Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/t/z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHICH TEST?</td>
<td>SECTION & PARAGRAPH #</td>
<td>EXACT VALUE</td>
<td>DEFINED?</td>
<td>REPORTED?</td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>9, 9, 10, 15 mice from at least 3 litters/group</td>
<td>Methods para 8</td>
</tr>
<tr>
<td>Results para 6</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>15 slices from 10 mice</td>
<td>Results para 6</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4225
<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Kruskal-Wallis ANOVA followed by Dunn's multiple comparison post hoc test</td>
<td>mice from 2 different animal houses Experiment repeated twice</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>P=0.015 P=0.02 F (3, 52) = 6.085 Figure legend</td>
</tr>
<tr>
<td>1B</td>
<td>Kruskal-Wallis ANOVA followed by Dunn's multiple comparison post hoc test</td>
<td>mice from 2 different animal houses Experiment repeated twice</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>p=0.0001 p=0.001 p=0.001 F (3, 70) = 4.055 Figure legend</td>
</tr>
<tr>
<td>1C</td>
<td>Kruskal-Wallis ANOVA followed by Dunn's multiple comparison post hoc test</td>
<td>mice from 2 different animal houses Experiment repeated twice</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>p = 0.02 p=1.00 F (3, 69) = 3.843 Figure legend</td>
</tr>
<tr>
<td>1F</td>
<td>Kruskal-Wallis ANOVA followed by Dunn's multiple comparison post hoc test</td>
<td>mice from 2 different animal houses Experiment repeated twice</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>p=0.038 P = 0.04 P = 0.04 P = 0.04 F (3, 18) = 30.59 Figure legend</td>
</tr>
<tr>
<td>1G</td>
<td>Kruskal-Wallis ANOVA followed by Dunn's multiple comparison post hoc test</td>
<td>mice from 2 different animal houses Experiment repeated twice</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>for Aβ42 P=0.0001 P=0.0007 P=0.03 for Aβ40 P=0.02 P=0.007 P=0.01 P=0.036 figure for Aβ42 F (3, 30) = 6.722 for Aβ40 F (3, 28) = 7.481 Figure legend</td>
</tr>
<tr>
<td>2A</td>
<td>Two way ANOVA with Bonferroni post-tests</td>
<td>number of slices</td>
<td>Data are represented as mean +/- SEM</td>
<td>Fig. Legend</td>
<td>P=0.0002 P=0.0006 P=0.0007 figure df, Group, Intensity, Interaction, residual (3.0, 11.0, 33.0, 984.0) Figure legend</td>
</tr>
<tr>
<td>+</td>
<td>2B, C</td>
<td>Kruskal-Wallis ANOVA followed by Dunn’s multiple comparison post hoc test</td>
<td>Figure, Fig. legend</td>
<td>10,11,18, 8</td>
<td>number of slices</td>
</tr>
<tr>
<td>+</td>
<td>2D</td>
<td>Two way ANOVA with Bonferroni post-tests</td>
<td>Fig. legend</td>
<td>25,12,12, 11</td>
<td>number of slices</td>
</tr>
<tr>
<td>+</td>
<td>3C</td>
<td>Kruskal-Wallis ANOVA methods (statistics)</td>
<td>Fig. legend</td>
<td>12,12 and 4,4</td>
<td>number of slice culture inserts</td>
</tr>
<tr>
<td>+</td>
<td>3D</td>
<td>Kruskal-Wallis ANOVA followed by Dunn’s Multiple post hoc Test</td>
<td>Fig. legend</td>
<td>12,12, 4,4</td>
<td>number of slice culture inserts</td>
</tr>
<tr>
<td>+</td>
<td>3F,G</td>
<td>Wilcoxon test for paired data</td>
<td>Fig. legend</td>
<td>23,23,11, 11 and 20,20,14, 14</td>
<td>number of cell pairs</td>
</tr>
<tr>
<td>+</td>
<td>4C</td>
<td>Kruskal-Wallis ANOVA followed by Dunn’s Multiple post hoc Test methods (statistics)</td>
<td>Fig. legend</td>
<td>28,18,30, 19</td>
<td>number of dendrites</td>
</tr>
<tr>
<td>+</td>
<td>4E</td>
<td>Kruskal-Wallis ANOVA followed by Dunn’s Multiple post hoc Test</td>
<td>Fig. legend</td>
<td>316,248, 613,377</td>
<td>number of spines</td>
</tr>
<tr>
<td>+</td>
<td>4F</td>
<td>Kruskal-Wallis ANOVA followed by Dunn’s Multiple post hoc Test</td>
<td>Fig. legend</td>
<td>8,8,4,4</td>
<td>number of slice culture inserts</td>
</tr>
<tr>
<td>+ 4H, J</td>
<td>Wilcoxon paired test, was used to determine significance with respect to the baseline. Number of cells: 11,8,8, 9,7,8.</td>
<td>+ Fig. legend</td>
<td>11,8,8 9,7,8</td>
<td>number of cells</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 5B</td>
<td>Wilcoxon test for paired data</td>
<td>Fig. legend</td>
<td>11, 10, 10, 7</td>
<td>number of slices</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 5F</td>
<td>Wilcoxon paired test, was used to determine significance with respect to the baseline. Number of cells used for the graph (paired and unpaired pathways): 6,6,6,6. Number of cells used for the statistics (LTP vs. baseline): 6,6,6,6.</td>
<td>+ Fig. legend</td>
<td>6, 6, 6, 6</td>
<td>number of cells used for the graph (paired and unpaired pathways)</td>
<td>+ Fig. legend</td>
</tr>
<tr>
<td>+ 6B</td>
<td>Two way ANOVA with Bonferroni post-tests.</td>
<td>+ Fig. legend</td>
<td>152,142, 117</td>
<td>N represents number of cells analyzed on 3 independent experiments.</td>
<td>+ Fig. legend</td>
</tr>
<tr>
<td>+ 6E-F</td>
<td>Mann-Whitney test methods (statistics). Number of spines: 188,219, 177,229, 218 and 98,230,1,55,84,10, 0 and 266,143, 238,284, 178 and 98,230,1,55,84,10, 0.</td>
<td>+ Fig. legend</td>
<td>188,219, 177,229, 218 and 98,230,1,55,84,10, 0 and 266,143, 238,284, 178 and 98,230,1,55,84,10, 0</td>
<td>number of spines</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 7C</td>
<td>Mann-Whitney test methods (statistics). Number of mice: 5,5, 5,5.</td>
<td>+ Fig. legend</td>
<td>5,5, 5,5</td>
<td>number of mice</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+ 7D</td>
<td>Two way ANOVA with Bonferroni post-tests methods (statistics) and figure legend. Number of slices: 31,23,16, 17.</td>
<td>+ Fig. legend</td>
<td>31,23,16, 17</td>
<td>number of slices</td>
<td>Fig. legend</td>
</tr>
</tbody>
</table>
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?
 - If so, what figure(s)?

