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A logistic‑tent chaotic mapping 
Levenberg Marquardt algorithm 
for improving positioning accuracy 
of grinding robot
Jian Liu 1,2,6, Yonghong Deng 1,2,6*, Yulin Liu 2, Linlin Chen 3, Zhenzhen Hu 4*, Peiyang Wei 3,5 & 
Zhibin Li 3

The precision of workpiece machining is critically influenced by the geometric errors in the 
kinematics of grind robots, which directly affect their absolute positioning accuracy. To tackle this 
challenge, this paper introduces a logistic-tent chaotic mapping Levenberg Marquardt algorithm 
designed to accurately identify and compensate for this geometric error. the approach begins with 
the construction of a forward kinematic model and an error model specific to the robot. Then the 
algorithm is adopted to identify and compensate for the geometric error. The method establishes 
a mapping interval around the initial candidate solutions derived from iterative applications of the 
Levenberg Marquardt algorithm. Within this interval, the logistic-tent chaotic mapping method 
generates a diverse set of candidate solutions. These candidates are evaluated based on their 
fitness values, with the optimal solution selected for subsequent iterations. Empirical compensation 
experiments have validated the proposed method’s precision and effectiveness, demonstrating 
a 6% increase in compensation accuracy and a 47.68% improvement in efficiency compared to 
existing state-of-the-art approaches. This process not only minimizes the truncation error inherent 
in the Levenberg Marquardt algorithm but also significantly enhances solution efficiency. Moreover, 
simulation experiments on grind processes further validate the method’s ability to significantly 
improve the quality of workpiece machining.

Keywords  Grinding robot, Geometric error identification and compensation, Positioning accuracy, Logistic-
tent chaotic mapping, Levenberg–Marquardt

The industrial robot is a crucial production equipment that incorporates various modern industrial technologies, 
such as mechanical manufacturing, computer processing, and information interaction. It finds extensive applica-
tion in the production of high-precision parts, including the grinding of large impellers, the welding of aircraft 
skins, the polishing and grinding of precision components, and more1–5. A key aspect of robot functionality, 
particularly in grinding operations, is the force control of the end effector, which is essential for maintaining a 
consistent grinding force. However, challenges arise when a robot’s positioning accuracy is suboptimal, lead-
ing to fluctuations in the grinding tool’s position relative to the workpiece during machining. Such positional 
variability can introduce inconsistencies in grinding force, adversely affecting the uniform removal of material 
from the workpiece and, consequently, the quality of the finished product. Addressing this issue, enhancing 
the robot’s absolute positioning accuracy through kinematic compensation of geometric parameters becomes 
critical. By refining these parameters, robots can achieve a stable grinding tool pressure at the end effector, 
ensuring a uniform grinding force. This approach emphasizes the significance of precision in the robot’s posi-
tioning capabilities to maintain consistent operational performance. Despite the robot achieving a repeatability 
in positioning accuracy of 0.01 mm, its absolute positioning accuracy is still limited. This limitation makes it 
challenging to meet the precision requirements for manufacturing high-precision parts. The main reason for 

OPEN

1School of Economics and Management, Chengdu Technological University, Chengdu  611730, Sichuan, 
China. 2Sichuan Institute of Industrial Big-Data Applications, Chengdu  611730, China. 3School of Software 
Engineering, Chengdu University of Information Technology, Chengdu 610225, China. 4College of Communication 
Engineering, Chengdu University of Information Technology, Chengdu 610225, China. 5School of Computer Science 
and Technology, Chongqing University of Posts and Telecommunications, Chongqing  400065, China. 6These 
authors contributed equally: Jian Liu and Yonghong Deng. *email: dengyhcd@163.com; huzzcd@126.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60402-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9649  | https://doi.org/10.1038/s41598-024-60402-1

www.nature.com/scientificreports/

poor absolute positioning accuracy is kinematic error, which result from joint sensor error, geometric error, and 
non-geometric error. Geometric error contributes to more than 80% of the total error, directly impacting the 
robot’s running accuracy1.

Densifying and compensating for the geometric parameters of a robot is an effective and cost-efficient 
approach to enhance its absolute positioning accuracy2. The compensation process involves a four-step proce-
dure: kinematic error modeling, end position measurement, parameter identification, and error compensation. 
Widely adopted geometric parameter models in robotics include the Denavit-Hartenberg (DH) model3 and 
the modified DH (MDH) model4, along with the complete and parametrically continuous (CPC) Model5, the 
exponential product (POE) model6, and the Stone (S) Model7. The challenge in robotic error modeling lies in 
its high-dimensional multiparameter and strong nonlinearity characteristics, making the identification of geo-
metric errors a task of optimizing nonlinear functions. Despite the application of various methods such as the 
least square method8, maximum likelihood method9, extended Kalman filtering method10, and LM method11 to 
solve these models, the accuracy of their solutions remains constrained.

