Review

Acta Pharmacologica Sinica (2005) 26, 259–264; doi:10.1111/j.1745-7254.2005.00058.x

Nitric oxide: a newly discovered function on wound healing

Jian-dong Luo1,2 and Alex F Chen1

  1. 1Departments of Pharmacology and Neurology and the Neuroscience Program, Michigan State University, East Lansing, MI 48824-1317, USA
  2. 2Department of Pharmacology, Guangzhou Medical College, Guangzhou 510182, China

Correspondence: Alex F Chen, Fax: 1-517-353-8915. E-mail: chenal@msu.edu

Received 14 August 2004; Accepted 14 December 2004.

Top

Abstract

Wound healing impairment represents a particularly challenging clinical problem to which no efficacious treatment regimens currently exist. The factors ensuring appropriate intercellular communication during wound repair are not completely understood. Although protein-type mediators are well-established players in this process, emerging evidence from both animal and human studies indicates that nitric oxide (NO) plays a key role in wound repair. The beneficial effects of NO on wound repair may be attributed to its functional influences on angiogenesis, inflammation, cell proliferation, matrix deposition, and remodeling. Recent findings from in vitro and in vivo studies of NO on wound repair are summarized in this review. The unveiled novel mechanisms support the use of NO-containing agents and/or NO synthase gene therapy as new therapeutic regimens for impaired wound healing.

Keywords:

