Insulin quantification:
save sample and increase efficiency

- Increased throughput (104 data points delivered in <60 minutes)
- Broad measurement range
- Reduced cost per data point
- Excellent reproducibility

Introduction

Immunoassays are among the most sensitive methods for protein quantification in biological fluids, and are widely used for animal and human trials in pharmacological research on different disorders.

Diabetes, a disorder affecting insulin\(^1\) production in the body, is increasingly common and research into its mechanisms and treatment is a growing research area. There are two types of diabetes: Type I, where the beta cells produce insufficient amounts of insulin, and Type II, where the beta cells’ capacity to release insulin is reduced. Insulin is, therefore, one of the most extensively studied metabolic factors in diabetes.

Current techniques for insulin quantification, such as ELISA and radioimmunoassays (RIA), have limitations in terms of assay performance and throughput. In particular, when using small animal models, where sample volumes are very small, and in patient screening and population studies, where large numbers of samples have to be analyzed. For such studies, conventional techniques require extensive ‘hands-on’ time and consume large quantities of reagents.

By working at nanoliter scale, Gyrolab Bioaffy™ reduces the quantity of sample required and reagents used. Gyrolab Bioaffy’s automated procedure reduces ‘hands-on’ time and speeds up throughput by providing identical running conditions for each reaction and generating 104 data points within one hour. (See Application Report 201 for assay principles and further information about Gyrolab Bioaffy and Gyrolab™ Workstation.)

Case studies

DIABETES CENTER KAROLINSKA

The research group at Diabetes Center Karolinska, The Rolf Luft Center, Karolinska Institutet, Karolinska University Hospital is investigating the role of islets of Langerhans (cells that produce insulin) in Type 1 diabetes. Their research project involves extensive screening of patient material. The group measures insulin from human samples, mainly using radioimmunoassays (Grill et al. 1990), which involve extensive assay times. For measurement of rat and mouse samples, a commercially available ELISA kit\(^2\) is predominantly used.

Limited sample availability is a key concern for the group whenever additional information is required, as when analyzing several analytes in one sample. As the research group would like to develop a method for measuring several metabolic factors per animal, maximizing the information from sample volumes is very important.

\(^{1}\) Insulin is an essential hormone that is released from beta cells in the pancreas. It regulates sugar production in the liver and the uptake of blood sugar and glucose in the muscles and fatty tissues.

\(^{2}\) Mercodia, Uppsala, Sweden; 10–1149 (mouse), 10–1124 (rat).
NOVO NORDISK

The research group at Novo Nordisk focuses on pre-clinical development and research around metabolic processes. Within the diabetes therapy area they have developed an insulin analogue, insulin-aspart (insulin-Asp), and a two-sided ELISA for quantification of this analogue (Andersen et al. 2000). This assay is time consuming and uses large sample volumes. For the collaboration with Gyros, the existing Novo Nordisk validated antibody pair could be directly transferred to Gyrolab Bioaffy, due to the system’s open, flexible format.

Gyros carried out collaborative projects with both research groups. Key issues for both groups include:

- making the best use of small sample volumes
- ensuring a broad measurement range
- improving throughput
- reducing ‘hands-on’ time
- reducing reagent costs

Results

BROAD MEASUREMENT RANGE

The standard curves for rat and human insulin in Figure 1 show a linear range of more than three orders of magnitude. A broad measurement range allows the quantification of higher concentration samples without the need for sample dilution. For comparative data on measurement ranges for the techniques used in these studies, see Table 1.

GENERATING WELL-CORRELATED RESULTS WITH LESS SAMPLE

Correlation between Gyrolab Bioaffy and ELISA, when quantifying mouse and rat insulin, is shown in Figures 2a and 2b. Figure 2c shows the correlation between Gyrolab Bioaffy, ELISA, and RIA when quantifying human insulin in serum.

The results generated by Gyrolab Bioaffy correlate well with the established techniques, with the additional advantage of using smaller sample volumes. See Table 1 for a comparison of sample volumes used in each of the techniques. Gyrolab Bioaffy is able to generate a great deal of information from small sample volumes. For example, in one sample, 2 replicates analyzing analyte x and 2 replicates analyzing analyte y require no more than 3.7 µl of sample.

2 Proline at position 28 of the B chain of human insulin is replaced by aspartic acid generating insulin-aspart: a more rapidly acting insulin (only 10–15 mins), which can, therefore, be administered closer to meal times.
EXCELLENT RECOVERY

Figure 4 presents recovery data from plasma, serum, and buffer spiked with insulin-Asp. These results indicate that there are no significant matrix effects when using Gyrolab Bioaffy.

MORE SAMPLES ANALYZED PER RUN

104 data points can be generated from each Gyrolab Bioaffy CD. Up to five CDs can be processed in the same run. The standard curves for insulin-Asp, run on five CDs in one Gyrolab Bioaffy run, show excellent inter-CD reproducibility (see Figure 5). This means that standard curves only need to be generated once, per five CDs, leaving a larger number of data points available for samples.

Fig. 5. Standard curves for insulin-Asp from Novo Nordisk run on five CDs in one Gyrolab Bioaffy run.

INCREASING THROUGHPUT AND REDUCING ‘HANDS-ON’ TIME

The comparison in Figure 3 shows that using Gyrolab Workstation with Gyrolab Bioaffy can reduce the overall analysis time and the amount of ‘hands-on’ time required. The comparison of time saving is only made between the commercial techniques (Gyrolab Bioaffy and ELISA used at Diabetes Center Karolinska).

Fig. 3. ‘Hands-on’ time and total analysis time for Gyrolab Bioaffy and ELISA (Karolinska Institutet), generating 104 and 96 data points respectively.
Conclusions
Both of these collaborative studies show that Gyrolab Bioaffy is an effective tool for the development of high throughput, insulin quantification analysis. In addition to matching the current technologies used, in terms of accuracy and reproducibility, Gyrolab Bioaffy also offers the following benefits:

- Smaller sample volumes can be used, essential when working with small animal models.
- Increased throughput and precision from an automated and easy-to-use system.
- Broad measurement range reduces need for sample dilution.
- Excellent reproducibility, enabling more samples to be processed and more data points to be generated per assay run.
- Cost reduction per data point as a result of reduced labor input and reduced reagent consumption.
- Open, flexible system with potential for measuring metabolic panels.

References