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Introduction
In the past decade, virtual screening has become a promis-
ing tool for discovering active (leading) compounds, and has 
integrated into the pipeline of drug discovery in most phar-
maceutical companies[1].  Researchers have demonstrated the 
efficiency of virtual screening, which was shown to enrich the 
hit rate (defined as the number of compounds that bind at a 
particular concentration divided by the number of compounds 
experimentally tested) by a hundred to a thousand-fold over 
random screening (eg, high-throughput screening)[2, 3].  At the 
in silico laboratory, researchers use computational methods to 
evaluate virtual libraries (databases) against virtual receptors 
(targets) aimed at speeding up the drug discovery process.  

In essence, virtual screening is designed for searching large-
scale hypothetical databases of chemical structures or virtual 
libraries by using computational analysis and for selecting 
a limited number of candidate molecules that are likely to 
be active against a chosen biological receptor[4].  Therefore, 
virtual screening is a logical extension of three-dimensional 
(3D) pharmacophore-based database searching (PBDS) or 
molecular docking, capable of automatically evaluating large 
databases of compounds.  In this viewpoint, virtual screening 
approaches can be classified into two categories, pharmacoph-
ore-based virtual screening (PBVS) and docking-based virtual 
screening (DBVS).  

Historically, PBVS (ie, PBDS) was developed as a more 
advanced method than DBVS.  Since the 1990s, DBVS has 
become a more popular tool for discovering active com-
pounds because it directly reflects the ligand-receptor binding 
process.  Recently, PBVS has experienced a revival in drug 
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discovery, especially in the cases when no three-dimensional 
(3D) structural information on the protein target of interest is 
available.  Even when the 3D structures of targets are known, 
PBVS is also used as a complementary approach to DBVS 
for pre-processing databases (libraries) of small molecules 
to remove compounds not possessing features known to be 
essential for binding or for post-filtering compounds selected 
by docking approaches[5].  A recent case study by Muthas et al  
indicated that post-filtering with pharmacophores was shown 
to increase enrichment rates in their investigated targets com-
pared with docking alone[6].  Several studies have been per-
formed to assess various DBVS methods and compare which 
docking programs are the most successful in identifying active 
hits[7–10].  The conclusion is that no docking program may 
outperform other docking programs for all the tested targets, 
and the performance of each tested docking program is highly 
dependent on the nature of the target binding site[5].

Nevertheless, few case studies for a direct comparison 
on the performances between PBVS and DBVS have been 
reported[11].  To gain a general view for the discrimination 
between these two types of approach in prioritizing actives 
from a database with decoys, we performed a benchmark 
comparison between the performances of PBVS and DBVS.  
Eight structurally diverse protein targets were selected in 
this study.  The pharmacophore models were generated from 
the ligand co-crystallized complex structures of these targets 
using the LigandScout program[12], and each PBVS was per-
formed using the program Catalyst[13, 14]. To avoid the target 
dependency of docking programs, three docking programs, 
namely DOCK[15, 16], GOLD[17–20], and Glide[21, 22], were used in 
the DBVS.  The results for eight tested targets indicated that 
the pharmacophore-based method generally outperforms all 
three docking methods in retrieving actives from databases.  

Of the sixteen sets (one target versus two testing databases) of 
virtual screenings, PBVS resulted in higher enrichment factors 
than DBVS for fourteen cases.  When the top 2% and 5% of 
the ranked compounds are considered, the average hit rate of 
PBVS over the virtual screening results against the eight tar-
gets is much higher than those of the docking methods.

Computational details
Research pipeline 
The main goal of this study is to make a benchmark com
parison between the performances of the two types of virtual 
screening approach, pharmacophore-based and docking-
base methods.  The flowchart of the research pipeline is 
outlined in Figure 1.  First, we selected eight pharmaceutically 
interesting targets representing diverse pharmacological 
functions and disease areas for the benchmark comparison; 
these targets include angiotensin converting enzyme (ACE), 
acetylcholinesterase (AChE), androgen receptor (AR), 
D-alanyl-D-alanine carboxypeptidase (DacA), dihydrofolate 
reductase (DHFR), estrogen receptors α (ERα), HIV-1 protease 
(HIV-pr), and thymidine kinase (TK) (Table 1).  For each target, 
the pharmacophore model was constructed based on several 
X-ray crystal structures of this target protein in complex with 
ligands (mostly inhibitors), and one high-resolution crystal 
structure of the ligand-protein complex was used to generate 
the model for docking-based virtual screening (Figure 1).  
One active dataset containing experimentally validated active 
compounds was constructed for each target, and two decoy 
datasets composed of ~1000 compounds were generated 
(designated as Decoy I and Decoy II).  By combining the eight 
active datasets with the two decoy datasets, sixteen small 
databases were built up for virtual screening.  Finally, each 
small molecular database was searched by using either the 

Figure 1.  Computational flow chart for this 
study.
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pharmacophore-based or docking-based virtual screening 
approach against the corresponding pharmacophore or 
docking virtual screening model, and the performance for 
each virtual screening was evaluated by measuring the virtual 
screening effectiveness.  The detailed procedure of each step 
in the research pipeline is described below.