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?
 - If so, where is this reported (section, paragraph #)?

Statistics and general methods

1. Is there a justification of the sample size?
 - If so, how was it justified?
 - Where (section, paragraph #)?
 - Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

2. Are statistical tests justified as appropriate for every figure?
 - Where (section, paragraph #)?
 - Statistical tests are indicated both in the general Methods under Statistical Analyses and for each of the graphs.
<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?</td>
<td>Yes, in Statistical Analyses in the Methods section.</td>
</tr>
<tr>
<td>b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?</td>
<td>We generally used non-parametric tests.</td>
</tr>
<tr>
<td>Where is this described (section, paragraph #)?</td>
<td></td>
</tr>
<tr>
<td>c. Is there any estimate of variance within each group of data?</td>
<td>Variance was in general similar between the groups. This is not specifically indicated.</td>
</tr>
<tr>
<td>Is the variance similar between groups that are being statistically compared?</td>
<td></td>
</tr>
<tr>
<td>Where is this described (section, paragraph #)?</td>
<td></td>
</tr>
<tr>
<td>d. Are tests specified as one- or two-sided?</td>
<td>All tests were two-sided. This is indicated in the Statistical Analyses section.</td>
</tr>
<tr>
<td>e. Are there adjustments for multiple comparisons?</td>
<td>Yes. Non-parametric ANOVA followed by a post hoc multiple comparison test were applied when more than 2 groups were compared.</td>
</tr>
<tr>
<td>Was this criterion established prior to data collection?</td>
<td></td>
</tr>
<tr>
<td>Where is this described (section, paragraph #)?</td>
<td></td>
</tr>
<tr>
<td>4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data. If no randomization was used, state so. Where does this appear (section, paragraph #)?</td>
<td>We always randomize animals and samples. It is indicated in the method section.</td>
</tr>
<tr>
<td>5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?</td>
<td>Blinding was done for all the behavioral experiments (Results, paragraph 1 and Online methods). Electrophysiological data were analyzed blindly. Most of the biochemical and imaging experiments were done blindly. Indicated in the method section.</td>
</tr>
<tr>
<td>If no blinding was done, state so.</td>
<td></td>
</tr>
<tr>
<td>Where (section, paragraph #)?</td>
<td></td>
</tr>
<tr>
<td>6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included? Where (section, paragraph #)?</td>
<td>Yes. in ONLINE METHODS, Animals, paragraph 1</td>
</tr>
<tr>
<td>7. Is the species of the animals used reported?</td>
<td>Yes. in ONLINE METHODS, Animals, paragraph 1</td>
</tr>
<tr>
<td>Where (section, paragraph #)?</td>
<td></td>
</tr>
<tr>
<td>8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported? Where (section, paragraph #)?</td>
<td>Yes. in ONLINE METHODS, Animals, paragraph 1</td>
</tr>
</tbody>
</table>
9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes. in ONLINE METHODS, Animals, paragraph 1

