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Quantum teleportation 
in Heisenberg chain 
with magnetic‑field gradient 
under intrinsic decoherence
Seyed Mohammad Hosseiny  1*, Jamileh Seyed‑Yazdi  1*, Milad Norouzi  1 & 
Patrizia Livreri  2,3

One of the most appealing quantum communication protocols is quantum teleportation, which 
involves sharing entanglement between the sender and receiver of the quantum state. We address the 
two-qubit quantum teleportation based on the Heisenberg XYZ chain with a magnetic-field gradient 
affected by intrinsic decoherence. An atomic spin chain is primarily coupled to the linear gradient 
of the magnetic field in the x-direction, with the assumption that the magnetic field varies linearly 
with the position of the atom. By using the concepts of fidelity and average fidelity in the presence 
of the magnetic field gradient and under the effect of intrinsic decoherence in the current model, 
and considering the variables of the system, an improved quantum teleportation can be achieved. In 
addition, using the concept of remote quantum estimation, we examine remote quantum sensing in 
this article, which is very useful in quantum communication.
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Abbreviations
KSEWA	� Kaplan-Shekhtman-Entin-Wohlman-Aharony
DM	� Dzyaloshinskii-Moriya
POVM	� Positive operator valued measure
SLD	� Symmetric logarithmic derivative
CT	� Classical threshold
CR	� Cramér-Rao
QFI	� Quantum Fisher information
HSS	� Hilbert-Schmidt speed

Quantum teleportation is undeniably one of the most thrilling subjects in quantum communication1–12. In this 
process, which was proposed by Bennett et al.13, Alice (sender) transfers an unknown quantum state to Bob 
(receiver) by sharing a classical or non-classical channel14–16. This technique can be achieved over short distances 
or across thousands of kilometers using existing equipment17.

Initially, quantum teleportation was conducted based on photons18, and subsequently with diverse systems 
such as trapped ions19,20, atomic ensembles21, high-frequency phonons22, and several other systems23–26. Now, this 
popular protocol is acknowledged as a crucial technique for implementing numerous quantum protocols, includ-
ing measurement-based quantum computing27, quantum repeaters28,29, and fault-tolerant quantum computing30.

Studying quantum teleportation in dense matter systems at finite temperatures can be fascinating. In Ref.31, 
the investigation of quantum teleportation, dense coding, and entanglement based on the XYZ spin chain model 
influenced by Kaplan Shekhtman Entin wohlman-Aharony (KSEWA) interaction and Dzyaloshinskii-Moriya 
(DM) interaction have been studied. Furthermore, quantum teleportation via thermal mixed states in XXX 
Heisenberg chain systems has been investigated32. Moreover, the impact of an external magnetic field on the 
standard teleportation protocol has been reported in the context of a two-qubit XY model33. Further, the dis-
cussion of thermal entanglement and teleportation in the XXZ chain with varying DM interactions has been 
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addressed34. Besides, quantum Fisher information of an output state of the teleportation in the Heisenberg 
XYZ chain with magnetic Field and KSEWA Interaction at thermal equilibrium has been studied in X and Z 
directions35.

Intrinsic decoherence, which is usually included by the Milburn method36 in open quantum systems, denotes 
decoherence quite independent of any environment. This process resembles decoherence (i.e., one where phase 
coherence or phase interference is suppressed over time) while this process is intrinsic to nature, i.e., not deter-
mined by simply averaging over ’external’ degrees of freedom that happen to be entangled with the desired 
system37. Therefore, intrinsic decoherence differs from environmental decoherence which arises from the nature 
of the surrounding environment of open quantum systems and is ineluctable. Distinguishability between intrinsic 
and environmental decoherence in experiments and theory is reported in Ref.37. Quantum correlation dynamics 
influenced by intrinsic decoherence in a Heisenberg spin chain model under Dzyaloshinskii-Moriya interaction 
have been investigated38. Moreover, quantum memory-assisted entropic uncertainty relation in a Heisenberg 
spin chain model under intrinsic decoherence has been explored39. Further, the qutrit teleportation via XXZ 
Heisenberg chain affected by an inhomogeneous magnetic field under intrinsic decoherence has been examined40. 
As well as the robustness of an output state of quantum teleportation through a two-qubit Heisenberg chain 
model influenced by dipole interaction and magnetic field under intrinsic decoherence has been addressed41. 
The entanglement teleportation using an XYZ Heisenberg chain model affected by various interactions under 
intrinsic decoherence is also examined42. In addition, the examination of quantum teleportation via the entangled 
channel consisting of a two-qubit XYZ Heisenberg chain model influenced by DM interaction in the presence 
of intrinsic decoherence has been reported43. Also, the quantum teleportation and phase quantum estimation 
according to the two-qubit XYZ Heisenberg chain model influenced by dipole and symmetric cross-interactions 
influenced by intrinsic decoherence have been explored44. The quantum teleportation through the entangled 
states including a two-qubit XYZ Heisenberg chain model driven by a uniformly magnetic external field as a 
channel under intrinsic decoherence has been investigated45. Moreover, the exploration of using helical spin 
chains for quantum teleportation to share entanglement has been studied46. The study of qutrit teleportation 
and entanglement involving the one-axis counter-twisting Hamiltonian under intrinsic decoherence has also 
been explored47.

