Reporting Checklist for Nature Neuroscience

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. For more information, please read Reporting Life Sciences Research.

Please note that in the event of publication, it is mandatory that authors include all relevant methodological and statistical information in the manuscript.

Statistics reporting, by figure

- Please specify the following information for each panel reporting quantitative data, and where each item is reported (section, e.g. Results, & paragraph number).
- Each figure legend should ideally contain an exact sample size (n) for each experimental group/condition, where n is an exact number and not a range, a clear definition of how n is defined (for example x cells from x slices from x animals from x litters, collected over x days), a description of the statistical test used, the results of the tests, any descriptive statistics and clearly defined error bars if applicable.
- For any experiments using custom statistics, please indicate the test used and stats obtained for each experiment.
- Each figure legend should include a statement of how many times the experiment shown was replicated in the lab; the details of sample collection should be sufficiently clear so that the replicability of the experiment is obvious to the reader.
- For experiments reported in the text but not in the figures, please use the paragraph number instead of the figure number.

Note: Mean and standard deviation are not appropriate on small samples, and plotting independent data points is usually more informative. When technical replicates are reported, error and significance measures reflect the experimental variability and not the variability of the biological process; it is misleading not to state this clearly.

<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>WHICH TEST?</th>
<th>SECTION & PARAGRAPH #</th>
<th>n</th>
<th>DESCRIBITIVE STATS (AVERAGE, VARIANCE)</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/T/Z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TEST USED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>one-way ANOVA</td>
<td>Fig. legend</td>
<td>9, 9, 10, 15, mice from at least 3 litters/group</td>
<td>Methods para 8</td>
<td>error bars are mean +/- SEM</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>2</td>
<td>unpaired t-test</td>
<td>Results para 6</td>
<td>15, slices from 10 mice</td>
<td>Results para 6</td>
<td>error bars are mean +/- SEM</td>
<td>Results para 6</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4019
<table>
<thead>
<tr>
<th>FIGURE NUMBER</th>
<th>WHICH TEST?</th>
<th>SECTION & PARAGRAPH #</th>
<th>EXACT VALUE</th>
<th>DEFINED?</th>
<th>P VALUE</th>
<th>DEGREES OF FREEDOM & F/t/z/R/ETC VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>1k</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>46, 16, 18, 13, 14, 14</td>
<td>lesioned segments</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>1i left</td>
<td>one-way ANOVA followed by Dunnett's multiple comparisons test</td>
<td>Fig. legend</td>
<td>29, 8, 9, 6, 7, 11, 6</td>
<td>larvae</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>1i right</td>
<td>one-way ANOVA followed by Dunnett's multiple comparisons test</td>
<td>Fig. legend</td>
<td>29, 8, 9, 6, 7, 11, 6</td>
<td>larvae</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>1m</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>19, 10, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>1n</td>
<td>one-way ANOVA followed by Dunnett's multiple comparisons test</td>
<td>Fig. legend</td>
<td>19, 10, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>1o</td>
<td>one-way ANOVA followed by Holm-Sidak's multiple comparisons test</td>
<td>Fig. legend</td>
<td>19, 10, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>2c</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>43, 27</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>2d</td>
<td>unpaired ttest</td>
<td>Fig. legend</td>
<td>43, 27</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>+</td>
<td>2e</td>
<td>unpaired ttest</td>
<td>Fig. legend</td>
<td>43, 27</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>unpaired ttest</td>
<td>Fig. legend</td>
<td>34, 33</td>
<td>nerves</td>
<td>Fig. legend</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>5a</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>46, 17, 18, 13, 17, 14, 9</td>
<td>lesioned segments</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one-way ANOVA followed by Turkey's multiple comparisons test</td>
<td>Fig. legend</td>
<td>29, 9, 9, 6, 9, 7, 7, 4</td>
<td>larvae</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one-way ANOVA followed by Turkey's or Dunnnett's multiple comparisons test</td>
<td>Fig. legend</td>
<td>29, 9, 9, 6, 9, 7, 7, 4</td>
<td>larvae</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td>6a</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>26, 16, 26, 18, 25, 20, 18, 15, 16, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td>6b</td>
<td>one-way ANOVA followed by Dunn's or Holm-Sidak's multiple comparisons test</td>
<td>Fig. legend</td>
<td>26, 16, 26, 18, 25, 20, 18, 15, 16, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td>6c</td>
<td>one-way ANOVA followed by Dunnnett's multiple comparisons test</td>
<td>Fig. legend</td>
<td>26, 16, 26, 18, 25, 20, 18, 15, 16, 17</td>
<td>neurons</td>
<td>Fig. legend</td>
</tr>
<tr>
<td></td>
<td>6d</td>
<td>Fisher's exact test</td>
<td>Fig. legend</td>
<td>46, 16, 15, 16, 18</td>
<td>lesioned segments</td>
<td>Fig. legend</td>
</tr>
</tbody>
</table>