Recognizing the limitations inherent in these traditional methods and the complexity of robotic error mod-
els, researchers have been motivated to explore more advanced calibration techniques. This pursuit led to the 
development of innovative solutions such as the self-calibration method for dual-manipulators proposed by Zhu 
et al.12, which leverages the particle swarm optimization algorithm, demonstrating a significant enhancement in 
the positioning accuracy of two robots. Similarly, Le et al.13 introduced a robotic calibration algorithm employ-
ing an artificial neural network and invasive weed optimization, with experimental validations confirming the 
method’s efficacy. Further contributions include Yan et al.14 applied a genetic algorithm to refine the accuracy 
of a 6-DOF parallel robot and Jiang et al.15 used extended Kalman filter and particle filter algorithms to cali-
brated kinematic parameter, both achieving notable improvements in absolute positioning accuracy. Deng et al.16 
proposed a hybrid algorithm combining the Levenberg–Marquardt (LM) algorithm with an opposition-based 
learning squirrel search algorithm for identifying the kinematic parameters of a polishing robot, achieving a 
62.61% improvement in absolute positioning error following calibration. Bastl et al.17 introduced a calibration 
technique using a multi-objective deep learning evolutionary algorithm and a reference vector-based evolutionary 
algorithm to improve robot accuracy, showing effectiveness in dealing with noisy data. Chen et al.18 introduced a 
kinematic calibration method utilizing an improved beetle swarm optimization algorithm, enhanced by a prefer-
ence random substitution method for industrial robots, significantly improving positioning accuracy in drilling 
and riveting tasks, with experiments demonstrating a reduction in end-effector position error from 2.95 mm to 
0.20 mm. Li et al.19 developed a novel calibration algorithm combining an unscented Kalman filter with a vari-
able step-size LM method for industrial robots, significantly enhancing calibration accuracy and outperforming 
state-of-the-art methods in empirical studies. Xu et al.20 introduced an enhanced manta ray foraging optimization 
algorithm for calibrating kinematic parameters of robotic arms, significantly reducing positioning errors through 
efficient identification and adjustment of parameter inaccuracies. However, these innovative approaches, while 
effective to some extent, encounter limitations such as slow computational speed, low efficiency, and inadequate 
accuracy, highlighting the ongoing challenge of satisfying the rigorous accuracy demands for solving complex 
convex optimization problems.

The LM algorithm, known for its computational simplicity and efficiency, is a commonly used approach 
for identifying robotic geometric error. It combines Newton’s method with the steepest descent method and is 
an improved version of the Least Squares algorithm, renowned for its robustness, fast convergence, and strong 
local optimization capabilities. The LM algorithm combines the advantages of Newton’s method and the steepest 
descent method. Therefore, it is a common technique for robot error identification21–23. Despite its high com-
putational efficiency and solution accuracy, the LM algorithm is prone to truncation error due to its reliance on 
the first-order Taylor expansion approximation. Specifically, the algorithm tends to experience stagnation when 
the search approaches the optimal solution.

This paper proposes a logistic-tent chaotic mapping Levenberg Marquardt algorithm (LTLM) to enhance the 
accuracy of the LM algorithm in solving grinding robot error models. The main contributions of this study are:

a)	 The logistic-tentative chaotic mapping is integrated into the update rule of the standard LM algorithm to 
obtain an LTLM algorithm with faster convergence speed and higher identification accuracy.

b)	 The algorithm design is meticulously implemented, and its concise code serves as a valuable reference for 
scholars and engineers seeking to implement it.

c)	 Presenting a comprehensive analysis of compensation techniques and conducting simulation machining 
experiments to offer a viable approach for enhancing the machining accuracy of ultra-precision components 
using smooth robots.

The experimental results demonstrate that it has a superior convergence speed and higher convergence 
accuracy in solving robot error models when compared with the state-of-the-art compensation algorithms.

