Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>TEST USED</th>
<th>n</th>
<th>DESCRIPITIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>example 1a</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>9, 9, 10, 15</td>
<td>mice from at least 3 litters/group</td>
</tr>
<tr>
<td>results para 6</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>15</td>
<td>slices from 10 mice</td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Results p. 3, last pg</td>
<td>7, 7, 7, 7, 6</td>
<td>9-week-old male mice</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4084
<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>WHICH TEST?</th>
<th>SECTION & PARAGRAPH #</th>
<th>n</th>
<th>DESCRIPTIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 1b</td>
<td>one-way ANOVA</td>
<td>Results p. 3, last pg</td>
<td>7,7,8,8</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 3, last pg</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 1c</td>
<td>one-way ANOVA</td>
<td>Results p. 4, para 1</td>
<td>7,7,7,8</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 4, para 1</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 1d</td>
<td>repeated measure ANOVA</td>
<td>Results p. 4, para 1</td>
<td>7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 4, para 1</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 1d</td>
<td>repeated measure ANOVA</td>
<td>Results p. 4, para 1</td>
<td>8</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 4, para 1</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 2a</td>
<td>one-way ANOVA</td>
<td>Results p. 4, last pg</td>
<td>5,4,5</td>
<td>hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for fig. 2a, p.17</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 2c</td>
<td>one-way ANOVA</td>
<td>Results p. 4-5</td>
<td>5,5,5</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 4, para 2</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 2d</td>
<td>one-way ANOVA (vehicle)</td>
<td>Results p. 5, para 1</td>
<td>8,8,9</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 5, para 1</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 2d</td>
<td>one-way ANOVA (gaboxadol)</td>
<td>Results p. 5, para 2</td>
<td>8,8,9</td>
<td>hippocampal microRNA obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 5, para 1</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>* 3a</td>
<td>one-way ANOVA</td>
<td>Results p. 5, para 2</td>
<td>4,4,4</td>
<td>hippocampal microRNA obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig. 3, p. 18</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>3b left</td>
<td>one-way ANOVA</td>
<td>Results p. 6</td>
<td>8,8,8,8</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig. 3, p. 18</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>3b middle</td>
<td>one-way ANOVA</td>
<td>Results p. 6</td>
<td>8,8,8,8</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig. 3, p. 18</td>
<td>error bars are mean ± SEM</td>
</tr>
<tr>
<td>Step</td>
<td>Method</td>
<td>Results p.</td>
<td>Value</td>
<td>Description</td>
<td>Error bars are</td>
<td>Fig.</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>------------</td>
<td>---------</td>
<td>--</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>3b</td>
<td>unpaired t-test</td>
<td>p. 6</td>
<td>3,3</td>
<td>hippocampal microRNA obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>3c</td>
<td>one-way ANOVA</td>
<td>p. 6</td>
<td>6,7,7,7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>3c</td>
<td>one-way ANOVA</td>
<td>p. 6</td>
<td>7,7,7,7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>3c</td>
<td>one-way ANOVA</td>
<td>p. 6</td>
<td>7,7,7,7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>p. 6</td>
<td>7,7,7,7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>3d</td>
<td>one-way ANOVA</td>
<td>p. 6</td>
<td>7,7,7,7</td>
<td>9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.3</td>
</tr>
<tr>
<td>4a</td>
<td>one-way ANOVA</td>
<td>p. 7</td>
<td>4,4,4</td>
<td>hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.4</td>
</tr>
<tr>
<td>4a</td>
<td>one-way ANOVA</td>
<td>p. 7</td>
<td>4,4,4</td>
<td>hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.4</td>
</tr>
<tr>
<td>4a</td>
<td>one-way ANOVA</td>
<td>p. 7</td>
<td>4,4,4</td>
<td>hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.4</td>
</tr>
<tr>
<td>4b</td>
<td>one-way ANOVA</td>
<td>p. 7</td>
<td>5,5,5,5</td>
<td>hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>mean ± SEM</td>
<td>Fig.4</td>
</tr>
</tbody>
</table>