angiogenesis, inflammation, nitric oxide, proliferation, wound healing

Top

References

  1. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341: 738–46. | Article | PubMed | ISI | ChemPort |
  2. Bello YM, Phillips TJ. Recent advances in wound healing. JAMA 2000; 283: 716–8. | Article | PubMed | ISI | ChemPort |
  3. Frank S, Kampfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int 2002; 61: 882–8. | Article | PubMed | ISI | ChemPort |
  4. Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 1995; 57: 707–36. | Article | PubMed | ISI | ChemPort |
  5. Seifter E, Rettura G, Barbul A, Levenson SM. Arginine: an essential amino acid for injured rats. Surgery 1978; 84: 224–30. | PubMed | ISI | ChemPort |
  6. Barbul A, Lazarou SA, Efron DT, Wasserkrug HL, Efron G. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 1990; 108: 331–6. | PubMed | ISI | ChemPort |
  7. Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery 1993; 114: 155–9. | PubMed | ISI | ChemPort |
  8. Arbss MA, Ferrando JM, Vidal J, Quiles MT, Huguet P, Castells J, et al. Early effects of exogenous arginine after the implantation of prosthetic material into the rat abdominal wall. Life Sci 2000; 67: 2493–512. | Article | PubMed | ChemPort |
  9. Albina JE, Mills CD, Henry WL Jr, Caldwell MD. Temporal expression of different pathways of L-arginine metabolism in healing wounds. J Immunol 1990; 144: 3877–80. | PubMed | ISI | ChemPort |
  10. Shi HP, Efron DT, Most D, Tantry US, Barbul A. Supplemental dietary arginine enhances wound healing in normal but not inducible nitric oxide synthase knockout mice. Surgery 2000; 128: 374–8. | Article | PubMed | ISI | ChemPort |
  11. Schaffer MR, Tantry U, Gross SS, Wasserburg HL, Barbul A. Nitric oxide regulates wound healing. J Surg Res 1996; 63: 237–40. | Article | PubMed | ISI | ChemPort |
  12. Smith DJ, Dunphy MJ, Strag LN, Marletta MA. The influence of wound healing on urinary nitrate levels in rats. Wounds 1991; 3: 50–8.
  13. Schaffer MR, Tantry U, Ahrendt GM, Wasserburg HL, Barbul A. Acute protein-calorie malnutrition impairs wound healing: a possible role of decreased wound nitric oxide synthesis. J Am Coll Surg 1997; 184: 37–43. | PubMed | ChemPort |
  14. Schaffer MR, Tantry U, Efron PA, Ahrendt GM, Thornton FJ, Barbul A. Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery 1997; 121: 513–9. | Article | PubMed | ISI | ChemPort |
  15. Frank S, Madlener M, Pfeilschifter J, Werner S. Induction of inducible nitric oxide synthase and its corresponding tetrahydrobiopterin-cofactor- synthesizing enzyme GTP-cyclohydrolase I during cutaneous wound repair. J Invest Dermatol 1998; 111: 1058–64. | Article | PubMed | ISI | ChemPort |
  16. Boissel JP, Ohly D, Bros M, Godtel-Armbrust U, Forstermann U, Frank S. The neuronal nitric oxide synthase is upregulated in mouse skin repair and in response to epidermal growth factor in human HaCaT keratinocytes. J Invest Dermatol 2004; 123: 132–9. | Article | PubMed | ISI | ChemPort |
  17. Luo JD, Wang YY, Fu W, Wu J, Chen AF. Gene therapy of eNOS and MnSOD restores delayed wound healing in type 1 diabetic mice. Circulation 2004; 110: 2484–93. | Article | PubMed | ChemPort |
  18. Bulgrin JP, Shabani M, Chakravarthy D, Smith DJ. Nitric oxide synthesis is suppressed in steroid-impaired and diabetic wounds. Wounds 1995; 7: 48–57. | ISI |
  19. Lee PC, Salyapongse AN, Bragdon GA, Shears LL, Watkins SC, Edington HDJ, et al. Impaired wound healing and angiogenesis in eNOS-deficient mice. Am J Physiol 1999; 277: H1600–8. | PubMed | ISI | ChemPort |
  20. Yamasaki K, Edington HDJ, McClosky C, Tzeng E, Lizonova A, Kovesdi I, et al. Reversal of impaired wound repair in iNOS-deficient mice by topical adenoviral-mediated iNOS gene transfer. J Clin Invest 1998; 101: 967–71. | Article | PubMed | ISI | ChemPort |
  21. Stallmeyer B, Anhold M, Wetzler C, Kahlina K, Pfeilschifter J, Frank S. Regulation of eNOS in normal and diabetes-impaired skin repair: implications for tissue regeneration. Nitric Oxide 2002; 6: 168–77. | Article | PubMed | ISI | ChemPort |
  22. Witte MB, Kiyama T, Barbul A. Nitric oxide enhances experimental wound healing in diabetes. Br J Surg 2002; 89: 1594–601. | Article | PubMed | ISI | ChemPort |
  23. Masters KS, Leibovich SJ, Belem P, West JL, Poole-Warren LA. Effects of nitric oxide releasing poly(vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair Regen 2002; 10: 286–94. | Article | PubMed |
  24. Donnini S, Ziche M. Constitutive and inducible nitric oxide synthase: role in angiogenesis. Antioxid Redox Signal 2002; 4: 817–23. | Article | PubMed | ChemPort |
  25. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998; 101: 2567–78. | Article | PubMed | ISI | ChemPort |
  26. Konturek SJ, Brzozowski T, Majka J, Pytko-Polonczyk J, Stachura J. Inhibition of nitric oxide synthase delays healing of chronic gastric ulcers. Eur J Pharmacol 1993; 239: 215–7. | Article | PubMed | ISI | ChemPort |