The organization of this paper is as follows: the kinematic and error Models are established in Section "Grind-
ing robot kinematic and error models". In Section "The LTLM algorithm for geometric error identification", a 
LTLM algorithm is proposed to identify geometric error. In Section "Compensation performance evaluation", 
compared with other algorithms, the performance of the LTLM algorithm is analyzed. Section "Grinding com-
pensation experiment" presents the grinding polishing simulation experiments. The conclusions are presented 
in Section "Conclusion".
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Grinding robot kinematic and error models
Introduction of grinding robot system
Figure 1 depicts the grinding robot system and measuring devices. The grinding robot system comprises an ABB 
IRB120 industrial robot with six revolute joints, grinding device and worktable. Measuring devices include a wire-
draw-encoder, a cable length display, and a computer running relevant application software. During machining 
operations, the grinding device is mounted on the robot’s end flange. Neglecting installation error allows for the 
identification of geometric error in the robot’s kinematic joints. Hence, when measuring the spatial position of 
the grinding robot, the grinding device is detached, and the wire-draw-encoder measuring end is affixed to the 
central area of the flange end face for accurate measurement.

Figure 1 illustrates the relevant coordinate systems in the system. {B} refers to the robot base coordinate sys-
tem, {flange} is the coordinate system of the flange center point at the end of the robot, and {E} is the coordinate 
system of the wire-draw-encoder outlet port. Each coordinate system has the following relationship:

where LF E is the nominal cable length. PF B is the calculated position coordinate value from {B} to {flange}, 
which includes the geometric error that need to be identified. PE B is the position coordinate value from{B} to 
{E}, which can be directly measured by wire-draw-encoder.

Kinematic and error models
The most commonly used method for modeling robot kinematics is the Denavit-Hartenberg (D-H) method, first 
proposed by Denavit and Hartenberg24. This method utilizes the geometric parameters of all the robot’s freedom 
joints to determine its end position and posture. The robot’s structure is defined by four parameters for each 
joint and connecting link based on the structural parameters and the kinematic form between adjacent links. 
The nominal D-H parameters of the ABB IRB120 industrial robot are listed in Table 1. In D-H model, a, d, α 
and θ are the link length, the link offset distance, the link twist angle and the joint angle, respectively. The pose of 
the i-th joint coordinate system relative to the i-1-th joint coordinate system can be uniquely determined using 
four mutually independent parameters, which are defined for each joint and connecting link. This is achieved 
through the determined homogeneous transformation method8.

The homogeneous transformation relationship matrix of adjacent joint coordinate systems can be expressed 
as follows:

(1)LFE =
∥

∥PFB − PEB

∥

∥

Figure 1.   Grinding robot system and measuring devices.

Table 1.   The nominal D-H parameters for ABB IRB120.

Joint i ai/mm di/mm αi/° θi/°

1 0 290 − 90 0

2 270 0 0 − 90

3 70 0 − 90 0

4 0 302 90 0

5 0 0 − 90 0

6 0 72 0 0



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9649  | https://doi.org/10.1038/s41598-024-60402-1

www.nature.com/scientificreports/

where Ti-1 i is the transformation matrix from i-1-th link to i-th link, ai, di, αi and θi represent the link length, 
the link offset distance, the link twist angle and the joint angle of the i-th link, respectively.

According to Eq. (2), the forward kinematic model of the robot with six joints is calculated as follows:

where RN stands for rotation matrix, PN denotes the position vector. Thereby, the position of the robot end-
effector relative to the base coordinate system can be obtained.

When there are deviations in the D-H parameters, based on Eq. (3), it can be obtained that:

Consequently, the differential transformation matrix for each link is expressed as follows:

By expanding Eq. (4) and ignoring the high-order differential terms can be achieved:

Hence, the mapping relationship between position error and parameter error can be depicted as:

where δP indicates the position error vector of robot end, J denotes the Jacobian matrix, x is the geometric error 
vector.

The least square objective function f can be constructed:

where n represents the number of sample points. l* i denotes the measuring cable length. li is the nominal cable 
length, which can be calculated from the robot end position Pi, where Pi is PF B in Eq. (1).

To achieve the highest positioning accuracy, it is important to minimize the objective function by determining 
the kinematic parameters of the robot that are closest to their actual values. This can be achieved by accurately 
solving the model to reduce the deviations between the nominal and actual kinematic parameters. Clearly, f is a 
transcendental equation, and traditional methods cannot yield an analytical solution. To overcome this limita-
tion, we employed the LTLM algorithm as a novel approach to address this issue.

The LTLM algorithm for geometric error identification
LM algorithm for identification
The LM algorithm is a hybrid of the Newton-Gauss and steepest descent methods, which leverage their individual 
strengths25,26. By addressing the shortcomings of the Gauss–Newton method, it is more robust. The algorithm 
updates the current position in the gradient descent direction and iteratively cycles until an optimal solution is 
found. It is well-suited for solving the optimal problem of the nonlinear multivariate objective function and can 
resolve non-positive definite and singular Hessian construction matrix problems, thus being effective in solving 
robot error models.