Legend:
- **Fig.3, y axis:** The y-axis of Figure 3.
- **p = 0.006:** Statistical significance at the 0.006 level.
- **t5 = 10.297:** T-value for the given test.
- **F3,23 = 12.548:** F-value for a one-way ANOVA with 3 and 23 degrees of freedom.
- **F3,24 = 33.989:** F-value for a one-way ANOVA with 3 and 24 degrees of freedom.
- **F3,24 = 0.758:** F-value for a one-way ANOVA with 3 and 24 degrees of freedom.
- **F3,24 = 40.104:** F-value for a one-way ANOVA with 3 and 24 degrees of freedom.
- **F3,12 = 5.334:** F-value for a one-way ANOVA with 3 and 12 degrees of freedom.
- **F3,12 = 4.782:** F-value for a one-way ANOVA with 3 and 12 degrees of freedom.
- **F3,12 = 3.662:** F-value for a one-way ANOVA with 3 and 12 degrees of freedom.
- **F4,20 = 22.477:** F-value for a one-way ANOVA with 4 and 20 degrees of freedom.

Nature Neuroscience: doi:10.1038/nn.4084
<table>
<thead>
<tr>
<th>#</th>
<th>4c</th>
<th>one-way ANOVA</th>
<th>Results p. 7, para 2</th>
<th>5.5, hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</th>
<th>legend for Fig. 4, p. 19</th>
<th>error bars are mean ± SEM</th>
<th>Fig. 4, Y axis</th>
<th>p = 0.004</th>
<th>Results p. 7, para 1</th>
<th>F4,20 = 18.25</th>
<th>Results p. 8, para 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4e</td>
<td>t-test</td>
<td>Results p. 8, para 1</td>
<td>5.5, hippocampal protein lysates obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>legend for Fig. 4, p. 19</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 4, Y axis</td>
<td>LV-miR33: p = 0.041 miR33-LNA: p = 0.007</td>
<td>Results p. 8, para 1</td>
<td>LV-miR33: t8 = 4.21 miR33-LNA: t8 = 6.54</td>
<td>Results p. 8, para 1</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>one-way ANOVA</td>
<td>Results p. 9, para 1</td>
<td>3.4,4 cryosections of 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>legend for Fig. 5, p. 19</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 5, Y axis</td>
<td>DG: p = 0.032 LS:p = 0.019 RSC:p = 0.004 EC: p = 0.027</td>
<td>Results p. 9, para 1</td>
<td>DG: F2,8 = 4.802 LS: F2,8 = 6.879 RSC: F2,8 = 11.293 EC: F2,8 = 7.046</td>
<td>Results p. 9, para 1</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td>one-way ANOVA</td>
<td>Results p. 9, para 1</td>
<td>3.4,4 cryosections of 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>legend for Fig. 5, p. 19</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 5, Y axis</td>
<td>LS:p = 0.022</td>
<td>Results p. 9, para 1</td>
<td>LS: F2,8 = 5.232</td>
<td>Legend for Suppl. Fig S9</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>two-way ANOVA</td>
<td>Results p. 9, para 2</td>
<td>8,8,9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Results p. 9, para 2</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 7, Y axis</td>
<td>RSC: p = 0.005 RSCxgab: p = 0.008</td>
<td>Results p. 9, para 2</td>
<td>RSC-F1,14 = 17.46 RSCxgab: F1,14 = 19.19</td>
<td>Results p. 9, para 2</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>signed rank test</td>
<td>Legend for Fig 7, p. 20</td>
<td>9, neurons obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig 7, p. 20</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 7, Y axis</td>
<td>p = 0.0039</td>
<td>Legend for Fig 7, p. 20</td>
<td>Legend for Fig 7, p. 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7f</td>
<td>signed rank test</td>
<td>Legend for Fig 7, p. 20</td>
<td>9, neurons obtained from 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig 7, p. 20</td>
<td>error bars are mean ± SEM</td>
<td>Fig. 7, Y axis</td>
<td>p = 0.031</td>
<td>Legend for Fig S1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51a</td>
<td>one-way ANOVA</td>
<td>Legend for Fig S1</td>
<td>8,8,8, 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S1</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S1, Y axis</td>
<td>context1: p = 0.499 tone: 9 = 0.733 shock: p = 0.366</td>
<td>Legend for Fig S1</td>
<td>context: F3,22 = 0.742 context 2 F3,22 = 0.947 tone F3,22 = 0.426</td>
<td>Legend for Fig S1</td>
<td></td>
</tr>
<tr>
<td>51b</td>
<td>one-way ANOVA</td>
<td>Legend for Fig S1</td>
<td>8,8,8, 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S1</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S1, Y axis</td>
<td>context1: p = 0.111 context 2: p = 0.433 tone: p = 0.737</td>
<td>Legend for Fig S1</td>
<td>context1: F3,22 = 3.742 context 2 F3,22 = 0.947 tone F3,22 = 0.426</td>
<td>Legend for Fig S1</td>
<td></td>
</tr>
<tr>
<td>52a</td>
<td>one-way ANOVA</td>
<td>Legend for Fig S2</td>
<td>8,8,8, 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S2</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S2, Y axis</td>
<td>p = 0.001</td>
<td>Legend for Fig S2</td>
<td>F3,28 = 8.810</td>
<td>Legend for Fig S2</td>
<td></td>
</tr>
<tr>
<td>52b</td>
<td>one-way ANOVA</td>
<td>Legend for Fig S2</td>
<td>8,8,8, 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S2</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S2, Y axis</td>
<td>p= 0.0315</td>
<td>Legend for Fig S2</td>
<td>F3,28 = 3.444</td>
<td>Legend for Fig S2</td>
<td></td>
</tr>
<tr>
<td>54a</td>
<td>t-test</td>
<td>Legend for Fig S4</td>
<td>3.4, microRNA obtained from hippocampi of 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S4</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S4, Y axis</td>
<td>p = 0.038</td>
<td>Legend for Fig S4</td>
<td>t6 = -3.508</td>
<td>Legend for Fig S4</td>
<td></td>
</tr>
<tr>
<td>54b</td>
<td>one ANOVA</td>
<td>Legend for Fig S4</td>
<td>4,4,4,4, 9-week-old male mice; non-littermates (Harlan), C57BL/6N</td>
<td>Legend for Fig S4</td>
<td>error bars are mean ± SEM</td>
<td>Fig. S4, Y axis</td>
<td>p = 0.000</td>
<td>Legend for Fig S4</td>
<td>F4,14 = 48.368</td>
<td>Legend for Fig S4</td>
<td></td>
</tr>
</tbody>
</table>
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?
 If so, what figure(s)?
 Fig. 2b - 4 lysates/group are shown of a total of 5, 4, and 5 lysates (indicated in the statistical data for this figure - 5, 4, 5, Fig. 2a) Fig. 4b, c, e - representative/lysates 2/group of a total of 10 (indicated in the statistical data for this figure - 4, 6, or 5, 5/group) Fig. 5a - representative sections of a total of 11 sections (indicated in the statistical data for this figure - 3, 4, 4 Fig. 6b, c) Fig. 6b - representative micrographs of the sections used in Figure 6 - 3 images/brain area/group of a total of 11 mouse brains Figure 7b - representative micrographs of sections used in Fig. 7c-f.
 Fig. S6 and S7 - representative micrographs of the sections used in Figure 6 - 3 images/brain area/group of a total of 11 mouse brains