Target preparation 
In this study, eight pharmacologically important proteins were 
selected as test targets, ie, ACE, AChE, AR, DacA, DHFR, ERα, 
HIV-pr, and TK.  For each target, numerous structures in com-
plex with different ligands have been determined using the 
X-ray crystallographic technology.  We selected some typical 
crystal structures of each target for establishing the pharma-
cophore models, and selected one high-resolution structure for 

docking simulation.  The coordinates of the crystal structures 
of these protein targets were obtained from the Protein Data 
Bank (PDB)[23], and their PDB entries are listed in Table 1.  

Here, we briefly introduce the pharmacological functions 
of the eight targets used in this study.  ACE plays an essential 
role in the renin-angiotensin system (RAS), which regulates 
both arterial blood pressure and the salt/water balance[24, 25].  
Since the first generation of ACE inhibitors was discovered 
from snakes, inhibitors of ACE have been a major target for 
discovering anti-hypertensive drugs[26–29].  AChE is a key 
enzyme that breaks down the neurotransmitter acetylcholine 
at the synaptic cleft.  Its inhibitors are now the main stream 
drug in the treatment of Alzheimer’s disease (AD)[30].  AR is a 
member of the steroid hormone receptor branch of the nuclear 
receptor superfamily and, as a mediator of androgen signal-
ing, it has important roles for the coordinated gene expression 
in male reproductive tissues[31].  The inhibition of this recep-
tor plays a physiological role in modulating AR-dependent 
gene regulation in reproductive tissues.  DacA, also known as 
a penicillin target, is a penicillin-sensitive, membrane-bound 
enzyme required for trimming the carboxy-terminal D-alanyl 
residues from cell wall precursors.  DacA catalyses carboxy-
peptidation and transpeptidation reactions involved in bac-
terial cell wall metabolism, and are inactivated by β-lactam 
antibiotics[32].  Its inhibitors usually function as antibacterials.  
DHFR is a ubiquitous enzyme found in all organisms.  The 
enzyme catalyzes the reduction of 7,8-dihydrofolate (DHF) to 
5,6,7,8-tetrahydrofolate (THF) by stereospecific hydride trans-
fer from the NADPH cofactor to the C6 atom of the pterin ring 
with concomitant protonation at N5.  DHFR plays a central 
role in the maintenance of cellular pools of THF and its deriva-
tives, which are essential for purine and thymidylate synthesis 
and hence for cell growth and proliferation.  This enzyme 
has been the target of several important anticancer drugs and 
antibiotics[33].  ERα is a member of the nuclear receptor super-
family of ligand-regulated transcription factors.  The inhibitors 
of this receptor can be potentially applied in the treatment of 
breast cancer, osteoporosis, urogenital symptoms associated 
with post-menopausal atrophy of the vagina, or function as 
an oral contraceptive to prevent pregnancy[34].  The HIV-1 
protease (HIV-pr) is essential for maturation of the virus into 
infectious viral particles, and it is therefore considered a suit-
able target for drugs against AIDS[35].  TK is the key enzyme in 
the pyrimidine salvage pathway catalyzing the phosphoryla-
tion of thymidine (dT) to thymidine monophosphate (dTMP) 
in the presence of Mg2+ and ATP[36].  Viral and insect TKs phos-
phorylate a variety of nucleosides and nucleoside analogues[37], 
thus its inhibitors could be used in classical antiviral therapy.  

Datasets of chemicals 
Two kinds of datasets were constructed.  The first one con-
tains eight sub-datasets, each of which is composed of active 
compounds corresponding to a specific target (we designated 
as actives hereinafter).  All the actives were isolated from the 
DrugBank database[34].  The chemical structures of the actives 
are shown in Table S1 in the Supplementary Information.  To 

Table 1.  Eight targets selected for testing the virtual screening methods 
and the PDB entries of the X-ray structures of the complexes of these 
targets in complex with ligands.   