Our motivation is investigating the two-qubit quantum teleportation based on the Heisenberg XYZ chain with 
magnetic-field gradient in the presence of intrinsic decoherence. Consider an atomic spin chain that is primarily 
coupled to the linear magnetic-field gradient in the x-direction, with the assumption that the magnetic field var-
ies linearly with the atom’s position48. This makes our model distinguishable from other XYZ Heisenberg chain 
models and those done in the aforementioned references. Note that, the intrinsic decoherence is incorporated 
into the current model using the Milburn method36. Moreover, to delve deeper into quantum teleportation 
using the existing model, we aim to calculate the initial phase within the teleported state, potentially holding 
vital encoded information.

Additionally, to further investigate quantum teleportation based on the current model, we aim to estimate the 
initial phase in the teleported state, which may contain crucial encoded information or reveal the nature of the 
process that prepared the initial state49. In addition, since we cannot ignore the interaction between the system 
and its surrounding environment, we also examine the dynamics of open quantum systems50–55 in this article. 
According to this, the dynamics with respect to the flow of information in systems theory are divided into two 
classes: Markovian and non-Markovian. If information continually flows from the system to the environment, 
the dynamic is called Markovian. However, if information can be periodically returned to the system from the 
environment due to quantum memory effects, the dynamics in this class become non-Markovian56–58. In open 
quantum systems, quantum teleportation depends on the nature of system evolution.

The structure of our article consists of four parts: After the introduction, quantum communication prelimi-
naries are defined in “The physical model” section. In “Results and discussion” section, we introduce the physical 
model that can serve as a resource for quantum teleportation. Finally, in “Conclusion” section our conclusions 
are given.

Preliminaries
Quantum teleportation
The standard protocol for remote transmission59 involves a two-qubit mixed state ρch , serving as a channel or 
resource and represented by a generalized depolarized quantum channel �(ρch) based on a single-qubit input 
state ρin . Alice’s goal is to send her encoded qubit to Bob using this method. The unknown input (initial) state 
of teleportation can be considered to be an arbitrary pure single-qubit state as follows:

where θ and φ represent the amplitude and phase of the initial state of teleportation. The teleportation output 
state, in the teleportation of an arbitrary single-qubit state (input state ρin = |ψin��ψin|)), can be assumed by59:

in which �(ρch) denotes a generalized depolarized channel and Bi represents the Bell state corresponding to the 
Pauli matrix σi that is defined by:

(1)|ψin� = cos
( θ

2

)

|0� + eiφsin
( θ

2

)

|1�,

(2)ρout = �(ρch)ρin =
3

∑

i=0

Tr[Biρch]σiρinσi ,
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that we have σ0 = I, σ1 = σx , σ2 = σy , σ3 = σz and I refers to the identity matrix. Furthermore, for any two 
arbitrary qubits, each defined in base {|0�, |1�} , and we have B0 = 1

2

(

|00� + |11�
)(

�00| + �11|
)

 such that, the 
teleportation channel is initially prepared in the maximum entangled state of Bell states.

The degree of similarity between two quantum states and the quality of the teleported state is determined by 
the criterion of fidelity f

(

ρin(t), ρout(t)
)

 , which is defined by60,61:

As well as one can obtain the average fidelity of teleportation fav as follows:

The threshold of the maximum classical average fidelity occurs at fav = 2/3 ; afterward, we go into the quan-
tum average fidelity. The closer the quantum average fidelity is to the unit, represents that optimum quantum 
teleportation can occur.

