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Increasing the efficiency 
of cone‑beam CT based 
delta‑radiomics using 
automated contours to predict 
radiotherapy‑related toxicities 
in prostate cancer
Rodrigo Delgadillo 1, Anthony M. Deana 1,2, John C. Ford 1, Matthew T. Studenski 1, 
Kyle R. Padgett 1, Matthew C. Abramowitz 1, Alan Dal Pra 1, Benjamin O. Spieler 1 & 
Nesrin Dogan 1*

Extracting longitudinal image quantitative data, known as delta-radiomics, has the potential to 
capture changes in a patient’s anatomy throughout the course of radiation treatment for prostate 
cancer. Some of the major challenges of delta-radiomics studies are contouring the structures for 
individual fractions and accruing patients’ data in an efficient manner. The manual contouring process 
is often time consuming and would limit the efficiency of accruing larger sample sizes for future 
studies. The problem is amplified because the contours are often made by highly trained radiation 
oncologists with limited time to dedicate to research studies of this nature. This work compares the 
use of automated prostate contours generated using a deformable image-based algorithm to make 
predictive models of genitourinary and changes in total international prostate symptom score in 
comparison to manually contours for a cohort of fifty patients. Area under the curve of manual and 
automated models were compared using the Delong test. This study demonstrated that the delta-
radiomics models were similar for both automated and manual delta-radiomics models.

One of the major challenges of longitudinal delta-radiomics studies is contouring the individual fractions for 
radiomic feature extraction. The problem is exemplified in prostate cancer (PCa) radiotherapy (RT) where a 
typical treatment is forty fractions. A time inefficient approach is to manually contour each individual fraction to 
select the region of interest (ROI) for radiomic analysis. The time it takes to contour the patients is compounded 
by the fact that the individuals that are qualified to delineate the contours are highly trained, typically physicians, 
and are busy with other clinical duties. In addition, radiomics studies are often limited by the number of patients 
that can be included in such studies. Automated contours of the ROI could greatly increase the efficiency and 
feasibility of implementing such studies1,2.

Though prostate cancer is the second-leading cause of cancer-related mortality in the United States (US)3, the 
number of PCa survivors is 3.1 million in the US4. Consequently, with so many survivors, a significant portion of 
men can be impacted by acute and late side effects of PCa RT4. A previous pilot study used daily Cone Beam CT 
(CBCT) images to generate delta-radiomics models to predict acute and sub-acute genitourinary (GU) toxicity 
and change in total international prostate symptom score (IPSS) in PCa RT patients5. However, that work used 
manual contours. Alternative approaches should be considered to efficiently increase the number of patients. 
If the models produced using automated contours are of similar performance to the manual contours, future 
studies could accumulate more patients more efficiently.

The purpose of this study is to test the effectiveness of automated contours of the prostate to produce delta-
radiomics models to predict acute and sub-acute GU and change in IPSS in PCa RT patients using a deformable 
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image registration (DIR) algorithm. This work combines methodology and lessons learned from our previous 
work1,5,6. Schmidt et al.1 assessed CT to CBCT contour mapping for radiomic feature analysis in prostate cancer 
by analyzing correlation and mean absolute difference of radiomics features extracted from manual and auto-
mated contours of daily CBCT images. Schmidt et al.1 also showed that automated and manual contours of the 
CBCT prostate contours matched well using metrics described in American Association of Physicists in Medicine 
(AAPM) Task Group (TG)-1327 using quantitative metrics such as Dice similarity coefficient (DSC), mean dis-
tance-to-agreement (MDA), difference in center-of-mass position (ΔCM), and difference in volume(ΔVol). The 
current study moves on to the next step by analyzing the capability of automated contours to produce predictive 
delta-radiomics models using the methods described in a previous work5, and compares the automated-contour 
model performance and the manual-contour model performance. If the automated-contour model performance 
is of similar performance to the manual-contours, this may indicate that DIR based algorithms could be of use 
in future delta-radiomics to improve efficiency of data collection and analysis.