Target	                              PDB entriesa	                                    Number of 
                                                                                                               Activesb                                  
 
	 ACE	 1UZF, 1O86, 1UZE* 	 14
	 AChE	 1ACJ, 1ACL, 1AMN, 1AX9, 1DX6, 1E3Q, 1E66, 1EVE, 	 22
		  1GPK, 1GPN, 1GQR, 1GQS, 1H22, 1H23, 1HBJ, 1JJB, 
		  1OCE, 1ODC, 1U65, 1UT6, 1VOT, 1W4L, 1W6R, 1W76, 
		  1ZGC, 2ACE, 2ACK*, 2BAG, 2C4H, 2C5F, 2C5G, 2C58, 
		  2CEK, 2CKM, 2CMF, 2J3Q, 2VB4
	AR	 1E3G*, 1GS4, 1T5Z, 1T63, 1T65, 1XJ7, 1XOW, 1XQ3, 	 16
		  1Z95, 2AM9, 2AMA, 2AMB, 2AO6, 2AX6, 2AX7, 2AX8, 
		  2AX9, 2AXA, 2HVC, 2OZ7, 2PIO, 2PIP, 2PIQ, 2PIR, 2PIT, 
		  2PIU, 2PIV, 2PIW, 2PIX, 2PKL, 2PNU, 2Q7I, 2Q7J, 2Q7K, 
		  2Q7L, 2Z4J	
	DacA	 1CEF, 1CEG*, 1HVB, 1IKG, 1IKI, 1MPL, 1PW1, 1PW8, 	   3
		  1PWC, 1PWD, 1PWG, 1SCW, 1SDE, 1YQS	
	DHFR	 1BOZ*, 1KMS, 1KMV, 1S3U, 1S3V, 1S3W, 2DHF, 1DLS, 	   8
		  1U72, 1MVS, 1MVT, 1DLR, 1U71, 1HFP, 1HFQ, 1HFR, 
		  1OHJ, 1OHK, 1DHF, 1DRF, 1PD8, 1PD9	
	ERα	 1A52, 1AKF, 1ERE, 1ERR, 1G50, 1GWQ, 1GWR, 1L2I, 	 32
		  1PCG*, 1QKT, 1R5K, 1UOM, 1X7E, 1X7R, 1XP1, 1XP6, 
		  1XP9, 1XPC, 1YIM, 1ZKY, 2AYR, 2B1V, 2B1Z, 2BJ4, 2FAI, 
		  2G44, 2G5O, 2I0J, 2IOG, 2JF9, 2JFA, 2OUZ, 2P15, 2POG, 
		  2Q6J, 2Q70, 2QE4, 3ERD, 3ERT	
	HIV-pr	 1AID, 1HVH, 1HVR, 1HWR, 1IZH, 1IZI, 1JLD, 1KZK, 1NPV, 	   9
		  1NPW, 1T3R, 1T7K, 1TCX, 1XL2, 1XL5, 1YT9, 2A4F*, 
		  2AID, 2F3K, 2FDD, 2FDE, 2FGU, 2FGV, 2HC0, 2NXD, 
		  2NXM, 2P3A, 2P3B, 2P3C, 2P3D, 3AID, 4PHV	
	 TK	 1E2I, 1E2J, 1E2K*, 1E2L, 1E2M, 1E2N, 1E2P, 1KI2, 	   8
		  1KI3, 1KI4, 1KI6, 1KI7, 1KI8, 1KIM, 1OF1, 1P7C, 1QHI, 
		  1VTK, 2KI5, 2VTK, 3VTK	

a All the X-ray crystal structures of the complexes of each target in complex 
with ligands were used in the construction of pharmacophore models. The 
crystal structure of each target with PDB entry marked with an asterisk 
was used for the docking-based virtual screens.
b The chemical structures of the actives used for testing the virtual screen
ing methods are shown in Table S1 in the Supplementary Information.
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obtain more confident results, two sets of decoy datasets (I 
and II, Figure 1) were used in this study: dataset I contains 
990 non-active molecules for all the eight targets, which were 
constructed by using the ligand preparation method provided 
by Bissantz et al[38], and dataset II consists of 1000 non-active 
molecules, which were constructed by Cleves et al[39].  The 
molecules in these two datasets do not overlap.  Combining 
the eight sub-datasets of actives and two decoy datasets pro-
duced sixteen databases for virtual screening; each target was 
screened on two databases using both pharmacophore-based 
and docking-based methods.  To satisfy the requirement of 
pharmacophore-based virtual screening, the two-dimensional 
(2D) structures (in SD form) of all the small molecules in the 
datasets were converted into three-dimensional (3D) struc-
tures with multi-conformers in Catalyst 3D format using the 
catDB utility program encoded in the Catalyst; the maximum 
number of conformers generated for each molecule was set to 
250.  For the sake of running docking-based virtual screening, 
the small molecules in the datasets were also transformed into 
three-dimensional MOL2 format using the Corina program[40].

Pharmacophore model generation 
In this study, the pharmacophore models were derived accord-
ing to the ligand-protein interactions.  Thus, the pharmacoph-
ore of each target was constructed based on the X-ray crystal 
structures of ligand-protein complexes by using the software 
LigandScout[12].  LigandScout is a program for the detection of 
relevant interaction points between a ligand and a protein.  Its 
algorithms performed a stepwise interpretation of the ligand 
molecules: planar ring detection, assignment of functional 
group patterns, determination of the hybridization state, and 
finally the assignment of Kekulé pattern[41].  For each target, 
we built up its pharmacophore model on the basis of a series 
of X-ray crystal structures of this target protein in complex 
with different ligands (Table 1).  Thus, the common features 
of all the generated hypotheses were summarized and used 
as the query features in the virtual screening.  In addition, 
the excluded volumes were involved in the pharmacophore 
models to improve effectiveness of virtual screening[42–44].  All 
the pharmacophore models were exported and translated by 
a script into Catalyst pharmacophore files for further virtual 
screening.