Here, we assume Alice transmits two encoded qubits to Bob. For an arbitrary two-qubit pure state, the 
unknown input (initial) state can be considered as:

To determine the output state ρout of an arbitrary two-qubit state, one can generalize Eq. (2) as62:

in which 
∑

pij = 1 and pij = Tr[Biρch]Tr[Bjρch].

Quantum phase estimation
Quantum Fisher information
The accuracy of phase estimation is crucial, and it is determined by the “Cramér-Rao (CR) inequality”. This 
inequality compares the difference between the true and estimated phase values, representing the estimation 
accuracy, with the “quantum Fisher information (QFI)63–66” that defines the lower limit of accuracy based on 
the number of measurement repetitions. Therefore, the QFI is a powerful tool for estimating the uncertain true 
value of a phase. The quantum CR inequality66,67 can be expressed as follows:

which gives us the smallest detectable phase change phase φ . Also, Fφ represents the QFI with respect to φ and 
is defined by63,68:

such that |ϕi� and �i are eigenvectors and eigenvalues of the density matrix, respectively. According to the theory 
of quantum estimation, increasing the QFI means improving the estimation accuracy. We use this point in quan-
tum phase estimation to improve remote quantum sensing. The question is, what is the mechanism of remote 
quantum sensing in this article? In response, it can be said that the quantum estimation process is conducted 
by sensors, and their proper design can significantly enhance measurement accuracy. For instance, a quantum 
sensor can be based on a qubit that encodes information in the relative phase of its quantum state by interacting 
with a weak external field. The information obtained by measuring the qubit can be used to estimate the electric 
field, magnetic field, or temperature69–73. In many cases, it may not be feasible to be physically present for a special 
assessment due to security risks or logistical constraints. However, remote estimation offers a solution, allowing 
individuals to realize quantum remote sensing using classical and quantum communication channels, even when 
the necessary tools are not physically available at the desired location. In this work, we investigate the idea of 
remote parameter estimation, which so-called remote quantum sensing, using two-qubit quantum teleportation 
in the presence of magnetic field gradient and intrinsic decoherence. More precisely, in Alice’s location, there is 
a qubit whose desired information is encoded in its initial state phase, and Alice is obliged to teleport the state 
of this unknown qubit to Bob, who is equipped with a sensitive sensor for estimation. In addition, Bob is under 
the effect of magnetic field gradient and intrinsic decoherence such that their effects on the quality of remote 
estimation, teleportation process, and their optimization are investigated.
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The physical model
Consider a paradigmatic open quantum system consisting of a two-qubit anisotropic Heisenberg XYZ chain in 
the presence of external magnetic fields. The system’s Hamiltonian can be given by74,75:

where σi(i = x, y, z) denote the Pauli matrices, Ji(i = x, y, z) represent the interaction coefficients in the ferromag-
netic Ji > 0 and anti-ferromagnetic Ji < 0 couplings between two spin degrees of freedom, respectively. It should 
be noted that the difference between Jx and Jy measures the anisotropy of the system. Moreover, we consider the 
external magnetic fields to be along the z-direction. ωj is transition frequency dependent on the magnitude of 
the magnetic field B1 , while b measures the degree of the non-uniformity of the field, and I is the identity matrix.

The eigenstates 
∣

∣�j

〉

(j = 1, 2, 3, 4) and the corresponding eigenvalues Ej of the Hamiltonian 10 on standard 
basis {|11�, |10�, |01�, |00�} , can be expressed by

where

such that δ =
√

4ω2
j +

(

Jx − Jy
)2 and χ = 

√

4b2 +
(

Jx + Jy
)2 . In Eq. (11) we used |0� =

(

1
0

)

 and |1� =
(

0
1

)

 , 

such that |ij� denotes |i� ⊗ |j� in which i, j = 0, 1.
In Ref.36, Milburn suggested a straightforward modification of the Schrodinger equation, adding a term 

that accounts for the decay of quantum coherence in the energy eigenstate basis. This modification is based on 
the assumption that for sufficiently brief time intervals, the system does not continuously evolve under unitary 
transformation. Based on consideration of the effect of intrinsic decoherence, the time evolution of the density 
matrix of the system is given by the Milburn equation as follow:

where Em,n and |�n,m� are, respectively, the eigenvalues and the eigenvectors of the Hamiltonian of the system 
Eq. (10), γ is the intrinsic decoherence rate. Besides, ρ(0) denotes initial density matrix.

