Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Volume 7 Issue 4, April 2015

Original Article

  • Nanoporous platinum (Pt) with a gyroid nanostructure was fabricated using a nanoporous polymer with gyroid nanochannels as a template. The nanoporous polymer template was obtained from the self-assembly of the degradable block copolymer, polystyrene-b-poly(L-lactide) (PS-PLLA), followed by the hydrolysis of the PLLA blocks. Templated electroless plating can be conducted under ambient conditions to create a precisely controlled Pt gyroid nanostructure with high crystallinity in a PS matrix. After removal of the PS matrix, the well-interconnected nanoporous gyroid Pt can be successfully fabricated. Compared with commercially available catalysts, the nanoporous Pt possesses superior macroscopic stability and peak specific activity, benefiting from the well-defined network structure with robust texture and the growth of the low-index crystalline facets of Pt.

    • Chung-Fu Cheng
    • Han-Yu Hsueh
    • Rong-Ming Ho
    Original Article Open Access

    Advertisement

  • We report a new ‘one stone two birds’ strategy to fabricate a bicontinuous Cu/L4T5O12 electrode consisting of nanoporous Cu scaffold and the encapsulated nanoparticles with highly exposed (111) planes. These architectures provide rapid pathways for ion and electron transport and realize the additional lithium storage capacity on the surfaces of LTO, realizing the high-rate and high-capacity lithium storage.

    • Xi Wang
    • Dequan Liu
    • Chao Zhang
    Original Article Open Access
  • The thermotropic ionic liquid crystal with the wide temperature range of the liquid crystal phase is reported using polyhedral oligomeric silsesquioxane. We found the liquid crystal phase of the POSS-tethered ion salts can be maintained until the pyrolysis occurs.

    • Kazuo Tanaka
    • Fumiyasu Ishiguro
    • Yoshiki Chujo
    Original Article Open Access
  • The low cost, significant reduction potential and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work, we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1–96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~88% at full depth-of-discharge (DOD) at various rates indicating a superb rate capability. The rechargeability of Zn0/Zn2+ showed significant capacity retention over 100 cycles at a 40% DOD to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge–discharge cycling and presented superior performance compared with bulk zinc electrodes.

    • Mylad Chamoun
    • Benjamin J Hertzberg
    • Daniel A Steingart
    Original Article Open Access
  • Schematic synthesis of the robust superhydrophobic coating from strawberry-like Janus hemispherical particles: (a) the dispersion of aqueous particles is sprayed onto the E-51 layer on the substrate; (b) the Janus particles self-orientate to form a layer; and (c) after the epoxy resin is cured by cationic catalysis, the robust superhydrophobic coating is fabricated.

    • Haili Yang
    • Fuxin Liang
    • Zhenzhong Yang
    Original Article Open Access
Top of page ⤴

Erratum

Top of page ⤴

Research Highlight

  • In the growing field of nanotechnology, there is an interest in developing hybrid organic–inorganic devices that have controllable electrical or magnetic properties.1 Because of the nanoscale involved, the surface-to-volume ratio in these devices is large; hence, the devices can be controlled by varying their surface properties. Exerting control by using light is particularly attractive because making conventional hard electric contacts may be difficult due to size and material properties. The work of Suda et al.2 presents a device in which superconductivity is controlled by light through the excitation of a gate made from spiropyran.3 Figure 1 schematically presents the device and its mode of operation (right panel) relative to that of a common field effect transistor (left panel). Spiropyran serves as the gate and is reversibly photoisomerized from a nonionic to a zwitterionic form. In its neutral form, no field is applied to the thin single crystal of κ-(BEDT-TTF)2Cu[N(CN)2]Br (κ-Br) (BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene). Upon photoexcitation with UV light, zwitterions are formed in the spiropyran film, and as a result, holes are injected into the κ-Br, converting it to a superconductor at low temperatures. Irradiation with visible light returns the film to its neutral state.

    • Ron Naaman
    Research Highlight Open Access
Top of page ⤴

Search

Quick links