Virtual screening 
Two types of virtual screening approach for the benchmark 
comparison, pharmacophore-based and docking-based meth-
ods, were used to screen the sixteen small molecule databases 
containing both actives and decoy molecules.  The pharma-
cophore-based virtual screenings were carried out using the 
catSearch program of Catalyst[13, 14].  The number of hits was 
limited to 1000 with the “maxhits” option for the purpose of 
enrichment analysis.  The best flexible search method was 
employed in virtual screenings.  After the virtual screening 
was finished, the catEspDriver program of Catalyst[13, 14] was 
applied to estimate the fit values for the hits by calculating the 
fitness of each hit to the pharmacophore model.  Thereafter, 

the hits retrieved were ranked according to the fit values.
For the docking-based virtual screening, three docking 

programs, DOCK (UCSF)[15, 16], GOLD (Cambridge Crystal-
lographic Data Center)[17–20] and Glide (Schrödinger, Inc)[21, 22], 
were used in this study for the purpose of getting unbiased 
results of docking.  The detailed procedures for the virtual 
screenings using these three docking programs are described 
in the Supplementary Information.

Measurement of virtual screening effectiveness 
To quantify the ability of the four screening methods in assign-
ing high ranks to the known actives, we report enrichment fac-
tors (EF) with graphical form and present accumulation curves 
that show how the fraction of actives recovered varies with the 
percentage of the database screened.  The enrichment factor 
(EF) was calculated by Eq (1), 

where Hitss is the number of active compounds selected by 
a virtual screening method at a subsetting of an upper frac-
tion of the ranked list; Hitst is the total number of active com-
pounds in the database; Ns is the total number of compounds 
in the subsetting of the database; and Nt is the total number 
of compounds in the database.  The effectiveness of virtual 
screening can also be reflected by the hit rate (HR), ie, the ratio 
of the number of active compounds selected by the virtual 
screening method in a certain level of subsetting (Hitss) to 
the total number of known active compounds in the database 
(Hitst), as expressed by Eq (2),

Results and discussion
General features for the pharmacophore models of the eight 
targets 
The pharmacophore models corresponding to the eight tar-
gets are shown in Figure S1 in the Supplementary Informa-
tion.  As mentioned above, each pharmacophore model was 
constructed based on a series of crystal structures of ligand-
protein complexes.  Here, we use the pharmacophores of ACE 
and DacA to demonstrate the process of how to construct the 
pharmacophore models and how to describe the feature of the 
models.  Three X-ray crystal structures of ACE-ligand com-
plexes were used in the pharmacophore model generation.  
Their PDB entries are 1UZF, 1O86 and 1UZE, respectively 
(Table 1).  Firstly, three primary models were constructed 
on the basis of three crystal structures (Figures 2A−2C).  For 
model A, the hypothesis contains two hydrophobic regions, 
two hydrogen bond acceptor groups, and two negative ioniz-
able regions (Figure 2A); the pharmacophore feature of model 
B is composed of three hydrophobic regions, four hydrogen 
bond acceptor groups, two hydrogen bond donor groups, two 
negative ionizable regions, and two positive ionizable regions 
(Figure 2B); and the hypothesis of model C consists of three 
hydrophobic regions, four hydrogen bond acceptor groups, 
one hydrogen bond donor group, and two negative ionizable 

EF(subset size)=  Hitss  /  Hitst                          (1)                                 Ns           Nt

HR=  Hitss   × 100%                                  (2)           Hitst          
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regions (Figure 2C).  To obtain a common feature of these 
three pharmacophore models, we superposed the three crystal 
structures.  The proteins can be superposed well together with 
a RMSD<0.3Å, and the three ligands showed their conforma-
tional diversity (Figure 2D).  Common features can be deter-
mined through the structural superposition: one hydrogen 
bond acceptor on the hydroxyl group of the ligands, which 
hydrogen bonds to Lys511 and Tyr520, one hydrogen bond 
acceptor that interacts with water molecules in the protein 
binding site, and one hydrophobic region around the alkyl 
group of the ligands (Figure 2E).  Additionally, one hydropho-
bic region around the pyrrolidine group of the co-crystallized 
ligands appeared only in model A.  However, this region 
seems important for ligand-protein interaction.  Therefore, 
this feature was also added in the final pharmacophore model 
(Figure 2E).  