10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes. in ONLINE METHODS, Animals, paragraph 1

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes, indicated in the method section.

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 Yes, indicated in the method section.

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 Yes, indicated in the method section.

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 Yes. Online Methods: PTEN inhibition in vivo with osmotic pumps.

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 Yes. One animal was excluded. METHODS Behavioral experiments

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 Yes, indicated in the method section.

1. Have antibodies been validated for use in the system under study (assay and species)?
 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Yes.
 Method section, under ANTIBODIES.

Reagents
b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Where does this appear (section, paragraph #)?
 We used antibodies that are used by numerous laboratories. Validation data were not cited.

2. If cell lines were used to reflect the properties of a particular tissue or disease state, is their source identified?
 Where (section, paragraph #)?
 Irrelevant.
 a. Were they recently authenticated?
 Where is this information reported (section, paragraph #)?
 Irrelevant.

Data deposition

Data deposition in a public repository is mandatory for:
 a. Protein, DNA and RNA sequences
 b. Macromolecular structures
 c. Crystallographic data for small molecules
 d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

1. Are accession codes for deposit dates provided?
 Where (section, paragraph #)?
 Irrelevant.

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.
 Irrelevant.

2. Is computer source code/software provided with the paper or deposited in a public repository? Indicate in what form this is provided or how it can be obtained.
 Irrelevant.

Human subjects

1. Which IRB approved the protocol?
 Where is this stated (section, paragraph #)?
 Irrelevant.

2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?
 Irrelevant.
3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?
 Irrelevant.

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?
 Irrelevant.

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?
 Irrelevant.

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?
 Irrelevant.

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?
 Irrelevant.

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 Irrelevant.

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?
 Irrelevant.

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Where (section, paragraph #)?
 Irrelevant.

3. Is the length of each trial and interval between trials specified?
 Irrelevant.

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.
 Irrelevant.

5. Is the task design clearly described?
 Where (section, paragraph #)?
 Irrelevant.

6. How was behavioral performance measured?
 Irrelevant.

7. Is an ANOVA or factorial design being used?
 Irrelevant.
8. For data acquisition, is a whole brain scan used?
 If not, state area of acquisition.
 a. How was this region determined?

9. Is the field strength (in Tesla) of the MRI system stated?
 a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?

11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?

14. Were any additional regressors (behavioral covariates, motion etc) used?

15. Is the contrast construction clearly defined?

16. Is a mixed/random effects or fixed inference used?
 a. If fixed effects inference used, is this justified?

17. Were repeated measures used (multiple measurements per subject)?
 a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

19. Are statistical inferences corrected for multiple comparisons?
a. If not, is this labeled as uncorrected?

Irrelevant.

20. Are the results based on an ROI (region of interest) analysis?

a. If so, is the rationale clearly described?

Irrelevant.

b. How were the ROI’s defined (functional vs anatomical localization)?

Irrelevant.

21. Is there correction for multiple comparisons within each voxel?

Irrelevant.

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

Irrelevant.

Additional comments

Additional Comments