Nature Neuroscience: doi:10.1038/nn.4019
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6e left</td>
<td>Kruskal-Wallis test followed by Dunn's multiple comparisons test</td>
<td>Fig. legend 29, 8, 7, 8, 9 larvae</td>
</tr>
<tr>
<td>6e right</td>
<td>one-way ANOVA followed by Turkey's multiple comparisons test</td>
<td>Fig. legend 29, 8, 7, 8, 9 larvae</td>
</tr>
<tr>
<td>6h</td>
<td>one-way ANOVA followed by Dunnett's multiple comparisons test</td>
<td>Fig. legend 3 experiments</td>
</tr>
<tr>
<td>7b</td>
<td>one-way ANOVA followed by Dunnett's multiple comparisons test</td>
<td>Fig. legend 3 experiments</td>
</tr>
<tr>
<td>7c left</td>
<td>unpaired t test</td>
<td>Fig. legend 3 experiments</td>
</tr>
<tr>
<td>7c right</td>
<td>unpaired t test</td>
<td>Fig. legend 3 experiments</td>
</tr>
<tr>
<td>7e</td>
<td>two-way ANOVA</td>
<td>Fig. legend 18, 18 neurons</td>
</tr>
<tr>
<td>7h</td>
<td>two-way ANOVA</td>
<td>Fig. legend 5, 5, 6 mice</td>
</tr>
<tr>
<td>Sup4 a</td>
<td>Fisher's exact test</td>
<td>Fig. legend 46, 16, 12 lesioned segments</td>
</tr>
<tr>
<td>Sup4 b left</td>
<td>one-way ANOVA followed by Holm-Sidak's multiple comparisons test</td>
<td>Fig. legend 28, 8, 6 larvae</td>
</tr>
</tbody>
</table>

Supplementary Materials:
- Fisher’s exact test (Sup4 a)
- One-way ANOVA followed by Holm-Sidak’s multiple comparisons test (Sup4 b left)

Methods:
- Statistical analysis on P. 31

Error Bars:
- Mean +/- SEM

Significance Levels:
- <0.01
- <0.001
- <0.0001
- >0.05
- >0.001
- >0.1
- >0.01
- >0.5
- >1