The iteration form of the standard LM algorithm is as follows:

where f(•) indicates the objective function given by Eq. (8), f(xk) represents the position error at the k-th itera-
tion, and its size is n × 1. xk is the deviation vector of the geometric parameters at the k-th iteration, its size is 

(2)Ti−1
i =






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24 × 1. Jk denotes the Jacobian matrix at the k-th iteration, which is n × 24 vector. µ is the damping factor, which 
is taken as 5 in this paper.

The iteration loop concludes either when the iteration achieves the desired accuracy or when the maximum 
number of iterations is reached. The LM algorithm employs a first-order Taylor series approximation, leading 
to the presence of inevitable truncation error at each iteration step.

The LTLM algorithm for identifying robot geometric error
To reduce the truncation error of LM, logistic-tent chaotic mapping is adopted to address this issue. In opti-
mization, chaotic mappings offer a compelling alternative to pseudo-random numbers, enhancing algorithm 
performance through improved diversity and exploration, preventing premature convergence to local optima27–29. 
Table 2 outlines the merits and drawbacks of various chaotic mappings, guiding the selection for optimization 
tasks. The Logistic-Tent chaotic mapping, combining the Logistic map’s rich chaotic behavior with the Tent map’s 
rapid iteration and adaptability, emerges as particularly beneficial30–32.

Inspired by the above, logistic-tentative chaotic mapping is introduced into the update rule of the LM algo-
rithm to improve the identification accuracy of geometric error.

The mathematical formulation of the Logistic-Tent mapping is presented as follows:

where Nm represents the m-th distribution point. r is a hyperparameter, r ε [0,4].
For the chaotic sequence generated under each value of r, we distribute the sequence into a predetermined 

number of bins (e.g., 50), and then calculate the standard deviation of the frequencies across these bins. The 
formula for standard deviation is given by:

where ci represents the frequency count of the i-th bin, c´ is the average frequency count across all bins, and N 
is the total number of bins.

By varying the value of r (e.g., from 0 to 4), we can determine the standard deviation of frequencies associ-
ated with each r value. Ultimately, we plot a graph with r values on the horizontal axis and the corresponding 
standard deviation of frequencies on the vertical axis, as shown in Fig. 2. This graph allows us to observe how 
the uniformity of the distribution is affected by the r value. By comparing the standard deviations across differ-
ent r values, we can identify the r value that results in the most uniform distribution, indicated by the smallest 
standard deviation. Our analysis has determined that r = 0.5 achieves the best uniformity in the distribution, 
making it the optimal choice for achieving a highly uniform chaotic sequence.

Figure 3 depicts the distribution of Logistic-Tent chaotic mapping. Obviously, the Logistic-Tent chaotic 
mapping exhibits superior chaotic properties. As observed in Fig. 2a, the generation of 1,000 points is uniformly 
distributed across the [0,1] range, showcasing not only excellent uniformity but also remarkable randomness. This 
uniformity is further evidenced in Fig. 2b, where the quantity of points associated with each value within the [0,1] 
range shows minimal variation, indicating a high level of evenness. Hence, the Logistic-Tent chaotic mapping 
demonstrates outstanding randomness and distribution uniformity, affirming its superior chaotic characteristics.

Integrating the Logistic-Tent chaotic mapping into the update rules of the standard LM algorithm. The LM 
for two consecutive iterations results in the following outcomes:

(11)Nm+1 =

{

mod(rNm(1− Nm)+
(4−r)Nm

2 , 1),Nm < 0.5

mod(rNm(1− Nm)+
(4−r)(1−Nm)

2 , 1),Nm ≥ 0.5

(12)σ =

√

√

√

√

1

N − 1

N
∑

i=1

(ci − c′)2

(13)xk+1,1 = xk − (JTk Jk + µI)−1JTk f (xk)

(14)xk+1,2 = xk+1,1 − (JTk,1Jk,1 + µI)−1JTk,1f (xk+1,1)

Table 2.   Comparison of several chaotic mappings.

