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Improving speech depression 
detection using transfer learning 
with wav2vec 2.0 in low‑resource 
environments
Xu Zhang 1, Xiangcheng Zhang 2*, Weisi Chen 1, Chenlong Li 2 & Chengyuan Yu 3

Depression, a pervasive global mental disorder, profoundly impacts daily lives. Despite numerous 
deep learning studies focused on depression detection through speech analysis, the shortage of 
annotated bulk samples hampers the development of effective models. In response to this challenge, 
our research introduces a transfer learning approach for detecting depression in speech, aiming to 
overcome constraints imposed by limited resources. In the context of feature representation, we 
obtain depression-related features by fine-tuning wav2vec 2.0. By integrating 1D-CNN and attention 
pooling structures, we generate advanced features at the segment level, thereby enhancing the 
model’s capability to capture temporal relationships within audio frames. In the realm of prediction 
results, we integrate LSTM and self-attention mechanisms. This incorporation assigns greater weights 
to segments associated with depression, thereby augmenting the model’s discernment of depression-
related information. The experimental results indicate that our model has achieved impressive F1 
scores, reaching 79% on the DAIC-WOZ dataset and 90.53% on the CMDC dataset. It outperforms 
recent baseline models in the field of speech-based depression detection. This provides a promising 
solution for effective depression detection in low-resource environments.

Depression, a widespread mental disorder, significantly jeopardizes individual well-being1. In the aftermath of 
the COVID-19 pandemic, the global impact of mental disorders has become more evident. According to esti-
mates from the World Health Organization (WHO)1, this pandemic has led to a 25%-27% increase in the global 
prevalence of depression and anxiety. While efficient treatments for mental illnesses exist, a substantial majority 
of patients in lower and middle-income nations lack proper access to healthcare3. Moreover, a primary approach 
to screening for depression involves the use of diagnostic scales and psychiatric interviews. However, societal 
stigma and unequal distribution of medical resources contribute to a generally high recurrence rate of depres-
sion. Research findings suggest that timely identification and support for individuals at risk of depression can 
effectively reduce the likelihood of developing depression4. Therefore, exploring an automated and cost-effective 
method for detecting depression with universal applicability is of utmost significance.

In recent years, researchers have collected biometric information related to depression, encompassing speech5, 
facial behavior6, and text7, utilizing convenient and accessible sensing devices. They advocate the utilization 
of machine learning approaches for depression detection, emphasizing the non-invasiveness and objectivity 
inherent in these methods. Notably, speech features have demonstrated a close correlation with the severity of 
depression8. In practical applications, speech signals offer greater accessibility and privacy compared to other 
behavioral signals, making them widely applied in emotion recognition9,10. Consequently, an increasing number 
of researchers are exploring Speech Depression Detection (SDD) via the utilization of advanced computational 
techniques such as machine learning and deep learning. Nevertheless, persistent technical challenges persist in 
the development of SDD models.

Firstly, deep learning training typically relies on substantial annotated data to achieve satisfactory classifica-
tion performance. However, acquiring annotated data in the field of depression poses challenges due to concerns 
about patient privacy11. Moreover, due to the specialized nature of the medical field, non-experts find it chal-
lenging to make accurate judgments about speech. This often necessitates substantial time investments from 
medical professionals in data processing. The progress of SDD is notably impeded by the scarcity of resources, 
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significantly impacting both the model’s performance and its ability to generalize12. To address the issue of limited 
resources, contemporary approaches incorporate techniques such as data augmentation13, meta-learning14, and 
transfer learning15,16. For instance, pre-trained models like BERT have demonstrated remarkable performance 
in text-based depression detection through transfer learning. Similarly, wav2vec, a pre-trained model in the 
audio domain, exhibits excellence and holds the potential for transfer learning to diverse domains. However, its 
application in SDD remains relatively limited at present.

Furthermore, in the diagnosis of depression, a single diagnostic result is derived from multiple rounds of 
dialogue without providing detailed labels for each specific time point17. This challenge necessitates maintain-
ing integrity when handling temporal information. It involves focusing on relevant information from lengthy 
conversations and avoiding interference from redundant information. To address the constraint of model input 
size, prior research18–20 segmented audio, modeling information within each audio segment, yet overlooking 
the temporal dynamics of the entire audio sequence. Therefore, Du et al.21 partitioned each speech segment into 
7-second intervals, extracting Mel-frequency cepstral coefficients (MFCC) and Linear Predictive Coding (LPC) 
features for each segment. They subsequently employed a combination of a one-dimensional convolutional 
neural network (1D-CNN) and Long Short-Term Memory (LSTM) to classify depression-related features both 
within and between speech segments. Although this method restricts the model’s input size and retains input 
information from the entire audio segment, the performance of LSTM models may be suboptimal in handling 
long-time sequences.

Finally, a notable concern arises regarding the potential loss of temporal information between audio frames. 
Regardless of the segmentation strategy employed, audio segments must be subdivided into frames, necessitat-
ing the conversion of frame-level features to paragraph-level features. In previous studies22, prevalent strategies 
involved maximum pooling or average pooling. However, these methods exhibit a limitation in failing to preserve 
the temporal information inherent between frames.