To further elucidate the pharmacophore modeling, here 
we detail the construction of the pharmacophore model for 
the target of DacA.  Fourteen crystal structures of ligand-
DacA complexes are available.  Thus, we constructed fourteen 
primary pharmacophore hypotheses for this target using 
the LigandScout program.  Ligands in the fourteen crystal 
structures, except those in 1IKI and 1MPL, share a common 

substructure, and this part of the ligands may superpose well 
in the protein binding site, as indicated in Figure 3A.  For the 
twelve crystal structures of DacA, the pharmacophore fea-
ture around this substructure includes two positive ionizable 
regions, one hydrophobic region, and five hydrogen bond 
acceptor groups (Figure 3B).  According to the interaction 
models of the fourteen ligands with DacA, we refined this 
pharmacophore model further.  The final pharmacophore 
model consists of one hydrophobic region, four hydrogen 
bond acceptor groups, and six excluded volumes, as shown in 
Figure 3C.  In a similar way, we obtained the pharmacophore 
models for six other targets (Figure S1 in the Supplementary 
Information).  

Performances of virtual screening 
Once the pharmacophore models of the eight targets were 
obtained, we performed pharmacophore-based virtual screen-
ings.  Two sets of screens were carried out against each phar-
macophore model towards the two databases (databases I 
and II).  Simultaneously, databases I and II were also screened 
using three docking methods, DOCK, GOLD, and Glide, 
against the structural models of the eight targets.  

Generally, the main purpose of virtual screening is to 

Figure 2.  Pharmacophore models of ACE derived from the X-ray crystal structures of ACE-ligand complexes (PDB entries 1UZF, 1O86, and 1UZE).  (A–C) 
Pharmacophore models generated with LigandScout from PDB entries of 1UZF, 1O86, and 1UZE, respectively.  LigandScout color codes were used to 
represent the pharmacophore features: hydrogen bond donor (green arrow), hydrogen bond acceptor (red arrow), hydrophobic region (yellow sphere), 
and excluded volume (black sphere).  (D) Superposition for the three ligands bound in the crystal structures used for pharmacophore construction.  (E) 
The refined pharmacophore model of ACE derived based on models A–C.  The pharmacophore model was represented in Catalyst form: hydrogen bond 
acceptor (HBA), hydrogen bond donor (HBD), hydrophobic region (HP), and excluded volume (EV).
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select a subset of a library enriched in compounds having the 
desired activity for experimental assay.  Accordingly, the suc-
cess of a virtual screening performance can be quantified by 
the enrichment factor (EF) and hit-rate (HR) when the percent-
age of active compounds in the screening database is known.  
The enrichment factor (EF) and hit-rate (HR) results of the 
64 virtual screenings are shown in Figure 4.  In general, the 
pharmacophore-based method outperforms all three of the 
docking-based methods in retrieving actives from the data-
bases, as indicated by the EF and HR values versus the upper 
fractions of the ranked list (Figure 4).  For the screening result 
on database I against ACE (ACE-1), the pharmacophore-based 
method gave a maximum EF value of 10.25 at 1.39% of the 
highest ranks of the entire database, while the maximum EF 
values of the three docking-based methods are smaller than 
that of the pharmacophore-based method and also occur at 
higher percentages of the highest ranks of the entire database 
(Figure 4A1).  For the screening result on database II against 
ACE (ACE-2), the screening effectiveness of the pharma-
cophore-based method was found to be better than those 

of DOCK and GOLD, but slightly less effective than that of 
Glide (Figure 4A3).  Nevertheless, the curves of the HR values 
versus the upper fractions of the ranked list indicate that the 
pharmacophore-based method outperforms the three docking 
methods in selecting actives before 7.55% and 12.69% for data-
bases I and II, respectively (Figures 4A2 and 4A4).  For most 
of the other seven targets, the pharmacophore-based method 
was also more effective in selecting actives than the docking 
methods if estimated by the EF values, except for the screen-
ing results against ERα on database I (Figure 4F1), and HIV-pr 
(Figure 4G1 and 4G3) and TK on databases I and II (Figure 
4H1 and 4H3).  Only one docking method outperformed the 
pharmacophore method for virtual screenings against ERα 
and TK.  If evaluated by the HR values, the screening effec-
tiveness of the pharmacophore-based method was found to 
be higher than those of the docking-based methods for all the 
targets before a certain percentage of the databases (Figures 4, 
columns 2 and 4).  