Mapping methods Advantages Disadvantages

Logistic mapping Simple to implement; well-studied with a clear understanding of its chaotic 
dynamics

Limited range of chaotic behavior; prone to periodic windows which can 
reduce its effectiveness in complex optimization tasks

Tent mapping Fast iteration speed; uniform distribution of values which is beneficial for 
certain types of random processes

Simplicity of the dynamics can limit its effectiveness in navigating complex 
solution spaces

Sine mapping Exhibits robust chaotic behavior over its entire parameter range; easy to 
implement

Can be predictable under certain conditions, limiting its utility in enhancing 
algorithmic randomness and complexity

Chebyshev mapping Strong chaotic behavior across its entire parameter range, useful for ensuring 
robust global search capability

Higher computational complexity compared to simpler maps, which may not 
be ideal for all applications

Henon mapping Provides a higher dimensional chaotic sequence, which can be useful for 
more complex optimization problems

Increased complexity and computational requirements compared to one-
dimensional maps

Bernoulli mapping Simple and exhibits deterministic chaos, making it useful for certain types of 
optimization problems Lack of variability in chaotic dynamics, which may limit its application scope
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Given the presence of truncation error in the LM iteration, it is evident that there exists at least one value near 
xk+1,1 that is more optimal than xk+1,1. This value can be found either to the left or right of xk+1,1, falling within 
left interval [xk, xk+1,1] or right interval [xk+1,1, xk+1,2]. Since this point is in close proximity to xk+1,1, it is possible 
to further narrow down the interval. That is, the left interval is [ak+1, xk+1,1] and the right interval is [xk+1,1, bk+1]. 
Note that:

The candidate solution sets are constructed in two intervals using the Logistic-Tent chaotic mapping tech-
nique. The total number of candidate solutions is M. The m-th candidate solution can be represented by:

where Nm is a random number in [0,1].
The candidate solutions, along with xk+1,1, undergo evaluation to assess respectively their fitness values. The 

optimal value is then selected as the initial value for the subsequent iteration:

(15)
ak =

(

xk + xk+1,1

)

/2

bk =
(

xk+1,1 + xk+1,2

)

/2

(16)xlk+1(m) = xk+1,1 − (xk+1,1 − ak+1)Nm

(17)xrk+1(m) = xk+1,1 + (xk+1,2 − bk+1)Nm

Figure 2.   The relationship between r and the standard deviation of frequencies.

Figure 3.   Logistic-tent chaotic mapping distribution (r = 0.5, m = 1000). (a) Distribution situation; (b) 
Distribution histograms.
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where M indicates the total number of candidate solutions.
Drawing upon the inferences mentioned earlier, we present a detailed workflow of Algorithm I. LTLM-GPI, 

which utilizes the LTLM approach for accurate identification of geometric error.

analysis for convergence and stability of the LTLM algorithm
The LM algorithm inherently possesses convergence and stability characteristics. Upon executing a single itera-
tion of the LM algorithm, the resultant (xk+1,1) is recognized as an approximate solution, primarily due to the 
presence of truncation errors. Consequently, it is posited that a solution exhibiting closer proximity to the true 
value inherently exists either to the left or right of (xk+1,1). To identify this more accurate solution, iteration from 
(xk+1,1) yields (xk+1,2), thereby situating the closer approximation within the intervals [xk, xk+1,1] or [ xk+1,1, xk+1,2]. 
Given that the solution more closely approximating the true value is expected to be near xk+1,1, the search interval 
can be further narrowed to [ak+1, xk+1,1] or [xk+1,1, bk+1].

Utilizing the Logistic-Tent chaotic mapping, M candidate solutions are generated within these condensed 
intervals. Through the employment of the objective function, the optimal solution among these candidates is 
selected. Consequently, each iteration of the LTLM algorithm builds upon the foundational principles of the 
LM algorithm, thereby inheriting its convergence and stability properties. This methodology ensures that the 
LTLM algorithm enhances the precision of solution approximation by iteratively refining the search interval and 
selecting the most accurate solutions based on the defined criteria.

Compensation performance evaluation
Compensation process
To validate the effectiveness and correctness of LTLM algorithm for robot geometric error identification and 
compensation, the compensation valuation is conducted based on the established robot kinematic model in Sec-
tion "Grinding robot kinematic and error models". The procedure chart for its compensation, as shown in Fig. 4.

As shown in Fig. 3, by adding the identified geometric parameter errors to the nominal geometric parameters, 
we effectively achieve compensation for the geometric parameters, as expressed in the following:

(18)xk+1 ← min







f (xlk+1(1), · · · , f (xlk+1(M),

f (xrk+1(1), · · · , f (xrk+1(M),

f (xk+1,1)







Figure 4.   Flowchart of LTLM compensation.
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where X* is the nominal geometric parameters. x denotes the identified geometric error.