Now, if we assume the qubits 1 and 2 are both initially in the spin-down states, i.e., the system is in an unen-
tangled state |�(0)� = |00� at the beginning, then we have ρ0 = |�(0)���(0)| . By a straightforward computa-
tion from Eqs. (11, 12), one can calculate the time evolution of the density matrix of the system on the standard 
basis as

in which

It is evident that the time-dependent density operator of the system is independent of the non-uniform magnetic 
field b.

At the moment, we assume an atom to have two hyperfine spin states. Hence, when an atom is coupled to a 
magnetic field, the energy splitting between two hyperfine states is changed because of the Zeeman effect48,76. 
Determining the difference in transition frequencies of two atoms at different locations can distinguish the 
magnetic-field gradient. As mentioned in48, an atomic spin chain can be employed to probe the magnetic-field 

(10)H = Jx(σx ⊗ σx)+ Jy(σy ⊗ σy)+ Jz(σz ⊗ σz)+ (ωj + b)σz ⊗ I + (ωj − b)I ⊗ σz ,
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gradient as illustrated in Fig. 1, where each atom is separated by a distance d. Consider that the magnetic field 
B(xj) linearly changes with the position xj as follows:

in which B1 represents the reference magnetic field and G denotes the magnetic-field gradient. The transition 
frequency ωj depends on the magnitude of the magnetic field B(xj) and defined as

such that ω0 indicates the transition frequency of the two hyperfine spin states without the external magnetic 
field and � represents the gyromagnetic ratio of an atom.

It is important to note that the key aspect of this work, which distinguishes our work from other works, is 
here that by replacing the definitions (Eqs. 14 and 15) in the Hamiltonian (Eq. 10), we consider the magnetic 
field including the gradient varies with the position of atoms. In the following, we consider Eq. (13) as a resource 
for two-qubit quantum teleportation and analyze the results. Another point is that to plot the figures throughout 
the work, we employ the nondimensionalized parameter method as described in44,77,78.

Results and discussion
First, we calculate the output state of the two-qubit quantum teleportation performed based on the computed 
resource in Eq. (13). By placing Eqs. (14 and 15) in Eq. (10) and using Eqs. (6 and 7), the output state of two-qubit 
quantum teleportation is obtained as follows:

where the non-vanishing elements of the output density matrix are given by

where δ and ωj are defined in Eqs. (11 and 15).
One of the most important criteria that should always be considered in quantum teleportation is the average 

fidelity, which determines the success rate of a quantum teleportation. Therefore, we examine the qualitative 
behavior of average fidelity in two-qubit teleportation according to the current model in this section.

In Fig. 2a, time evolution of average fidelity fav in terms of interaction coefficient Jx is plotted. The initial 
observation from this figure states that the average fidelity fav exceeds 2/3, suggesting an enhancement in quan-
tum teleportation. Moreover, based on the prediction, we observe that in the initial times of quantum telepor-
tation, there is a better quality of teleportation because the average fidelity is higher in the initial times and 
decreases over time. In addition, it can be seen that when the value of Jx is around zero, we have a better average 
fidelity value. Of course, the value of the average fidelity is higher in the ferromagnetic region Jx > 0 than in the 
antiferromagnetic region Jx < 0 . These results can also be obtained in Fig.  2b, which is the contour plot of this 
process. Note that the same results can be obtained for Jy.

(14)B(xj) = B1 + Gxj ,

(15)ωj = ω0 + �B(xj).

(16)ρout(t) =







0 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 0







(17)
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(

θ

2

)

, ρ22 = cos2
(

θ

2

)

,

ρ23 =
2 sin(θ)(Jx − Jy)

2(ωj)
2

δ4

(

exp
(

2γ tδ2
)

− cos (2tδ)

)2
(

exp
(

−4γ tδ2 + iφ
)

)

,

ρ32 = ρ∗
23.

d 

x-direction 

Figure 1.   An atomic spin chain (Blue spheres) is coupled to a linear magnetic field gradient (Gray arrows) in 
the x-direction. Each atom is separated by a distance d.
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In the next step, the temporal behavior of the average fidelity fav in terms of transition frequency ω0 of the 
two hyperfine spin states without the external magnetic field is plotted in Fig. 3. Quantum teleportation has bet-
ter quality at low transition frequencies, i.e. less than ω0 < 1 . Furthermore, the qualitative behavior of average 
fidelity fav becomes more oscillate over time.