Materials and methods
Patient selection
Fifty PCa patients who were treated with Volumetric Modulated Arc Therapy (VMAT) were retroactively selected 
from an internal review board (IRB)-approved protocol. The ethical approval for this study was obtained from the 
University of Miami Institutional Review Board (IRB). Written informed consent was obtained from all patients 
in this study. The data was retrospectively collected and analyzed. All methods undertaken in this work were car-
ried out in accordance with the relevant guidelines and regulations. The median age of the patients was 50 years 
old (range 50–87). Other Patient characteristics including the Gleason Score, tumor stage, and hormonal use are 
shown in Supplementary Table S1. To increase radiomic feature consistency and reduce variability, several patient 
selection criteria were established for this study. Only PCa patients treated with VMAT on TrueBeam accelerator 
(Varian Medical Systems, Palo Alto, CA) with daily CBCT image guided radiotherapy were included in this study. 
Raw projection data of each CBCT was exported from the treatment machines and later reconstructed using 
image reconstruction software to maintain consistent reconstruction parameters for all the images. More details 
on image reconstruction are described in section "Image parameters". Patients with intrapelvic metal prostheses 
produced metal streaking artifacts that resulted in poor radiomic feature quality and were hence excluded from 
the study. Patients with body mass index (BMI) > 40 were excluded due to x-ray hyper attenuation. Patients were 
treated with a variety of dose fractionation schedules and shown in Supplementary Table S2. Most of the patients 
were treated with one of two dose fractionation schedules: 80 Gy in 40 fractions (26 patients) and 70.2 Gy in 26 
fractions (13 patients). The remaining patients were treated on other dose fractionation schedules. PCa patients 
treated with Stereotactic Body Radiotherapy (SBRT) were not considered in this study. A biologically effective 
dose (BED) based averaging method was used to account for the different dose fractionations and is described 
in more detail in section "BED-based Binning of DRF".

Image parameters
Image quality and other characteristics such as voxel size and reconstruction parameters have been shown to 
affect radiomic features6,8–12. Consequently, this study was designed to minimize variables in the study where 
possible by keeping the image characteristics consistent. The image size (512 × 512 pixels), pixel size (0.9 mm), 
slice thickness (2 mm), FOV (465 mm), tube voltage (125 kVp), and tube current–time product (1073–1074 mAs) 
were consistent for all CBCT scans.

A research image reconstruction software (iTools, Varian Medical Systems, Palo Alto, CA) was used to gen-
erate either standard convolution CBCT (sCBCT) or iterative CBCT (iCBCT) image sets for each patient. An 
example patient’s CBCT images for different fractions along the course of radiotherapy are shown in Fig. 1. Daily 
CBCT raw projections were reconstructed utilizing the typical reconstruction parameters used in the clinic. The 
two most used clinical reconstruction parameters in our clinic use standard convolution filter for both iCBCT 
and sCBCT. iCBCT refers to an iterative reconstruction algorithm that estimates the scatter in the raw projec-
tion images with the aim to correct for the scatter in the final reconstruction through iterative attempts and by 
solving the linear Boltzmann transport equation13 iCBCT images have a parameter known as noise suppression 
that controls the level at which the iterative process reduces scatter noise. A medium noise suppression on iCBCT 
was considered for this study because it represents the default clinical value.

Images were processed prior to radiomic feature extraction. The Image Biomarker Standardization Initia-
tive (IBSI) defines image processing as procedures such as interpolation, range-re-segmentation, discretization 
(quantization), and image filtering14. For this study, the aim was to keep image processing as basic as possible 
to highlight the differences between the automated and manual contour models. Using IBSI notation, images 
were processed using intensity discretization with fixed bin number14. Previous CBCT-based radiomics studies 
of PCa have shown that discretization bins equal to 256, also known as 8 bit, to be repeatable and reproducible 
for radiomic feature extraction and produce well performing models14. For this reason, images were discretized 
using 256 discretization bins in this study.