Fig. legend:
- Retreat to the text for specific details and figures.
<table>
<thead>
<tr>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup4</th>
<th>Sup7</th>
<th>Sup7</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>right</td>
<td>exact test</td>
<td>left</td>
<td>right</td>
<td>Fisher’s exact test</td>
<td>unpaired ttest</td>
<td>unpaired ttest</td>
<td>Fisher’s exact test</td>
<td>unpaired ttest</td>
</tr>
<tr>
<td>one-way ANOVA followed by Turkey’s multiple comparisons test</td>
<td>one-way ANOVA followed by Holm-Sidak’s multiple comparisons test</td>
<td>Kruskal-Wallis test followed by Dunn’s multiple comparisons test</td>
<td>Fisher’s exact test</td>
<td>unpaired ttest</td>
<td>unpaired ttest</td>
<td>Fisher’s exact test</td>
<td>unpaired ttest</td>
<td></td>
</tr>
<tr>
<td>Fig. legend</td>
</tr>
<tr>
<td>28, 8, 6 larvae</td>
<td>29, 9, 7, 8, 7 larvae</td>
<td>29, 9, 7, 8, 7 larvae</td>
<td>27, 20 neurons</td>
<td>27, 20 neurons</td>
<td>27, 20 neurons</td>
<td>19, 24 neurons</td>
<td>19, 24 neurons</td>
<td>4 experiments</td>
</tr>
<tr>
<td>error bars are mean +/- SEM</td>
<td>error bars are mean +/- SEM</td>
<td>error bars are mean +/- SEM</td>
<td>error bars are median with min/max</td>
<td>error bars are mean +/- SEM</td>
</tr>
<tr>
<td>Methods: Statistical analysis is on P. 31</td>
</tr>
<tr>
<td><0.01</td>
<td>>0.05</td>
<td><0.001</td>
<td><0.05</td>
<td><0.05</td>
<td><0.01</td>
<td><0.001</td>
<td><0.001</td>
<td><0.0001</td>
</tr>
<tr>
<td>0.0027</td>
<td>0.00002</td>
<td>0.000001</td>
<td>0.0000001</td>
<td>0.0000001</td>
<td>0.0000001</td>
<td>0.0000001</td>
<td>0.0000001</td>
<td>0.0000001</td>
</tr>
<tr>
<td>4.664</td>
<td>3.645</td>
<td>0.4220</td>
<td>1.656</td>
<td>2.460</td>
<td>4.623</td>
<td>5.088</td>
<td>0.3533</td>
<td>0.9382</td>
</tr>
<tr>
<td>0.3765</td>
<td>0.6708</td>
<td>0.0261</td>
<td>0.0384</td>
<td>0.0252</td>
<td>0.0035</td>
<td>0.00035</td>
<td>0.0035</td>
<td>0.0035</td>
</tr>
<tr>
<td>0.0035</td>
<td>0.0025</td>
<td>0.04279</td>
<td>2.139</td>
<td>4.644</td>
<td>3.487</td>
<td>0.04279</td>
<td>2.139</td>
<td>4.644</td>
</tr>
</tbody>
</table>

Methods: Statistical analysis is on P. 31.
Representative figures

1. Are any representative images shown (including Western blots and immunohistochemistry/staining) in the paper?

 If so, what figure(s)?

 Yes, Figures 1-7, Supplemental Figures 2, 6-15.

2. For each representative image, is there a clear statement of how many times this experiment was successfully repeated and a discussion of any limitations in repeatability?

 If so, where is this reported (section, paragraph #)?

 Each experiment has been successfully reproduced at least three times and was performed on multiple days. It is stated in the Methods: Statistical analysis section on P. 31.

Statistics and general methods

1. Is there a justification of the sample size?

 If so, how was it justified?

 Where (section, paragraph #)?

 The number of animals used is reported in the figure legends. We referred to the literature and the statistical analyses were done afterwards without interim data analysis, Methods: Statistical analysis section on P. 31.

2. Are statistical tests justified as appropriate for every figure?

 Where (section, paragraph #)?

 Statistical methods (student’s t-test and One way ANOVA followed by multiple comparison test) for each figure are stated in the Methods: Statistical analysis section on P. 31 and the figure legends.

 a. If there is a section summarizing the statistical methods in the methods, is the statistical test for each experiment clearly defined?

 The statistical tests for each experiment are clearly stated in the Methods: Statistical analysis section on P. 31 and the figure legends.
b. Do the data meet the assumptions of the specific statistical test you chose (e.g. normality for a parametric test)?
 Where is this described (section, paragraph #)?
 Yes, the data meet the assumption for the tests and this is stated in the Methods: Statistical analysis section on P. 31.

c. Is there any estimate of variance within each group of data?
 Is the variance similar between groups that are being statistically compared?
 Where is this described (section, paragraph #)?
 Yes, the variance has been tested in each group of the data and the variance is similar among genotypes. This is stated in the Methods: Statistical analysis section on P. 31.

d. Are tests specified as one- or two-sided?
 Two-sided.

e. Are there adjustments for multiple comparisons?
 Yes, this is stated in the Methods: Statistical analysis section on P. 31 and the figure legends.