  27. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997; 100: 3131–9. | Article | PubMed | ISI | ChemPort |
  28. Zhang R, Wang L, Zhang L, Chen J, Zhu Z, Zhang Z, et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat. Circ Res 2003; 92: 308–13. | Article | PubMed | ISI | ChemPort |
  29. Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Physiol 1998; 274: H1054–8. | PubMed | ISI | ChemPort |
  30. Gelinas DS, Bernatchez PN, Rollin S, Bazan NG, Sirois MG. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways. Br J Pharmacol 2002; 137: 1021–30. | Article | PubMed | ChemPort |
  31. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 1997; 99: 2625–34. | Article | PubMed | ISI | ChemPort |
  32. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 1996; 270: H411–5. | PubMed | ISI | ChemPort |
  33. Schwentker A, Vodovotz Y, Weller R, Billiar TR. Nitric oxide and wound repair: role of cytokines? Nitric Oxide 2002; 7: 1–10. | Article | PubMed | ChemPort |
  34. Frank S, Kampfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int 2002; 61: 882–8. | Article | PubMed | ISI | ChemPort |
  35. Frank S, Stallmeyer B, Kampfer H, Kolb N, Pfeilschifter J. Nitric oxide triggers enhanced induction of vascular endothelial growth factor expression in cultured keratinocytes (HaCaT) and during cutaneous wound repair. FASEB J 1999; 13: 2002–14. | PubMed | ISI | ChemPort |
  36. Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, et al. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 1997; 3: 879–86. | Article | PubMed | ISI | ChemPort |
  37. Xiong M, Elson G, Legarda D, Leibovich SJ. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 1998; 153: 587–98. | PubMed | ISI | ChemPort |
  38. Leibovich SJ, Polverini PJ, Fong TW, Harlow LA, Koch AE. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci USA 1994; 91: 4190–4. | Article | PubMed | ChemPort |
  39. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 1994; 94: 2036–44. | Article | PubMed | ISI | ChemPort |
  40. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167–71. | Article | PubMed | ChemPort |
  41. Andrew PJ, Harant H, Lindley IJ. Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level. Biochem Biophys Res Commun 1995; 214: 949–56. | Article | PubMed | ISI | ChemPort |
  42. Malik AA, Radhakrishnan N, Reddy K, Smith AD, Singhal PC. Tubular cell-Escherichia coli interaction products modulate migration of monocytes through generation of transforming growth factor-beta and macrophage-monocyte chemoattractant protein-1. J Endourol 2002; 16: 599–603. | Article | PubMed |
  43. Belenky SN, Robbins RA, Rubinstein I. Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J Leukoc Biol 1993; 53: 498–503. | PubMed | ChemPort |
  44. Stallmeyer B, Kampfer H, Kolb N, Pfeilschifter J, Frank S. The function of nitric oxide in wound repair: inhibition of inducible nitric oxide-synthase severely impairs wound reepithelialization. J Invest Dermatol 1999; 113: 1090–8. | Article | PubMed | ISI | ChemPort |
  45. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest 2000; 117: 1162–72. | Article | PubMed | ISI | ChemPort |
  46. Dhaunsi GS, Ozand PT. Nitric oxide promotes mitogen-induced DNA synthesis in human dermal fibroblasts through cGMP. Clin Exp Pharmacol Physiol 2004; 31: 46–9. | Article | PubMed | ChemPort |
  47. Seo SJ, Choi HG, Chung HJ, Hong CK. Time course of expression of mRNA of inducible nitric oxide synthase and generation of nitric oxide by ultraviolet B in keratinocyte cell lines. Br J Dermatol 2002; 147: 655–62. | Article | PubMed | ISI | ChemPort |
  48. Witte MB, Thornton FJ, Efron DT, Barbul A. Enhancement of fibroblast collagen synthesis by nitric oxide. Nitric Oxide 2000; 4: 572–82. | Article | PubMed | ISI | ChemPort |
  49. Schwentker A, Billiar TR. Inducible nitric oxide synthase: from cloning to therapeutic applications. World J Surg 2002; 26: 772–8. | Article | PubMed |
  50. Thornton FJ, Schaffer MR, Witte MB, Moldawer LL, MacKay SL, Abouhamze A, et al. Enhanced collagen accumulation following direct transfection of the inducible nitric oxide synthase gene in cutaneous wounds. Biochem Biophys Res Commun 1998; 246: 654–9. | Article | PubMed | ISI | ChemPort |
  51. Schaffer MR, Efron PA, Thornton FJ, Klingel K, Gross SS, Barbul A. Nitric oxide, an autocrine regulator of wound fibroblast synthetic function. J Immunol 1997; 158: 2375–81. | PubMed | ISI | ChemPort |
  52. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813–20. | Article | PubMed | ISI | ChemPort |
  53. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemia damage. Nature 2000; 404: 787–90. | Article | PubMed | ISI | ChemPort |
  54. Kim YK, Lee MS, Son SM, Kim IJ, Lee WS, Rhim BY, et al. Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes. Diabetes 2002; 51: 522–7. | Article | PubMed | ISI | ChemPort |
  55. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001; 88: E14–22. | PubMed | ISI | ChemPort |