Prostate contours
Radiation Oncologists who specialize in treatment of PCa patients contoured the prostate on the planning CT 
(pCT) with the aid of Magnetic Resonance Imaging (MRI) for each patient. The daily CBCTs (both sCBCT and 
iCBCT) were rigidly registered during daily patient setup. Using the daily setup rigid registrations, the pCT 
prostate contours were transferred to the daily CBCTs. However, it was noticed that the prostate may change in 
volume or shape between the pCT and daily CBCT. Moreover, registration errors may produce other inconsisten-
cies in the prostate contour. For this reason, a radiation oncologist reviewed the daily CBCT prostate contours 
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and corrected the contours when needed directly on the CBCTs utilizing imaging software (MIM, ver. 6.8.1, MIM 
Software Inc., Cleveland, OH). In this work, radiomic models derived from the manual contours are referred 
to as manual models for conciseness. Similarly, models derived from the automated contours are referred to as 
automated models. Automated daily prostate contours were generated using a commercial DIR software (Veloc-
ity Advanced Imaging, ver. 4.1, Varian Medical Systems, Palo Alto, CA) with the method described in Schmidt 
et al.1. The DIR algorithm used here was the B-spline algorithm, which is an intensity-based algorithm based on 
the Mattes formulation of mutual information15–17.

Gold fiducial artifacts present in PCa patients are a source of imaging inconsistencies. An algorithm described 
in detail in Delgadillo et al.6 was used to produce masks to remove the gold fiducial artifacts within the prostate. 
On average, 18% of the prostate volume is lost due to the presence of gold fiducial artifacts in PCa patients5. 
Though some information is lost due to the presence of gold fiducial artifacts, the algorithm allows for the use 
of radiomics of multiple slices for analysis instead of other works which are limited to one slice radiomic18. By 
using a greater portion of the prostate volume, we may increase the chances of capturing changes that reflect 
the clinical outcomes.

As a form of quality assurance, the DSC was calculated between the automated and manual contours of all 
fractions of the CBCT images in the dataset, a total of 1711 individual fractions. DSC is statistical metric for 
comparing the volumetric overlap of two contours on registered images overlap19. The DSC between the auto-
mated and manual CBCT prostate contours was found to be 0.89 ± 0.12 (avg ± td). AAPM TG-132 states that 
contouring uncertainty within 0.8–0.9 is acceptable7. This work is an updated result for a previous work that 
estimated similar metrics for 28 patients1.

Delta‑radiomic features
This study focused on radiomic features from commonly used classes. Though many more radiomic features 
are possible, previous studies have shown that many radiomic features are intercorrelated11,12 and thus not 
quite different from one another. Five classes of radiomic features were considered, including: gray-level co-
occurrence matrices (GLCM), Neighborhood Gray-Tone Difference Matrix (NGTDM), gray-level run length 
matrices (GLRLM). A full list of the forty-two radiomics features and 5 features classes considered in this study 
are shown in Supplementary Table S3 along with the IBSI code equivalent. Volume-normalized versions of 
NGTDM Strength, NGTDM Busyness, NGTDM Coarseness, GLSZM GLN, GLRLM GLN, and GLRLM RLN 
were also considered to reduced voxel size dependence of radiomic features following volume normalization 
methods described by Shafiq-ul-Hassan et al.9 and Fave et al.8

The delta-radiomic feature (DRF) was defined as:

Figure 1.   Example CBCT images of a prostate patient for different fractions during radiotherapy treatment. 
Automated prostate contours are shown in red and manual contours in blue. The images shown here were 
reconstructed using iterative reconstruction algorithm.
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where RFN is the radiomic feature value of the Nth fraction and RF1 is the radiomic feature value of the first 
fraction.

As a form of quality assurance, the radiomics features extracted from the prostate of the pCT and the first 
fraction (FX1) CBCT for fifty patients were compared using a spearman correlation. The Benjamini–Hochberg 
adjustment was applied to p-values to account for multiple comparisons20. An alpha of 0.05 was chosen to set 
the significance threshold for the adjusted p. This work represents an update to the results from a previous work 
that had only utilized 20 patients6.

Clinical endpoints
Clinical Endpoints considered include the GU adverse events graded per CTCAE v5.0 and total IPSS21,22. GU tox-
icities considered were frequency, nocturia, dysuria, urgency, urinary obstructive symptoms, and incontinence. 
GU toxicities were further categorized based on the timing of the occurrence. Acute GU toxicities were toxicities 
that occurred before the end of RT. Sub-acute GU toxicities were toxicities that occurred after RT. Changes to 
the IPSS were used to describe changes in the patient’s urinary quality of life due to RTRT. The change in IPSS 
( �IPSS ) from before RT and after RT was used a clinical endpoint for model building. A visual representation 
of the categorization of the clinical endpoints for model building is shown in Fig. 2.

