Supplementary Figure 3 Quantification of netrin-G1 immunofluorescent intensity at E18.5 on the control (a) and electroporated (ep, b) side of brains electroporated at E12.5. Region for quantification (yellow, c) was delimited from the medial cortex (arrowhead; “medial”) to the claustrum (arrow; “lateral”) on each side of the brain. (d) Pixel intensity was normalized and expressed as a percentage of the maximal value measured inside the region of interest (ROI); tangential distance was expressed as a relative distance between the two landmarks used to define the ROI. The ROI was straightened with ImageJ software (‘straighten’ plugin) and netrin-G1 immunofluorescent intensity measured along the rectangular selection as ‘gray value’ such that the x-axis represents the tangential distance through the selection and the y-axis the vertically averaged pixel intensity. Pixel intensity was then normalized by subtracting the average background intensity (measured from an unlabelled area of the same section) and expressed as a percentage of the maximal value measured inside the ROI; horizontal distance was expressed as a relative distance between the two landmarks used to define the region of interest. Quantifications were carried out at 3 additional rostro-caudal levels (antero-posterior distance of approximately 1.1mm from the level depicted in Fig. 6 to the anterior septal area). The in utero electroporation targets the DT on one side and thalamocortical projections are ipsilateral, therefore non-electroporated side was used as an internal control, reducing inter-animal variations. Netrin-G1 immunofluorescence distribution was quantified in individual brains and the number of similar observations in each treatment group reported.

Supplementary Fig. 3 - Bonnin et al.