In practice, a certain percentage of molecules in the highest 
ranked list are selected for experimental assay.  The hit-rate for 

Figure 3.  Pharmacophore models of DacA 
derived from the X-ray crystal structures of 
DacA-ligand complexes.  (A) Superposition 
of the four teen ligands bound in the 
DacA binding site.  The substituted six- 
or f ive-member r ings of the l igands 
superposed well.  (B) A representative 
LigandScout pharmacophore model of 
DacA: hydrogen bond donor (green arrow), 
hydrogen bond acceptor (red arrow), 
hydrophobic region (yellow sphere), and 
excluded volume (black sphere).  (C) 
Refined pharmacophore model of DacA 
represented by Catalyst form: hydrogen 
bond acceptor (HBA), hydrogen bond 
donor (HBD), hydrophobic region (HP), and 
excluded volume (EV).
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Figure 4.  Enrichment plots for the eight targets calculated for the four screening methods.  (Columns 1 and 3) Enrichment factor as a function of the 
fraction of the ranked database.  (Columns 2 and 4) The percent of known actives identified in increasingly large subsets of the ranked database.  
The blue, black, red and green lines, respectively, present the results of Catalyst (PBVS), DOCK, GOLD, and Glide.  -1 and -2 represent the screens for 
databases I and II, respectively.
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these selected molecules is also an important reflection of the 
performance of a virtual screening method.  Thus, we calcu-
lated the HR values at the top 2% and 5% of compounds in the 
ranked list for each virtual screening.  The results are shown in 
Figure 5.  After direct comparison, the virtual screening results 
indicate that the hit-rate of the pharmacophore-based method 
is higher than those of docking-based methods for each tar-
get on each database at a 5% subsetting, and the hit-rates of 
the pharmacophore-based method at a 2% subsetting against 
all the targets except ACE and HIV-pr are higher than those 
of docking-based methods.  When averaged over the results 
of the virtual screening against the eight targets, the hit-rate 
of the pharmacophore-based method was found to be much 
higher than those of all three docking methods (Figure 5).

Pharmacophore fitting versus molecular docking 
Virtual screening approaches by means of docking reflect 
the ligand-receptor binding process directly, and approaches 
by means of a pharmacophore as a query structure map the 
ligand-receptor recognition indirectly[45].  In principle, the 
effectiveness of docking-based approaches in retrieving active 
compounds from databases should be higher than that of 
pharmacophore-based methods.  This, however, may not be 
the case, at least for the virtual screening against the eight tar-
gets tested in this study.  We may attribute this result to the 
shortages of the current docking methods.  First, the screening 
results using the current docking methods rely on the scoring 
functions to estimate the binding affinities of the compounds 
in a database with a specific target.  So far, no scoring function 
can predict binding affinity accurately and universally for all 

targets.  The second shortcoming of current docking programs 
is that most of the existing docking programs omitted the flex-
ibility of targets, preventing potential actives that crash with 
the binding pockets of available protein crystal structures 
from binding during docking simulations.  By contrast, phar-
macophore-based method screen and rank compounds from 
databases by fitting the molecular structures with the pharma-
cophore features that are essential for ligand-target binding 
without considering the real interaction between ligands and 
targets.  Possibly, this simplification involves the flexibility of 
target proteins for ligand binding.  

To test the above notion, we re-analyzed the virtual 
screening results by fitting the actives at 5% of the highest 
ranks of the entire databases to the pharmacophore models 
and target binding sites, respectively.  The results are shown 
in Figures 6−9 and Figures S2−S13 in the Supplementary 
Information.  Here, we only use the result against TK and ERα 
as examples to illustrate why the PBVS enrichments are higher 
than those of DBVS.  

For the target TK, there is a total of 8 actives in the testing 
databases (databases I and II) (Table 1).  Among the 5% 
subsetting of the highest ranked compounds of the entire 
databases, the pharmacophore-based method recovered 6 
and 8 actives from databases I and II, respectively; DOCK, 
GOLD and Glide only retrieved 1, 2 and 2 actives from both 
of the two databases, respectively.  The pharmacophore 
model of TK contains three features (Figure S1 in the 
Supplementary Information), thus the best fit value of actives 
with the pharmacophore should be 3.  Of the 8 actives of TK, 
the fit values of 7 compounds were larger than 2, and only 

Figure 5.  Comparison of 
the percentage of actives 
(hit rates) retrieved using 
the pharmacophore-based 
method (cyan), DOCK (red), 
GOLD (green) , and Gl ide 
(blue), at 2% and 5% of the 
highest ranks of the entire 
databases (databases I and 
II).  The last columns (Aver) 
represent the averaged hit 
rate over the eight targets for 
the four screening methods.
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one compound had a fit value of 1.97 (Figure 6).  This result 
suggests that the pharmacophore model of TK is reliable 
and the screening result is confident.  However, the docking 
simulations indicated that only 1–2 compounds could fit well 
with the binding pocket of TK, as other actives could not bind 
complementarily with the binding pocket (Figure 6, right 
column).  The docking programs even could not “send” the 
actives with large sizes into the binding pocket (Figure 6D), or 
produced binding conformations far away from their active 
conformation (Figures 6J, 6L and 6P).  Structure superposition 
suggests that most of the actives crashed with the residues 
around the binding pocket of TK (Figure 7).  