Performance analysis
General settings

(1) Evaluation metrics: To evaluate the effectiveness of the compensation method in improving robot posi-
tioning accuracy, the maximum error (Max), standard deviation (STD), and root mean squared error (RMSE) 
as evaluation metrics are utilized to analyze the performance of those models16–20,33. They are:

(2) Dataset: Fig. 5 depicts the measurement of the positioning accuracy of the robotic grinding system. The 
evaluation dataset provides pertinent parameters for an ABB IRB120 industrial robot, comprising 1024 sam-
ples. The sampling points evenly distributed in the robot’s workspace. Their positions are measured using a 
wire-draw-encoder, while the cable length for the measuring points is displayed. Each sample data includes 
the robot joint kinematic angles q1 ~ q6 and the measured cable length l*. Five detailed samples as shown in 
Table 3. Note that the test data is made available at the GitHub. (https://​github.​com/​Lizhi​bing1​49018​3152/​
Robot​Cali) Table 4 provides the parameters of the cable encoder. A subset of 300 samples is randomly and 
uniformly selected, with a split ratio of 90% for training and 10% for testing, constituting a single test case. This 
procedure is replicated 10 times to generate 10 distinct test cases, the results of which are averaged to serve 
as the performance metric to reduce data bias. To mitigate any potential data bias, we create ten distinct data 
cases by randomly selecting 200 samples from a uniform distribution to generate testing data. This process 
is repeated ten times to ensure variability. Each data case undergoes evaluation using an 80%-20% training–
testing setting to validate the tested models. The objective results are reported by recording the averaged final 
outcomes along with their respective standard deviations for each model.
(3) Compared methods: The performance of the LTLM method is validated by comparing it with several 
state-of-the-art identification methods. The methods involved in this comparison are listed in Table 5.

(19)X∗ = X0 + x

(20)

Max = max
1≤i≤n

{
√

(li − l̂i)2
}

STD =
1

n

n
∑

i=1

√

(li − l̂i)2

RMSE =

√

√

√

√

1

n

n
∑

i=1

(li − l̂i)2

Figure 5.   Measurement of positioning accuracy.

Table 3.   Five detailed samples in the sample size.

NO q1/° q2/° q3/° q4/° q5/° q6/° l*/mm

1 − 70.1 17.8 − 3.6 − 15.2 73.1 − 52.6 485.97

2 − 63 17.8 − 3.6 − 15.2 73.1 − 52.6 479.79

3 − 65.4 14.8 − 3.6 − 15.2 73.1 − 52.6 502.39

4 − 71.5 12.5 − 3.6 − 15.2 73.1 − 52.6 525.69

5 − 68.1 13.3 − 3.6 − 15.2 73.1 − 52.6 515.97

https://github.com/Lizhibing1490183152/RobotCali
https://github.com/Lizhibing1490183152/RobotCali
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Performance comparison
To validate the effectiveness of the proposed method, we compared it with several state-of-the-art calibra-
tion methods. Table 6 presents the RMSE, Mean, and MAX values of the compared methods. The geometric 
parameters obtained after applying M5 compensation are listed in Table 7. Figure 6 displays the performance 
of compensation using these methods, while Fig. 7 illustrates the compensation accuracy achieved by them. 
Additionally, Fig. 8 presents the training curves of the methods. From these experimental results, we derived 
the following crucial findings:

a)	 The LTLM method demonstrated a substantial improvement in compensation accuracy. Figure 6a–c and 
Table 6 present the results, showing that the RMSE, Mean, and Max values for M7 are 0.32, 0.26, and 0.83, 
respectively. These values are considerably lower compared to the values of 2.18, 2.01, and 3.42, respectively, 

Table 4.   Characteristics of the drawstring.

Item Specification

Measuring range 2000 mm

Maximum speed 1000 m/s

Extension force 5 N

Resolution 0.004 mm

Temperature range − 25 ℃ ~  + 85 ℃

Table 5.   Compared algorithms.

Methods Description

M1
The Levenberg–Marquardt (LM) algorithm stands as a cornerstone in the field of robot calibration, largely due to its superior 
computational efficiency. This algorithm elegantly bridges the gap between the Gauss–Newton method and the method of 
gradient descent, offering a robust approach to solving nonlinear least squares problems that are commonplace in robot 
kinematics and dynamics16,19,22

M2
The Extended Kalman Filter (EKF) is a powerful tool for robot calibration, effectively mitigating measurement noise and 
improving the precision of robot positioning. By modeling the robot’s dynamics and incorporating real-time sensor data, the 
EKF dynamically adjusts to new measurements, ensuring accurate calibration even in the presence of uncertainty. This makes 
it invaluable for applications requiring high levels of accuracy and reliability in robotic systems10

M3
Particle Filtering (PF) excels in handling non-Gaussian systems, making it a robust choice for robot calibration tasks where the 
uncertainty does not follow normal distribution patterns. By utilizing a set of particles to represent the distribution of possible 
states, PF can effectively estimate the state of a robot even in complex, nonlinear environments15