BED‑based Binning of DRF
To account for the different dose fraction schedules of the patients in this study, daily DRF were binned and 
averaged into 20 Gy BED bins. 20 Gy BED bins were chosen because it represents one week of treatment. The 
BED was calculated for each fraction using α/β = 3 to account for dose delivered to the prostate23. Averaging 
the DRF into BED bins improved signal to noise, reduced complexity of the analysis, and allowed the use of 
different dose fractionation schedules.

Model building
DRF models of the previously discussed clinical endpoint were generated using logistic regression for every BED 
bin. The model building and analysis workflow follow the procedure described in a previous work5. For the sake 
of completeness, the workflow is summarized below.

The model building workflow starts with feature selection to identify radiomic features that are important 
to the models using random forest24,25. Feature selection was considered independently for acute GU toxicity, 
sub-acute GU toxicity, and �IPSS . The selected DRF were kept consistent by considering all BED bins together 
during the feature selection phase. The DRF were ranked according to feature importance using the GINI 
index, which is calculated by first accumulating the changes in the risk due to splits on every predictor and by 
then dividing the sum of the number of branch nodes26. As discussed earlier, DRF may be intercorrelated. To 
reduce the impact of the intercorrelation and provide more unique DRF in the feature selection phase, highly 

DRF =
RFN − RF1

|RF1|

Fx 1

Fx at 20 Gy
BED

Acquire Daily CBCT images

Collect DRF and clinical endpoints for
model building

Average DRF per BED Bin

Propagate pCT prostate
contour to daily CBCT images

pCT

Contours reviewed and corrected by radiation oncologist

Repeat for every 
20 Gy BED

2

5

3

4

6

Acute
Category 1

Acute
Category 0

Occurs before end of RT Occurs after end of RT

Acute Toxicities Sub-acute Toxicities

GU Toxicities

max severity 
≥ grade 2

max severity 
< grade 2

Sub-acute
Category 1

Sub-acute
Category 0

∆IPSS

∆IPSS
Category 1

∆IPSS
Category 0

∆IPSS
≥ 0

∆IPSS
< 0

Retrieve Severity Grade
per CTCAE v5.0 for all

GU Toxicities

max severity 
≥ grade 2

max severity 
< grade 2

Acquire Patient Outcomes1

Extract DRF

Figure 2.   Visual representation of categorization of clinical endpoints and extraction of delta-radiomic features 
(DRF) from daily prostate CBCT images for analysis and model building.
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intercorrelated (correlation > 0.8) radiomic features were filtered from the feature space while keeping only the 
most important radiomic features of a correlated group. The ranking of the radiomic features using the GINI is 
shown in Supplemental Figs. S1–S3. This results in a smaller feature space with more unique features to consider. 
Up to the top seven important and non-correlated DRFs were selected for model building. For each pair, the 
automated and manual models were constrained to use the same selected DRF for model building. This was to 
reduce the impact of feature selection in comparison between the automated and manual models. A summary 
of the selected DRF per clinical endpoint is shown in Table 1.

After feature selection, the clinical endpoints were modeled using a logistic regression using a leave-one-out 
cross validation approach with one thousand bootstrapping iterations. The results of the feature selection are 
shown in Table 1. The leave-one-out approach was used due to sample size of fifty being too small to both have 
a training set and an independent validation set. It is the hope that the results of this work will allow for future 
works to overcome small size by making the process of delta-radiomic studies more efficient.

To compare delta-radiomics to snapshot-radiomics, models were built using radiomic features extracted 
from prostate contours on pCTs for all the patients. Then, the AUC of pCT radiomics models were compared to 
CBCT based models for the Sub-Acute GUT and ∆IPSS models. The Acute model could be calculated for pCT 
since there are no longitudinal simulation CTs recorded during treatment. The features used in the models were 
kept consistent between the CBCT and pCT. Consequently, four pCT radiomic models were created using the 
bootstrapping approach described previously for CBCT.

Data analysis
All data analysis, which included the model building, was performed using a statistics and machine learning 
toolbox from scientific computation software (MATLAB, ver. 2020b, Math-Works Inc., Natick, MA). The area 
under the curve (AUC) and their confidence intervals and receiving operating characteristic curves (ROC) were 
calculated from the result of the bootstrap analysis. The Delong test27 (threshold p < 0.05) was used to test the 
similarity between the AUC manual and automated models. Delong’s algorithm is one of the most widely used 
algorithm to compare the AUC of two or more ROCs28.