For the target ERα, the pharmacophore-based method 
recovered 9 actives at the top 5% of the highest ranks from 
database I.  However, DOCK and Glide recovered only 1 
and 2 actives, respectively, and GOLD did not recover any 
molecules.  Similar to the result of TK, all 9 actives fit well with 
the pharmacophore model of ERα, with fit values from 2.60 to 
3.74 (Figure 8).  However, most of the actives could not bind 
well with the binding pocket of ERα (Figures 8 and 9).  The 
fitting and docking results for the other six targets are shown 
in Figures S2–S13 in the Supplementary Information, from which 
we can draw a similar conclusion.

These results indicate that the rigidity of the crystal 

Figure 6.  Actives mapping to the pharmacophore model and fitting to the binding pocket of TK.  Actives in the 5% of the highest ranks of the entire 
database produced by the pharmacophore-based method were used in the mapping and fitting.  The pharmacophore model was represented in Catalyst 
form(A, C, E, G, I, K, M, and O): hydrogen bond acceptor (HBA, green), hydrogen bond donor (HBD, purple), hydrophobic region (HP, cyan), and excluded 
volume (EV, gray).  Binding conformations of the actives were isolated from the results of virtual screens(B, D, F, H, J, L, N, and P).  Actives in the docking 
models were represented by stick model.  The ligand bound in the crystal structure was used as a reference molecule (white), and actives docked by 
DOCK, GOLD, and Glide were displayed in red, green, and blue colors, respectively.
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Figure 7.  (A) Structural superposition of TK actives after pharmacophore mapping and binding pocket fitting.  The conformations of the actives 
predicted by DOCK (B), GOLD (C), and Glide (D) are also displayed.

Figure 8.  Actives mapping to the pharmacophore model and fitting to 
the binding pocket of ERα.  Actives in the 5% of the highest ranks of 
the entire database produced by the pharmacophore-based method 
were used in the mapping and fitting.  The figure caption is the same as 
Figure 6.
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structure of the target protein restrains the docking programs 
to retrieve the actives from the database.  Nonetheless, the 
pharmacophore-based method is not limited by the target 
structures, so molecules that fit well with the pharmacophore 
model are selected as actives from the database.  This implies 
that pharmacophore-based methods may implicitly consider 
the flexibility of the target protein during virtual screening, 
which is one of the reasons why PBVS methods outperform 
DBVS.  

The flexibility of the receptor is an advantageous factor for the 
performance of the pharmacophore method 
As described above, the pharmacophore-based methods fit the 
molecules with pharmacophore features which are extracted 
from the ligand-protein complex structures, and those that 
could match these features will be defined as hits.  Figure 
10A shows the mapping conformation of compound DB03431 
with the structure of TK.  Compound DB03431, with a similar 
scaffold of the ligand in the 1KIM, could match three phar-
macophore features, including two hydrogen bond donors 
and one hydrogen bond acceptor (Figure 6I).  The predicted 
conformation is similar to the native ligand (colored gray in 
Figure 10A) and can form the hydrogen bonds with residues 
Gln125, implicating the rationality of this conformation.  How-
ever, this predicted conformation by Catalyst will clash with 
residues G56–G59 and K62 of 1KIM, which all locate on a loop 
(colored pale green in Figure 10A).  The result indicates that 
the pharmacophore-based method may obtain more active 
compounds from a larger steric space without considering the 

protein structure restriction, i.e., implicitly taking into account 
the flexibility of the receptor, while such conformation cannot 
be predicted by the docking programs due to the steric effect.  
For example, the binding poses predicted by GOLD (green) 
and Glide (blue) significantly deviated from the native ligand 
in the crystal structure (Figure 10A).  The DOCK program 
could not dock the compound DB03431 into the binding site 
because of the steric clash.  

To further describe the advantage of the pharmacophore-
based method, we took the compound DB03280 as another 
example (Figure 10B).  The docking programs cannot handle 
compounds with a large size.  The DOCK and Glide programs 
cannot dock this compound into the pocket of the protein; the 
GOLD program produced a contracted conformation with 
lower score.  By contrast, the pharmacophore-based method 
predicts the reasonable conformation of this compound, which 
is similar to the native ligand in PDB 1KIM (colored gray in 
Figure 10B).  Although the predicted conformation for this 
compound clashes with some residues of protein, it was still 
ranked by Catalyst at the top of the hits list, since the pharma-
cophore-based method neglected the residues’ information 
that is not critical for pharmacophore mapping.  

In summary, the above evidences displayed the importance 
of considering receptor flexibility in virtual screening, which 
has been presented in several studies, such as those involv-
ing the program ICM[46].  This program takes into account the 
flexibility of the receptor with a soft van der Waals potential 
approach, and therefore exhibited superiority compared with 
other docking programs that only consider the flexibility of 
the ligand[47, 48].  