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?
 If so, where is this reported (section, paragraph #)?
 We did not discuss specifically this point because we use many individual samples/group (4-6) rather than repeating 2/group three times. The number is indicated for every assay/experiment together with the results of statistical analyses.

Statistics and general methods

1. Is there a justification of the sample size?
 If so, how was it justified?
 Where (section, paragraph #)?
 Even if no sample size calculation was performed, authors should report why the sample size is adequate to measure their effect size.

Group sizes were determined using power analysis assuming a moderate effect size of 0.5. (Statistics, p.9, supplementary methods).

2. Are statistical tests justified as appropriate for every figure?
 Where (section, paragraph #)?
 a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?
 yes (see above)

We define the use of individual tests in the Statistics section of the methods, results of the main figures, and in every figure legend of the supplementary figures.
b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?
 Where is this described (section, paragraph #)?
 Yes, we first established the data distribution before every test. This is now described in the Statistics, p.9 of the Methods.

c. Is there any estimate of variance within each group of data?
 Is the variance similar between groups that are being statistically compared?
 Where is this described (section, paragraph #)?
 We also calculated homogeneity of variance was confirmed with Levene’s test for equality of variances, indicated in Statistics, methods (p.9. supplement).

d. Are tests specified as one- or two-sided?

e. Are there adjustments for multiple comparisons?
 We did not adjust for multiple comparisons.