To address the aforementioned challenges, we introduce a novel model designed specifically for depression 
classification in speech. The proposed model comprises four key steps. Initially, raw audio undergoes preproc-
essing through segmentation, eliminating irrelevant segments. Subsequently, advanced features are extracted 
through the fine-tuning of the wav2vec 2.0 model. Thirdly, a 1D-CNN+attention pooling structure is employed 
to encode frame-level features of the speech, yielding sentence-level feature representations. Finally, depression 
classification is executed using a combination of Long Short-Term Memory (LSTM) and self-attention mecha-
nisms. We applied the proposed method to a genuine diagnostic dataset and compare the classification results 
with those of existing methods. On the same small sample dataset, our method outperforms existing approaches 
without the need for additional data augmentation strategies.

The contributions of this paper are threefold:

To address the challenge of low-resource data, we advocate for transfer learning on the wav2vec 2.0 model, employ-
ing it as audio feature input for downstream models. In comparison to existing methods, we utilize only a single-
class feature and achieve superior performance. To the best of our knowledge, this marks the inaugural proposal 
of fine-tuning the wav2vec 2.0 model to specifically tackle the low-resource challenge in SDD.
We introduce a strategy based on 1D-CNN + attention pooling to enhance the feature representation capabil-
ity within speech segments. Based on the results of downstream tasks, the proposed structure in this paper 
more effectively captures the temporal relationships between frames compared to statistical functions (e.g., 
maximum pooling, average pooling). As a result, it produces a more expressive segment-level vector repre-
sentation for depression assessment tasks.
Through the incorporation of a self-attention mechanism into the downstream output of LSTM, we success-
fully mitigate interference from irrelevant speech segments, leading to a notable enhancement in the overall 
recognition capability.

Related work
In this section, we will discuss relevant works on speech depression detection and transfer learning.

Depression detection based on audio
Numerous methods suitable for SDD have been proposed, primarily consisting of two components: speech 
feature extraction and model construction. In the early studies on audio-based depression detection, the focus 
was on manual speech feature extraction. After feature extraction, machine learning classification algorithms 
were applied to explore the relationship between features and the severity of depression. For instance, Naulegari 
Janardhan et al.23 introduced a feature selection algorithm based on Fisher scores. This algorithm dynamically 
integrates the selection of acoustic features, thereby enhancing the accuracy of depression prediction. Kaur B 
et al.24 presented a feature selection method based on the Quantum Whale Optimization Algorithm to choose 
minimally correlated and non-redundant speech features. Their approach, utilizing a fusion of temporal, spectral, 
and spectro-temporal features, demonstrated optimal performance in an LDA classifier. While manual feature 
extraction has shown some effectiveness in depression detection, it often requires considerable expertise to select 
appropriate tools for extracting feature sets, and there may be issues of feature redundancy in the feature set.

With the revolutionary progress of deep learning technology in automatic feature extraction and classifica-
tion, it excels in extracting high-level semantic features, demonstrating strong adaptability and transferability 
compared to machine learning methods. Furthermore, it is demonstrated to be more dependable and efficient 
in extracting depression-related features when compared to traditional manual feature extraction techniques25. 
Lu et al.19 introduced a model that combines a Transformer Encoder and CNN utilizing the former to capture 
temporal information and the latter to extract high-level speech features, ultimately facilitating the prediction 
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of depression severity. To increase the sample size and avoid excessively long input sequences, they divided each 
response into multiple segments, each lasting 3 s with a 50% overlap. Miao et al.20 divided speech into 4-s seg-
ments, using a combination of high-order spectral analysis and the fusion of traditional speech features. They 
employed classification models such as CNN. Zhou et al.26 proposed a depression detection model centered on 
the segmentation of question–answer-level speech data segmentation and hierarchical multi-feature fusion. The 
primary objective was to diminish the size and complexity of the model, and they achieved good performance. 
However, it is worth noting that despite the good results achieved in speech segments or their combinations in 
the aforementioned studies, no testing was conducted on the entire speech. Although Du et al.21 employed an 
LSTM model to extract temporal-related features between speech segments, LSTM may still face challenges in 
capturing long-term dependencies in audio signals. Zhang et al.17 introduced a self-supervised audio feature 
extraction method called DEPA, which learns high-level representations of audio by reconstructing the central 
part of the spectrogram.

Generally, the studies mentioned above are hindered by the challenge of limited resources. In other words, 
despite ensuring a sufficient quantity of data, they are unable to fully exploit the experimental potential of the 
entire audio segment information.

