Methods section a statement that specifies:
 - the source of the cell lines
 - have the cell lines been authenticated? If so, by which method?
 - have the cell lines been tested for mycoplasma contamination?
 Where (section, paragraph #)?

Data deposition

Data deposition in a public repository is mandatory for:
 a. Protein, DNA and RNA sequences
 b. Macromolecular structures
 c. Crystallographic data for small molecules
 d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?
 Where (section, paragraph #)?
 Yes, Accession codes right before Acknowledgements

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.
 1. Python and R scripts to characterize RNA editing global patterns.
 2. Python and R scripts to quantify degrees of double-strandedness of RNA around RNA editing sites.
2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under “Code availability” to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

R codes for analyzing RNA editing rates in human brain development are available in Supplementary Data. R codes for analyzing previous RNA-seq data and Python codes for RNA editing pipelines are available on request.

Human subjects

1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?

 The Institutional Review Board of the University of Maryland at Baltimore and the State of Maryland approved the protocol, and the tissue was donated to the Lieber Institute for Brain Development under the terms of a Material Transfer Agreement: described in section 1 in the Methods by referring the previous reference managing similar samples from the same institution.

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?

 Yes, Supplementary Table 1.

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?

 Yes, Supplementary Table 1.

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?

 Yes, section 1 in the Methods by referring the previous reference managing similar samples from the same institution.

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?

 Loosely matched on sex, as shown in Supplementary Table 1.

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?

 Yes, section 1 in the Methods by referring the previous reference managing similar samples from the same institution.

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?

 N/A

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?

 N/A
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Is the number of blocks, trials or experimental units per session and/or subjects specified?</td>
</tr>
<tr>
<td>3.</td>
<td>Is the length of each trial and interval between trials specified?</td>
</tr>
<tr>
<td>4.</td>
<td>Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.</td>
</tr>
<tr>
<td>5.</td>
<td>Is the task design clearly described?</td>
</tr>
<tr>
<td>6.</td>
<td>How was behavioral performance measured?</td>
</tr>
<tr>
<td>7.</td>
<td>Is an ANOVA or factorial design being used?</td>
</tr>
<tr>
<td>8.</td>
<td>For data acquisition, is a whole brain scan used?</td>
</tr>
<tr>
<td>9.</td>
<td>How was this region determined?</td>
</tr>
<tr>
<td>10.</td>
<td>Is the field strength (in Tesla) of the MRI system stated?</td>
</tr>
<tr>
<td>11.</td>
<td>Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?</td>
</tr>
<tr>
<td>12.</td>
<td>Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?</td>
</tr>
<tr>
<td>13.</td>
<td>Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?</td>
</tr>
<tr>
<td>14.</td>
<td>Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?</td>
</tr>
<tr>
<td>15.</td>
<td>If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?</td>
</tr>
<tr>
<td>16.</td>
<td>How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?</td>
</tr>
</tbody>
</table>
14. Were any additional regressors (behavioral covariates, motion etc) used?

15. Is the contrast construction clearly defined?

16. Is a mixed/random effects or fixed inference used?
 a. If fixed effects inference used, is this justified?

17. Were repeated measures used (multiple measurements per subject)?
 a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

19. Are statistical inferences corrected for multiple comparisons?
 a. If not, is this labeled as uncorrected?

20. Are the results based on an ROI (region of interest) analysis?
 a. If so, is the rationale clearly described?
 b. How were the ROI’s defined (functional vs anatomical localization)?

21. Is there correction for multiple comparisons within each voxel?

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

Additional comments

Additional Comments