3. Are criteria for excluding data points reported?
 Was this criterion established prior to data collection?
 Where is this described (section, paragraph #)?
 We specify that data of mice with incorrectly placed cannula were excluded (p.1, suppl Methods). That was the only exclusion criterion.

4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.
 If no randomization was used, state so.
 Where does this appear (section, paragraph #)?
 All solutions were prepared by a lab member unaware of the experimental design and coded. Injections and testing were performed in a counterbalanced fashion. Data were decoded after completion of the experiment and data collection. (Methods, p.3)

5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 If no blinding was done, state so.
 Where (section, paragraph #)?
 All of our studies are performed by experimenters unaware of the treatment. We can provide this info as well.(Methods, p.3)

6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.

7. Is the species of the animals used reported?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.

8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.

10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.
11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes, Supplement p. 1, section Animals.

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 We report that all mice were individually housed (Supplement p. 1, section Animals.)

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 All studies were performed between 10 am and 5 pm. (Supplement p. 1, section Animals.)

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 We provide schematics for all experimental schedules (Fig. 1a-d, Fig. S2a,c,d, Fig. S5).

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 We did not perform multiple tests except in Figs. 1d and Fig. 7a (within subject design consisting of 3 tests, and Fig. S2 where mice were exposed to 2 tests. This is indicated in the schematics.

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 We did not report the number of mice excluded due to incorrectly placed cannulas. Typically, it is 1-2 mice/group.

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?
 Incorrect placement was the only criterion for exclusion.

 b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?
 see above

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 Yes, all antibodies have been characterized using preadsorption experiments. All antibodies gave signals at the expected sizes. NR2A, Erk, cFos and EGR-1 antibodies were also tested in knockout tissues.

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Yes we have provided catalog numbers.

 b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?
 Yes, methods, p. 5 and p. 7
2. If cell lines were used to reflect the properties of a particular tissue or disease state, is their source identified?

 Where (section, paragraph #)?

 a. Were they recently authenticated?

 Where is this information reported (section, paragraph #)?

 no- we used a cell line but only based on mRNA expression, not to model tissue properties or disease states.

Data deposition

Data deposition in a public repository is mandatory for:

 a. Protein, DNA and RNA sequences
 b. Macromolecular structures
 c. Crystallographic data for small molecules
 d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

1. Are accession codes for deposit dates provided?

 Where (section, paragraph #)?

 na

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

 na

2. Is computer source code/software provided with the paper or deposited in a public repository? Indicate in what form this is provided or how it can be obtained.

 na

Human subjects

1. Which IRB approved the protocol?

 Where is this stated (section, paragraph #)?

2. Is demographic information on all subjects provided?

 Where (section, paragraph #)?

3. Is the number of human subjects, their age and sex clearly defined?

 Where (section, paragraph #)?
4. Are the inclusion and exclusion criteria (if any) clearly specified? Where (section, paragraph #)?

5. How well were the groups matched? Where is this information described (section, paragraph #)?

6. Is a statement included confirming that informed consent was obtained from all subjects? Where (section, paragraph #)?

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained? Where (section, paragraph #)?

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?

 a. If yes, is the number rejected and reasons for rejection described? Where (section, paragraph #)?

2. Is the number of blocks, trials or experimental units per session and/or subjects specified? Where (section, paragraph #)?

3. Is the length of each trial and interval between trials specified?

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.

5. Is the task design clearly described? Where (section, paragraph #)?

6. How was behavioral performance measured?

7. Is an ANOVA or factorial design being used?

8. For data acquisition, is a whole brain scan used? If not, state area of acquisition.
a. How was this region determined?

9. Is the field strength (in Tesla) of the MRI system stated?
 a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?

11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?

14. Were any additional regressors (behavioral covariates, motion etc) used?

15. Is the contrast construction clearly defined?

16. Is a mixed/random effects or fixed inference used?
 a. If fixed effects inference used, is this justified?

17. Were repeated measures used (multiple measurements per subject)?
 a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?

18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

19. Are statistical inferences corrected for multiple comparisons?
 a. If not, is this labeled as uncorrected?
20. Are the results based on an ROI (region of interest) analysis?
 a. If so, is the rationale clearly described?
 b. How were the ROI’s defined (functional vs anatomical localization)?

21. Is there correction for multiple comparisons within each voxel?

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

- Additional comments

Additional Comments