The performance of docking programs employing multiple 
crystal structures 
Since the pharmacophores were extracted from multiple 
protein-ligand complex structures in this study, to make a fair 
comparison, we used the same amount of crystal structures in 
the virtual screening simulations for the ACE and TK target 
cases, and the hit rates for the top 2% and 5% were presented 
for each crystal structure.  For database I, no actives were 
retrieved using each docking program against the three crystal 
structures of ACE at the top 2% (Figure 11A); for database II, 
the hit rates obtained by DOCK for 1O86 and Glide for 1UZE 
were the same as and better than that of the pharmacophore-
based method at the top 2% (Figure 11B).  However, the 

Figure 9.  Structural superposition of ERα actives after pharmacophore mapping and binding pocket fitting.  The figure caption is the same as Figure 7.  

Figure 10.  The binding conformations of compounds of DB03431 (A) and 
DB03280 (B) predicted by DOCK (red), GOLD (green), Glide (blue), and 
Catalyst (cyan) within the pocket of the receptor TK.  
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average hit rates for all the three docking methods against the 
three crystal structures were found to be lower than that of 
the pharmacophore-based method.  At the top 5%, the Glide 
program yielded approximately the same hit rate as obtained 
by the pharmacophore-based method for database I (Figure 
11D); for database II, the hit rates of all the docking-based 
methods were less than that of the pharmacophore-based 
method.  For the target of ACE, the hit rates with docking-
based methods were still less than that of the pharmacophore-
based methods in most cases, although multiple crystal 
structures were used in the docking-based methods.

In the TK case, we also performed virtual screening against 
21 crystal structures of TK.  Glide outperformed other dock-
ing-based methods for this target (Figure 12).  At the top 2%, 
the hit rates yielded by Glide against 1E2K, 1E2P, 1KI3, and 
1VTK were the same as that of the pharmacophore-based 
method for database I (Figure 12A), while the hit rates against 
1E2I and 1KI7 were higher than that of the pharmacophore-
based method (Figure 12A).  For other crystal structures, the 
screening accuracy of the docking-based method was not 
found to be better than that of the pharmacophore-based 
method.  For database II, the hit rates of the three docking pro-
grams were also lower than that of the pharmacophore-based 
method (Figure 12B and 12D), both at the top 2% and 5% level.  

All the results demonstrated that, although the performance 
of the docking programs varied with multiple crystal struc-
tures, the superiority of the pharmacophore-based method 
is still significant.  The hit rates obtained by some docking 
programs (such as DOCK and Glide) were the same as or bet-
ter than the pharmacophore method for a few crystal struc-
tures, but for most cases, the hit rates obtained by the docking 
programs were less than that of the pharmacophore-based 

method.  Most importantly, it is difficult to select which crystal 
structure to be used in the practical virtual screening since the 
results will be significantly affected by a slight change in the 
protein, such as the conformational change of one residue in 
the binding site.  In addition, considering the cost of time and 
computation, generally only the crystal structure with higher 
resolution will be selected in virtual screening instead of using 
multiple structures.  Correspondingly, it is feasible that one 
can summarize the pharmacophore from multiple complex 
structures and select their common features into one phar-
macophore model to perform pharmacophore-based virtual 
screening.  

Conclusions
The current study presents a direct comparison of the two 
virtual screening approaches, pharmacophore-based and 
docking-based methods, using two datasets of small molecules 
against eight pharmacologically important and structurally 
diverse target proteins (Figure 1).  Significant differences 
between these two approaches in retrieving actives from the 
databases have been observed.  Similar to previous reports, 
docking-based methods show varying performance depend-
ing on the nature of the target binding sites[5].  For example, 
DOCK outperformed GOLD and Glide for DacA.  Glide 
enrichment is higher than those of DOCK and GOLD for AR 
(Figures 4 and 5).  For most cases (14 out of 16), the phar-
macophore-based method outperformed the docking-based 
methods (DOCK, GOLD, and Glide), and the average PBVS 
enrichment over the virtual screens against the eight targets is 
much higher than those of DBVS (Figures 4 and 5).  This study 
also indicated that pharmacophore-based methods, although 

Figure 11.  Comparison of hit rates retrieved 
using DOCK (red), GOLD (green), and Glide 
(blue) at 2% and 5% of the highest ranks 
of the entire databases (databases I and 
II) with different crystal structures for the 
target of ACE.  The last columns (Aver) 
represent the hit rate over the employed 
crystal structures for the three docking 
programs and the pharmacophore-based 
method (cyan). 
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mapping the ligand-receptor recognition indirectly, imply the 
involvement of flexibility of target protein-ligand interactions 
during virtual screening, as indicated by the fitting results 
in Figures 6−9.  Although we cannot conclude now which 
method is better from this case study against only eight tar-
gets, this interesting result suggests that we should pay atten-
tion to pharmacophore-based methods or other ligand-based 
methods.  This study also suggests that pharmacophore-based 
methods are valuable even if the high-resolution structures of 
the targets are known.
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