M4
The Sine Cosine Algorithm (SCA) leverages the mathematical sine and cosine functions to navigate the search space for solv-
ing optimization problems. This approach allows SCA to efficiently explore and exploit the solution space, dynamically adjust-
ing its search strategy based on the position of the best solution found so far34

M5
The Quadratic Interpolated Beetle Antennae Search (QIBAS) algorithm represents an advanced approach to robot calibra-
tion, building upon the concept of mimicking a beetle’s antennae movement to explore the solution space. By incorporating 
quadratic interpolation into the search mechanism, QIBAS effectively refines its ability to navigate through complex parameter 
spaces, enabling more precise identification of optimal calibration settings35

M6
The Step-Size Levenberg–Marquardt (SSLM) algorithm-based calibration model introduces a dynamic adjustment mechanism 
for the algorithm’s step size, enhancing its efficiency and accuracy in solving calibration problems. This modification allows the 
SSLM algorithm to adaptively fine-tune its approach based on the specific characteristics of the calibration task at hand19

M7 The proposed LTLM algorithm, which can effectively enhance the calibration accuracy

Table 6.   Position error.

Model RMSE (mm) SD (mm) Max (mm)

BC 2.18 2.01 3.42

M1 0.36 0.30 0.91

M2 0.63 0.51 1.52

M3 0.73 0.61 1.77

M4 0.82 0.66 1.96

M5 0.50 0.40 1.31

M6 0.34 0.28 0.85

M7 0.32 0.26 0.83
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before compensation. Specifically, the compensation accuracy achieved by LTLM resulted in reductions of 
85.32%, 87.06%, and 75.73% for RMSE, Mean, and Max, respectively. This highlights the significant improve-
ment achieved by the LTLM method.

b)	 M7 exhibits the highest compensation accuracy among M1 ~ M6. Figure 6a–c and Table 6 illustrate that M7 
has an RMSE of 0.32, a Mean of 0.26, and a MAX of 0.83. In contrast, M6, which is its closest competitor, 
has an RMSE of 0.34, a Mean of 0.28, and a MAX of 0.85, resulting in accuracy improvements of 6%, 7.14%, 
and 2.35%, respectively. Therefore, the proposed method effectively enhances the accuracy of grinding robot 
compensation.

c)	 Figure 8 illustrates that M7 has the fastest convergence rate. It converges in RMSE after only 20 iterations, 
whereas M6 takes 30 iterations to converge in RMSE. Therefore, integrating logistic-tent chaotic mapping 
into the updating rule of the Levenberg Marquardt algorithm significantly enhances its convergence rate.

d)	 The LTLM incurs a higher time cost compared to the standard LM algorithm, yet it remains lower than the 
majority of compensation methods. As shown in Fig. 6d, the time cost of the proposed LTLM model, M7, 
is higher than that of M1 and M6 but generally lower than that of M2-M5. This can be attributed to the 
additional time required by the logistic-tentative chaotic mapping for generating candidate solution sets and 

Table 7.   Parameters after compensation with the LTLM.

Joint i ai/mm di/mm αi/deg θi/deg

1 − 0.490 289.509 − 89.216 2.315

2 270.031 0.058 3.211 − 92.742

3 69.332 0.253 − 91.915 3.247

4 − 0.653 301.231 88.273 1.346

5 − 0.611 0.181 − 91.374 − 4.218

6 − 0.108 72.416 0 1.546

Figure 6.   Performance comparison. (a) RMSE; (b) SD; (c) Max; (d) Time. Note that BC is the abbreviation for 
before compensation.
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evaluating their fitness values. Despite the extended time investment, the justifiable trade-off between higher 
compensation accuracy and an acceptable time cost is worthwhile.

e)	 In this study, we employ M7 to compensate the geometric parameters of the robot, and the compensation 
result is depicted in Fig. 6. Furthermore, by comparing the positioning error of the robot after compensation 
with these methods (as illustrated in Fig. 7), the experimental results demonstrate a significant improvement 
in the positioning accuracy of the robot.

In conclusion, the analysis results unequivocally establish that LTLM has attained a remarkable level of 
compensation accuracy, surpassing its peers in terms of effectiveness.

Grinding compensation experiment
Robots are extensively employed in the component manufacturing domain for the tasks of grinding in ultra-
precision components. The grinding process of components through a robot entail following a predefined path 
dictated by the NC program. However, the presence of geometric error in the robot introduces absolute position-
ing deviations, resulting in deviations between the actual processing path and the desired theoretical processing 
path. These deviations have a profound impact on the overall quality of the components being processed36.