In Fig. 4, the average fidelity dynamic is illustrated in terms of the gyromagnetic ratio � of an atom. The sig-
nificant point is that the quantum teleportation in the present model is optimal when the gyromagnetic ratio of 
the atom is less than 0.2, therefore, the more this ratio is less than 0.2, the better the quality of quantum teleporta-
tion is achieved. The gyromagnetic ratio corresponds to the ratio of the magnetic momentum in a particle to its 
angular momentum79. Therefore, it can play a crucial role in practical quantum teleportation80.

In the next stage, the time evolution of the average fidelity fav in terms of the intrinsic decoherence rate γ is 
investigated in Fig. 5. The average fidelity value clearly decreases as the intrinsic decoherence rate increases. This 
means that the system is affected by decoherence effects81, including noise, and causes quantum teleportation to 
be adversely affected. So increasing these effects can cause the teleportation process to fail.

In Fig. 6a, the temporal behavior of average fidelity in terms of interaction coefficients of Jx and Jy is depicted. 
It is evident that when both interaction coefficients Jx and Jy have the same value, the quality of quantum tel-
eportation is reduced. This is because the value of average fidelity is minimum at the points where Jx = Jy . This 
is obvious because the direction of the magnetic field is only in the z-direction. Moreover, as we see in Eqs. (13 
and 16) the density matrix and the output density matrix of quantum teleportation are independent of Jz . Note 
that, Ji ( i = x, y ) measures the anisotropy of the system. When we have Jx = Jy , the model is reduced to the 
Heisenberg XXZ. Since our system is independent of Jz and we have Jx = Jy , then our system becomes an iso-
tropic system, and this causes a decrease in the value of the average fidelity and therefore decreases the quality of 
quantum teleportation. Hence, the quality of the two-qubit quantum teleportation with magnetic-field gradient 
when the model is reduced in the Heisenberg XXZ is suppressed. Besides, in Fig. 6b, the qualitative behavior of 
average fidelity fav versus Jy and ω0 is shown. We see that when Jy > 0 is in the ferromagnetic region, the maxi-
mum value of average fidelity occurs in ω0 < 1 ; But, when Jy < 0 is in the anti-ferromagnetic, the maximum 

Figure 2.   (a) Temporal variations of average fidelity fav in two-qubit teleportation in terms of Jx when B1 = 0.5 , 
ω0 = 0.9 , G = 1 , xj = 1 , Jy = 2 , γ = � = 0.001 . (b) Contour plot of temporal variations of fav with the same 
conditions.

Figure 3.   (a) Time evolution of average fidelity fav in two-qubit teleportation versus ω0 when B1 = 0.5 , G = 1 , 
xj = 1 , Jx = 2 , Jy = 1 , γ = � = 0.001 . (b) Contour plot of time evolution of fav with the same conditions.
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value of the fav arises in 1 < ω0 < 2 . Moreover, in Fig. 6c, the qualitative behavior of average fidelity fav versus 
Jy and � is illustrated. We see that when we have � = 0.5 and Jy = 0 or 2, then the quantum teleportation can be 
optimum. It means that the role of the anisotropy in the system under magnetic-field gradient is very important. 
Furthermore, in these figures, it is obvious that the role of the ferromagnetic region is significant. Figure 6a–c 
refer to the optimal quantum teleportation that is dependent on the interaction coefficients.