Results
The results are summarized in Figs. 3, 4, 5 and 6. Figure 3 shows that the automated and manual radiomic features 
have statistically significant correlations for all but two radiomic features between the pCT and the FX1 CBCT. 
Typically, the sCBCT radiomic features correlate more strongly with the pCT that iCBCT radiomic features. 
When compared automated and manual radiomic features for CBCT (either sCBCT or iCBCT), the radiomic 
features correlate highly indicating good agreement between the automated and manual contours. This result is 
consistent with the DSC values with 0.89 ± 0.12 (avg ± td) between the automated and manual contours of CBCT.

A summary of the top DRF found after the feature selection phase organized by clinical endpoint and recon-
struction and pre-processing method is shown in Table 1. For all BED bins, reconstruction methods, and clinical 
endpoints considered, the automated and manual models produced AUC with p > 0.05. This indicated that the 
automated and manual models were of similar performance. In other words, automated and manual model AUC 
were not significantly different. AUC between 0.7 (yellow line) and 0.8 (green line) is considered to be moder-
ately performing, above 0.8 strongly performing, and below 0.7 weakly performing. AUC below 0.5 (red line) 
indicates model performance is no better than random chance. The pCT model mean AUC was also included 
in the AUC figure when appropriate.

Delong p values were mostly well beyond the threshold for significance. However, some automated vs manual 
model comparisons were just above the threshold. The p-value for the acute GU toxicity for 120 Gy BED was 
0.075 for iCBCT and 0.058 for sCBCT, as shown in Fig. 4. For the 120 Gy BED bin of acute GU toxicity, the auto-
mated model distribution was higher than the manual model distribution. The p-value for sub-acute GU toxicity 
for 60 Gy BED bin was 0.071 for iCBCT, as shown in Fig. 5. Consequently, though most models were far beyond 
the threshold for a statistically significant difference, for the three exceptions that had p-values between 0.058 and 
0.075, the delta-radiomic model using automatically segmented contours outperformed the manually contoured.

The DRF models of acute GU toxicity were performing weakly for both the iCBCT and sCBCT models in 
Fig. 4. Though no statistical significance differences were found, often the manual models had a median AUC 
slightly higher than the automated models of acute GU toxicity. However, the top performing acute GU toxicity 
models occurred for the automated models at the 120 GY BED bin.

Table 1.   Summary of the top DRF found after the feature selection phase organized by clinical endpoint and 
reconstruction and pre-processing method. Uniform refers to intensity discretization with fixed bin number.

Clinical Endpoint Reconstruction and Pre-processing Method N Selected features

Acute iCBCT Standard Medium Uniform 4 GLSZM LZHGE, NGTDM Coarseness-VN, NGTDM Strength, Prostate Volume

Acute sCBCT Standard Uniform 6 GLRLM GLN, GLRLM GLN-VN, GLSZM ZSN, GLSZM ZSV, Global Kurtosis, Prostate Volume

Sub-Acute iCBCT Standard Medium Uniform 5 GLSZM GLN, GLSZM LZHGE, GLSZM LZLGE, GLSZM ZSV, NGTDM Coarseness

Sub-Acute sCBCT Standard Uniform 4 GLRLM RLN, GLSZM ZSN, Global Skewness, NGTDM Coarseness-VN

∆IPSS iCBCT Standard Medium Uniform 4 GLRLM RLN, GLSZM SZLGE, GLSZM ZP, IPSS Baseline

∆IPSS sCBCT Standard Uniform 6 GLCM Correlation, GLRLM RLN, GLSZM GLN-VN, IPSS Baseline, NGTDM Coarseness, NGTDM 
Contrast
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For the sub-acute GU toxicity models, the sCBCT models have median AUC between 0.75 to 0.92 across all 
the BED bins, while the iCBCT models waver between median AUC 0.65 to 0.75, other than the 120 Gy BED 
bin that has 0.85 median AUC at 120 Gy BED for the automated model. The pCT model of sub-acute GU toxic-
ity had a mean AUC of 0.71. The pCT model of sub-acute GU toxicity often performed similarly to the varied 
BED time points of the iCBCT models, as shown in Fig. 5. The iCBCT models performed better than the pCT 
sub-acute models for the 20 Gy and 60 Gy BED models. The automated sCBCT models performed better than 
the pCT models of sub-acute toxicity for all but the last 120 Gy BED model.