To validate the efficacy of the proposed compensation method in enhancing the grinding accuracy of compo-
nents surface, a simulation-based grinding experiment is conducted. Initially, a component is carefully selected, 

Figure 7.   The position accuracy after compensation by methods. (a) BC, M1, M2, M3 and M7; (b) (a) M4, M5, 
M6 and M7.

Figure 8.   Comparison of convergence curves. (a) M1, M2, M3 and M7; (b) M4, M5, M6 and M7.
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Subsequently, the NC code is generated by utilizing the surface equation specific to the component, yielding 
the corresponding machining path points. Notably, these path points represented the theoretically ideal paths, 
devoid of any deviations.

During the simulation grinding experiment, positioning error are deliberately introduced into the theoretical 
path prior to the application of robot compensation, specifically for M1 and M7 compensation methods. This 
process resulted in two distinct sets of paths: the before compensated grinding path, the grinding path compen-
sated by M1 ~ M7. These paths are subsequently employed to conduct separate simulation grinding experiments.

The results of the simulation grinding experiments are presented in Fig. 8. For evaluating accuracy, five points 
are selected in each scenario, with the results presented in Table 8.

From Fig. 9 and Table 8, we can discern several notable findings:
1) The LTLM compensation method (M7) has significantly improved the grinding path deviation compensa-

tion. As depicted in Fig. 9 and Table 8, the mean and standard deviation for M7 is 0.18 and 0.19, respectively. 
Compared to the before compensation, there is a decrease of 86.26% in the mean and a decrease of 88.27% in 
the standard deviation.

2) M7 achieves the lowest grinding path deviation among the models evaluated. As depicted in Fig. 9 and 
Table 8, specifically, the mean deviation of M7 is lower than that of the other models (M1 through M6) by 59.09%, 
74.65%, 84.35%, 83.33%, 70.49%, and 51.35%, respectively. For the standard deviation, M7 shows a reduction 
compared to M1 through M6 by 36.67%, 56.82%, 52.5%, 64.15%, 74.32%, and 26.92%, respectively.

In summary, the LTLM compensation method embodied by model M7 demonstrates a significant improve-
ment in the grinding path accuracy of components. Figure 9 illustrates that M7 achieves the minimum deviation 
in path points. The processing path and path points of M7 are closer in color to the 0 area, indicating minimal 
deviation. These results unequivocally indicate that LTLM effectively enhances the surface path points accuracy 
of the components, providing substantial benefits over the before compensation state and comparative models 
M1 through M6.

Conclusion
In this study, we introduce the LTLM method, an innovative approach to geometric error compensation in grind-
ing robots, aimed at significantly improving the accuracy of machined components. Our findings demonstrate 
that LTLM notably enhances the absolute positioning accuracy of grinding robots, with an 85.32% improvement 
in RMSE post-compensation. Compared to existing methods like LM, EKF, PF, SCA, QIBAS, and SSLM, LTLM 
shows substantial superiority, underscoring its effectiveness and potential as a benchmark in robotic calibration 
accuracy.

The LTLM method significantly reduces geometric errors in grinding robot operations, as evidenced by 
simulation-based experiments. This reduction in errors directly translates to improved machining accuracy and 
component quality. At the heart of LTLM is the use of logistic-tent chaotic mapping for the iterative construction 
of candidate solutions, enhancing identification accuracy and setting a new approach in calibration processes.

In future research, our primary focus will be on refining the computational architecture of the LTLM method 
to enhance its computational efficiency. This will facilitate rapid identification and compensation of geometric 
errors in robotic systems, streamlining the calibration process and significantly improving the precision and 
reliability of robotic operations.

Data availability 
Data underlying the results presented in this paper are available in Dataset: https://​github.​com/​Lizhi​bing1​49018​
3152/​Robot​Cali.

Table 8.   Deviation of path points on surfaces under different models.

Models

Deviation of each point (mm)

Mean SDP1 P2 P3 P4 P5

BC 1.83 3.42 1.65 − 0.95 0.62 1.31 1.62

M1 0.91 0.24 0.14 0.49 0.40 0.44 0.30

M2 0.89 0.80 0.06 0.57 1.25 0.71 0.44

M3 1.77 1.28 0.89 1.09 0.75 1.15 0.40

M4 0.97 1.80 1.44 0.67 0.52 1.08 0.53

M5 0.68 0.20 − 0.44 1.31 1.28 0.61 0.74

M6 0.27 − 0.01 0.45 0.51 0.65 0.37 0.26

M7 0.16 0.38 0.32 − 0.10 0.15 0.18 0.19

https://github.com/Lizhibing1490183152/RobotCali
https://github.com/Lizhibing1490183152/RobotCali
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