3. Are criteria for excluding data points reported?
 Was this criterion established prior to data collection?
 Where is this described (section, paragraph #)?
 We didn’t exclude any data points.

4. Define the method of randomization used to assign subjects (or samples) to the experimental groups and to collect and process data.
 If no randomization was used, state so.
 Where does this appear (section, paragraph #)?
 The data were collected and processed randomly. This is stated in the Methods: Statistical analysis section on P. 31.

5. Is a statement of the extent to which investigator knew the group allocation during the experiment and in assessing outcome included?
 If no blinding was done, state so.
 Where (section, paragraph #)?
 For in vivo experiments in mice, optic nerve crush, tissue processing and imaging were performed in a double blind manner (Methods: Optic Nerve Crush section on P. 28). For experiments in Drosophila, data collection and analyses were not performed blind to the conditions of the experiments (Methods: Statistical analysis section on P. 31).

6. For experiments in live vertebrates, is a statement of compliance with ethical guidelines/regulations included?
 Where (section, paragraph #)?
 All protocols have been approved by the UCSF Institutional Animal Care and Use Committee, and it is stated in the Methods: Mice section on P. 27.

7. Is the species of the animals used reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Fly stocks and Mice sections on P. 26.

8. Is the strain of the animals (including background strains of KO/transgenic animals used) reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Fly stocks and Mice sections on P. 26.

9. Is the sex of the animals/subjects used reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Fly stocks and Optic nerve crush sections on P. 26 and P. 28.
10. Is the age of the animals/subjects reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Sensory axon lesion in Drosophila and Optic nerve crush sections on P. 27 and P. 28.

11. For animals housed in a vivarium, is the light/dark cycle reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Mice section on P. 27.

12. For animals housed in a vivarium, is the housing group (i.e. number of animals per cage) reported?
 Where (section, paragraph #)?
 Yes, in the Methods: Mice section on P. 27.

13. For behavioral experiments, is the time of day reported (e.g. light or dark cycle)?
 Where (section, paragraph #)?
 N/A

14. Is the previous history of the animals/subjects (e.g. prior drug administration, surgery, behavioral testing) reported?
 Where (section, paragraph #)?
 The animals had no prior history of drug administration, surgery or behavioral testing. This is stated in the Methods: Mice section on P. 27.

 a. If multiple behavioral tests were conducted in the same group of animals, is this reported?
 Where (section, paragraph #)?
 N/A

15. If any animals/subjects were excluded from analysis, is this reported?
 Where (section, paragraph #)?
 No animals were excluded from analysis.

 a. How were the criteria for exclusion defined?
 Where is this described (section, paragraph #)?

 b. Specify reasons for any discrepancy between the number of animals at the beginning and end of the study.
 Where is this described (section, paragraph #)?

Reagents

1. Have antibodies been validated for use in the system under study (assay and species)?
 Yes.

 a. Is antibody catalog number given?
 Where does this appear (section, paragraph #)?
 Stated in the Methods: Immunohistochemistry and LacZ staining section with company information, on P. 30.
b. Where were the validation data reported (citation, supplementary information, Antibodypedia)?

Where does this appear (section, paragraph #)?

From company information and citations, in the Methods: Immunohistochemistry and LacZ staining section with company information, on P. 30, and Results section on P. 28 and P. 14.

2. If cell lines were used to reflect the properties of a particular tissue or disease state, is their source identified?

Where (section, paragraph #)?

N/A

a. Were they recently authenticated?

Where is this information reported (section, paragraph #)?

N/A

Data deposition

Data deposition in a public repository is mandatory for:

a. Protein, DNA and RNA sequences
b. Macromolecular structures
c. Crystallographic data for small molecules
d. Microarray data

Deposition is strongly recommended for many other datasets for which structured public repositories exist; more details on our data policy are available here. We encourage the provision of other source data in supplementary information or in unstructured repositories such as Figshare and Dryad.