The ∆IPSS models shown in Fig. 6 perform the most similarly between the automated and manual models. 
The median AUC is more consistently greater than 0.7 for ∆IPSS than the other clinical endpoints considered 
in this work. The pCT model of ∆IPSS had a median AUC of 0.78. Consequently, the pCT model performed 
better than the CBCT models for the majority of BED time points, as shown in Fig. 6. However, the best iCBCT 
model at 80 Gy BED performed better than the pCT model and the best sCBCT model at 20 Gy BED performed 
better than the pCT model.

Discussion
Delta-radiomics studies have the potential of capturing changes in the patient’s anatomy that could inform us 
of the effectiveness of RT and potentially design mitigation strategies to overcome some of the negative effects 
of RT. This study focused on GU toxicities and ∆IPSS as clinical endpoints due to relatively high occurrence in 
PCa patients undergoing RT. Moreover, these clinical endpoints occur in the short-term. Meaning that the study 
could be designed to model negative effects without waiting long after treatment. Other clinical endpoints with 
a small percentage of occurrence would require many more patients to build a meaningful model. For, example 
five-year survival of prostate cancer is 97%29 and would take a large sample size to properly model the other 3% .

A literature search reveals that few CT-based studies have performed in a pre-treatment setting for prostate 
cancer30–32. Tanadini-Lang et al. used morphological, statistical, and transform-based radiomics to predict Glea-
son score and found AUC between 0.77 and 0.8. Osman et al. used statistical and transform-based radiomic 
features to predict risk group using tumor grade, GS, and PSA and found AUC between 0.9 and 1.0. Thus, these 
pre-treatment CT-based studies tend to perform very well. To our knowledge, however, no pre-treatment study 
was found to predict GU toxicity or ∆IPSS.

One may wonder whether the effort of performing deltaradiomics studies is worth it comparison to snapshot 
radiomics, such as using pCT. Considerable effort goes into contouring all the fractions and extracting the radi-
omic features from those fractions in deltaradiomics studies such as this one. Moreover, the image quality of the 
pCT images is higher than the CBCT images. For this reason, models of the sub-acute GU toxicity and ΔIPSS 
were built using the pCT and compared to the CBCT deltaradiomics models. The pCT models performed better 
in some cases and worse in other cases compared to the CBCT models. The three major variables were the recon-
struction algorithm used for the CBCT, the patient outcome considered, and the contouring type, i.e., automated 

Figure 3.   Spearman correlation of radiomic features extracted from the automated and manual contour of the 
prostate for the FX1 iCBCT vs pCT, FX1 sCBCT vs pCT. The automated and manual radiomic features were also 
compared for both FX1 iCBCT and FX1 sCBCT reconstructions. Correlations were performed with a sample 
size of fifty patients.
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vs manual. The sCBCT models often performed better than iCBCT models. The correlation between the CBCT 
and pCT radiomics features, shown in Fig. 3, often showed that sCBCT correlated better than iCBCT with pCT. 
This may indicate that the sCBCT radiomic features are more like the pCT radiomic features and thus produce 
better quality deltaradiomics models more on par with the pCT models. The patient outcomes that were modeled 
as resulted in different performances indicating that some clinical outcomes are more suited to deltaradiomics 
studies than others. In this case, the sub-acute GU toxicity models were more suited to deltaradiomics than the 
ΔIPSS models. The reason is not yet understood and could be explored in future research.