In the last step, which is one of the most important achievements of this article, a comparison of the qualita-
tive behaviors of quantum Fisher information Fφ according to φ , fidelity f and average fidelity fav in two-qubit 
quantum teleportation in the present model in terms of time t (Fig. 7) and in terms of the interaction coefficient 
Jx (Fig. 8) is plotted. In both figures, it can be observed that the average fidelity fav and fidelity f are higher than 
the classical threshold CT, which indicates that quantum teleportation based on the present model is success-
ful in the presence of a magnetic field gradient. Now we go to the subject of quantum sensing. In both figures, 
it can be seen that the qualitative behavior of phase quantum estimation is completely similar to the behavior 
of fidelity and average fidelity in such a way that their minimum and maximum points of qualitative behavior 
coincide with each other. Therefore, wherever we have the best quality of quantum teleportation, then the best 
information extraction from the phase of the initial state of quantum teleportation also occurs. In addition, the 
behaviors of all three above-mentioned criteria are oscillating, and this indicates that in some intervals when the 
behaviors have an increasing rate, the dynamics of the system will be non-Markovian, and at intervals when the 
behaviors have a decreasing rate, the dynamics of the system refer to Markovian. In intervals when the dynamic 
is Markovian, it means that information continuously flows from the system to the environment, while if there 
is a backflow of information from the environment to the system, this process has a non-Markovian dynamic, 
which is caused by the existence of quantum memory56–58. Since the non-Markovian dynamic of the system is 
determined from the information flow, witnesses based on QFI in82 and fidelity in83 have been suggested. Accord-
ing to them, a flow of QFI is defined as Iφ(t) := dFφ/dt , that if we have Iφ(t) > 0 for some interval t, then the 
time evolution is called non-Markovian. Furthermore, a flow of fidelity is introduced as If (t) := df /dt , that if 
we have If (t) > 0 for some interval t, then the dynamic refers to non-Markovian. These flows of information 
respect to QFI and fidelity are valid for this work.

Figure 4.   (a) Dynamic of average fidelity fav in two-qubit teleportation vs � when B1 = 0.85 , ω0 = 0.7 G = 0.9 , 
xj = 1 , Jx = 2 , Jy = 1.1 , γ = 0.001 . (b) Contour plot of time evolution of fav with the same conditions.

Figure 5.   (a) The temporal behavior of average fidelity fav in two-qubit teleportation in terms of γ when 
B1 = 0.65 , ω0 = 0.75 G = 1 , xj = 1 , Jx = 2 , Jy = 0.9 , � = 0.001 . (b) Contour plot of time evolution of fav with 
the same conditions.
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Conclusion
Quantum teleportation enables the transmission of a desired quantum state between two locations, making it 
valuable for quantum communications. In this article, we investigated the quantum teleportation based on the 
Heisenberg XYZ chain with a magnetic-field gradient affected by intrinsic decoherence. An atomic spin chain is 
primarily coupled to the linear magnetic field gradient in the x-direction, with the assumption that the magnetic 
field varies linearly with the atom’s position.

Using the concepts of quantum threshold in quantum teleportation, fidelity and average fidelity in the current 
model were investigated and we were able to improve the quality of quantum teleportation and maintain fidelity 
and average fidelity in the quantum region by using various system variables.

In addition, we investigated remote quantum sensing according to the concept of remote quantum estima-
tion with regard to the output state of two-qubit quantum teleportation. This in-depth investigation allowed us 
to clearly reveal the concepts of information flow that led to the clarification of the concept of non-Markovian 

Figure 6.   The qualitative behaviors of average fidelity fav in two-qubit teleportation in terms of (a) Jy vs Jx 
when B1 = 1 , ω0 = 0.7 G = 0.4 , xj = 1 , γ = � = 0.01 , (b) Jy vs ω0 when B1 = 0.8 , G = 2 , xj = 1 , Jx = 2 , 
γ = � = 0.001 , and (c) � vs Jy when B1 = 0.4 , ω0 = 0.5 , G = 2 , xj = 1 , Jx = 1 , γ = 0.004 . Here, we consider 
t = 1.

Figure 7.   Dynamics of quantum Fisher information Fφ with respect to φ , fidelity f, and average fidelity fav 
when B1 = 0.5 , ω0 = 1 G = 1 , xj = 1 , Jx = 2 , Jy = 0.1 , γ = � = 0.001 , θ = π/6 , and φ = π . CT (Black dotted 
line) represents classical threshold of teleportation.
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time evolution of the system in the current model using evidence of non-Markovian dynamics such as fidelity 
and quantum Fisher information (QFI). In addition, we showed that in the presence of a magnetic field gradient 
and under the influence of intrinsic decoherence, an improved quantum teleportation can be obtained along 
with the extraction of improved information from the initial state phase of teleportation. It was found that in 
the intervals when the maximum amount of qualitative behaviors of fidelity and average fidelity occurs, the best 
information extraction from the initial state phase also occurs.

These results can be very useful in the implementation of experimental quantum teleportation1884,85 and the 
selection of desired resources23. Moreover, the results of this paper can play valuable role in quantum remote 
sensing86.
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