We encourage publication of Data Descriptors (see Scientific Data) to maximize data reuse.

1. Are accession codes for deposit dates provided?

Where (section, paragraph #)?

N/A

Computer code/software

Any custom algorithm/software that is central to the methods must be supplied by the authors in a usable and readable form for readers at the time of publication. However, referees may ask for this information at any time during the review process.

1. Identify all custom software or scripts that were required to conduct the study and where in the procedures each was used.

N/A

2. If computer code was used to generate results that are central to the paper’s conclusions, include a statement in the Methods section under "Code availability" to indicate whether and how the code can be accessed. Include version information as necessary and any restrictions on availability.

N/A

Human subjects

1. Which IRB approved the protocol?

Where is this stated (section, paragraph #)?

N/A
2. Is demographic information on all subjects provided?
 Where (section, paragraph #)?

3. Is the number of human subjects, their age and sex clearly defined?
 Where (section, paragraph #)?

4. Are the inclusion and exclusion criteria (if any) clearly specified?
 Where (section, paragraph #)?

5. How well were the groups matched?
 Where is this information described (section, paragraph #)?

6. Is a statement included confirming that informed consent was obtained from all subjects?
 Where (section, paragraph #)?

7. For publication of patient photos, is a statement included confirming that consent to publish was obtained?
 Where (section, paragraph #)?

fMRI studies

For papers reporting functional imaging (fMRI) results please ensure that these minimal reporting guidelines are met and that all this information is clearly provided in the methods:

1. Were any subjects scanned but then rejected for the analysis after the data was collected?
 N/A

 a. If yes, is the number rejected and reasons for rejection described?
 Where (section, paragraph #)?

2. Is the number of blocks, trials or experimental units per session and/or subjects specified?
 Where (section, paragraph #)?

3. Is the length of each trial and interval between trials specified?

4. Is a blocked, event-related, or mixed design being used? If applicable, please specify the block length or how the event-related or mixed design was optimized.

5. Is the task design clearly described?
 Where (section, paragraph #)?
6. How was behavioral performance measured?

7. Is an ANOVA or factorial design being used?

8. For data acquisition, is a whole brain scan used?
 If not, state area of acquisition.
 a. How was this region determined?

9. Is the field strength (in Tesla) of the MRI system stated?
 a. Is the pulse sequence type (gradient/spin echo, EPI/spiral) stated?
 b. Are the field-of-view, matrix size, slice thickness, and TE/TR/flip angle clearly stated?

10. Are the software and specific parameters (model/functions, smoothing kernel size if applicable, etc.) used for data processing and pre-processing clearly stated?

11. Is the coordinate space for the anatomical/functional imaging data clearly defined as subject/native space or standardized stereotaxic space, e.g., original Talairach, MNI305, ICBM152, etc? Where (section, paragraph #)?

12. If there was data normalization/standardization to a specific space template, are the type of transformation (linear vs. nonlinear) used and image types being transformed clearly described? Where (section, paragraph #)?

13. How were anatomical locations determined, e.g., via an automated labeling algorithm (AAL), standardized coordinate database (Talairach daemon), probabilistic atlases, etc.?

14. Were any additional regressors (behavioral covariates, motion etc) used?

15. Is the contrast construction clearly defined?

16. Is a mixed/random effects or fixed inference used?
 a. If fixed effects inference used, is this justified?

17. Were repeated measures used (multiple measurements per subject)?
 a. If so, are the method to account for within subject correlation and the assumptions made about variance clearly stated?
18. If the threshold used for inference and visualization in figures varies, is this clearly stated?

19. Are statistical inferences corrected for multiple comparisons?
 a. If not, is this labeled as uncorrected?

20. Are the results based on an ROI (region of interest) analysis?
 a. If so, is the rationale clearly described?
 b. How were the ROI’s defined (functional vs anatomical localization)?

21. Is there correction for multiple comparisons within each voxel?

22. For cluster-wise significance, is the cluster-defining threshold and the corrected significance level defined?

Additional comments

Additional Comments