Automated segmentation has become increasingly studied because manual segmentation is time-consuming 
task, has significant inter-observer and intra-observer variability and automated segmentation could be valuable 
to adaptive therapy, radiomic, and dosimetric analysis. The most popular auto-segmentation techniques can be 
clustered into two categories including registration techniques and deep learning techniques33. Registration tech-
niques are considered a more traditional approach, but significant improvements have been made in deep learn-
ing techniques in recent years33. A future study could investigate deep learning techniques and their applicability 
to delta-radiomic analysis, and these new deep learning techniques may even have higher accuracy. However, 
this is an ongoing area of research, so it is too early to know for certain without conducting another study. A 
literature review of prostate-based studies automatic segmentation reveals MRI34,35, ultrasound36, CT37,38, and 
CBCT37–41 have been considered. However, to our knowledge, no other study of PCa has evaluated performance 
of automated CBCT contours of the prostate for delta-radiomics models. Moazzezi et al. 2021 has evaluated the 
CBCT guided daily adaptive radiotherapy (Ethos, Varian Medical Systems, Palo Alto, CA) using unedited CBCT 
auto-segmentation and found that 96% of fractions required auto-segmentation edits, although the corrections 
were generally minor39. Thus, though most automated studies had satisfactory results they were far from perfect. 
As previously mentioned, the automated workflow described in Schmidt et al.1 was implemented for this current 
work and provided support evidence that automated contours may be applicable for CBCT-based radiomics 
studies of prostate cancer. Schmidt et al.1 also considered contour comparisons following recommendations from 
AAPM TG-1327, which provides recommendations on the use of image registration and fusion algorithms and 
provides quantitative methods of evaluating DIR accuracy. They found that the mean DSC, MDA, ΔCM and ΔVol 
between the auto and manual prostate contours were 0.90 ± 0.04, 1.81 ± 0.47 mm, 2.17 ± 1.26 mm and 5.1 ± 4.1% 
respectively1. Nearly 95% of DIRs were within tolerance recommendations of TG-1321. Then, this study posits 
the idea that radiomic features may be robust to minor contour changes and thus suitable for delta-radiomic 
analysis. The updated DSC results for the fifty patients in this study agree with the results from the previous study.

Figure 4.   AUC data for the Acute GU Tox (a) iCBCT and (b) sCBCT delta-radiomic models. Delong p-values 
between Auto and Manual AUC shown in parenthesis.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9563  | https://doi.org/10.1038/s41598-024-60281-6

www.nature.com/scientificreports/

For all clinical endpoints considered in this study, both the automated and manual contours produced radi-
omic models of similar performance. In three cases, the Delong p-values were slightly above 0.05. it may be 
possible to find statistically significant differences with more patients. However, if these three cases were found 
to have a p less than 0.05, it would speak more in favor of the models created using automatically generated 
contours than against them. Interestingly, the automated models performed better than the manual models in 
these three cases. We do not fully understand why automated models may be better than manual models in 
some cases. However, automated contours may have some advantage over manual contours. One benefit of the 
automated contours is that there is less user-to-user variability in contours. Another advantage is that automated 
contours is that the user does not have to be a contouring expert. A user with limited knowledge of anatomy but 
basic computer skills could generate automated contours. In some cases, like in Fig. 5b, the automated models 
often were performing better than the manual models. Though care should be taken to make any definitive 
statements since the p-value was not significant. A future work could investigate comparing automated models 
in comparison the manual models based on different users to speak more to effect of user variability.

Given that the automated models performed on par with the manual models, this study indicates that auto-
mated models may be useful for future delta-radiomics studies. Automated techniques to contour the prostate 
may allow researchers to acquire more patients. This could enable studying lower occurring clinical endpoints like 
recurrence that would not be feasible for low sample size. For large scale multi-institutional projects, researchers 
of radiomics are faced with many challenges like different treatment protocols, patient populations, treatment 
modalities, and variability in imaging characteristics and modalities. Thus, facing the challenges directly will 
allow for these future works to progress. In this work, we attempted to take on the contouring portion of the 
challenges.

Conclusion
This study demonstrated that the differences in delta-radiomic model performance is not statistically significant 
between manually or automatically contoured prostate volumes on daily CBCT. The results are consistent for 
both the sCBCT and iCBCT based models. Thus, the use of DIR to automatically generate prostate contours is 
a suitable replacement for manual contouring for CBCT-based delta-radiomics. This will aid future studies in 
accumulating larger sample sizes.

Figure 5.   AUC data for the Sub-Acute GU Tox (a) iCBCT and (b) sCBCT delta-radiomic models. Delong 
p-values between Auto and Manual AUC shown in parenthesis. The mean pCT model AUC is shown as a 
magenta line across the figure.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to still being 
collected as part of an ongoing clinical trial. Clinical trial relevant data will be made public upon completion of 
accrual and publication of the primary endpoint. Contact the corresponding author, N.D, to request data from 
this study.
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