Transfer learning
To tackle the previously mentioned issue of low resources, in addition to data augmentation, transfer learning27 
proves to be an effective method. This involves training a model in the source domain and transferring the 
acquired knowledge to the target domain, thereby enhancing the performance of the target task and addressing 
the issue of data scarcity in the target domain. Huang et al.28 utilized two depression speech datasets collected 
in different environments and proposed a depression detection framework based on a convolutional neural 
network and channel coordination information. They utilized three different transfer learning strategies, includ-
ing layer-wise adaptation and cumulative adaptation (from front to back or from back to front), to enhance the 
generalization ability across different corpora. Rejaibi et al.29 proposed a deep neural network model utilizing 
MFCC features and LSTM. Through pretraining and fine-tuning on a related task of emotion recognition, 
they effectively enhanced the recognition and assessment capabilities of depression, particularly in identifying 
depression in females. Besides pretraining on datasets in similar domains, leveraging large models trained with 
self-supervised learning is also a viable choice.

In practical applications, choosing large models trained with self-supervised learning can offer rich speech 
representations for depression detection tasks. This approach involves pretraining on unlabeled speech data by 
automatically generating labels, thus learning more generalized feature representations. Following pretraining, 
fine-tuning the model for a specific depression detection task helps enhance its performance in the target domain. 
Pepino et al.30 introduced a method that leverages features from various layers of the pretrained wav2vec 2.0 
model and a trainable weighted average layer for speech emotion recognition tasks, achieving significant perfor-
mance improvement. The study also found that fusing features of the wav2vec 2.0 model with a set of prosodic 
features can result in additional performance improvement. Through the utilization of CNN and pretrained 
models such as Wav2Vec 2.0 and BERT to model both speech and language, a study31 observed that speech 
demonstrates a greater capacity to differentiate Parkinson’s disease patients compared to language. Chen et al.32, 
with the limited DiCOVA dataset, achieved good results in COVID-19 diagnosis tasks by combining supervised 
and unsupervised pretraining methods, using the wav2vec 2.0 model to extract high-level features. Nowakowski 
et al.33 emphasized that in situations where labeled data for the target language is exceedingly scarce, fine-tuning 
a pretrained speech representation model (such as wav2vec 2.0) trained on multiple languages can significantly 
enhance its performance in speech transcription tasks.

The above-mentioned studies have conclusively demonstrated the superiority of transfer learning, provid-
ing more robust feature representations for tasks with limited samples. Therefore, we are investigating ways to 
optimize the performance of the wav2vec 2.0 model in SDD to tackle the low-resource challenge.

Materials and methods
Problem definition
We denote the raw speech data of the i-th participant in the dataset as the variable xi . Each variable x corresponds 
to a real state label yi , where yi belongs to the set {0, 1} , with yi =0 indicating normal and yi =1 indicating depres-
sion. Our goal is to utilize deep learning techniques to extract features related to depression from xi and predict 
the depression status yi for each participant.

The proposed method framework, illustrated in Fig. 1, comprises four key steps: audio preprocessing, frame-
level feature extraction, segment-level feature extraction, and depression classification. The proposed model’s 
framework consists of three main components:(1) preprocessing, segmenting the audio signal into fixed time 
intervals; (2) Intra-segment feature extraction, extracting frame-level features from wav2vec in each segment, 
which undergo one-dimensional convolution and attention pooling for enhanced representations; (3) individual-
level depression prediction for each segment using LSTM and self-attention mechanisms based on learned 
features. Initially, we segment the preprocessed audio signal xi into fixed time lengths. Assuming ’ M ’ sections 
in each audio segment, the segmentation is denoted as xi = {si,1, ..., si,j , ..., si,M}(j ∈ [1,M] ), where si,j represents 
the jth speech segment after preprocessing for the ith subject. Subsequently, we extract frame-level features from 
each segment si,j . Assuming ’ N ’ frames in each speech segment, it can be expressed as si,j = {h1, · · · , hn, · · · , hN }
(n ∈ [1,N] ), where hn signifies the feature vector of the nth frame in the segment, with each frame possessing 
’d’ dimensions. Thus, si,j is a two-dimensional matrix of n× d . Following this, a convolutional neural network is 
employed to derive paragraph-level advanced features ci,j , which are then compressed into a one-dimensional 
feature vector vi,j through a pooling layer. At this stage, each subject is represented as xi = {vi,1, vi,2, ..., vi,j} , where 
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vi,j denotes the final advanced feature representation of each segment. Finally, we construct a temporal predic-
tion model utilizing LSTM and a self-attention mechanism. Leveraging the features from all segments for each 
subject, we predict the mental state yi . The aforementioned definitions will maintain consistency throughout 
this method, and needless repetition shall be avoided.

Speech preprocessing
In this study, our focus is exclusively on analyzing the speech of the subjects, with the exclusion of all non-subject 
segments, including the interviewer’s voice, silent intervals, and background noise. The entire speech corpus is 
then partitioned into fixed-duration, non-overlapping segments while preserving the original temporal sequence. 
Based on prior research outcomes21,34, we determine the optimal segment length to be 7 s through experimental 
enumeration, a conclusion that aligns with our experimental findings. When handling speech sequence data, a 
common preprocessing step involves standardizing the segment length. This not only establishes a consistent 
input size for the model, thereby enhancing computational efficiency, but also augments the number of training 
samples. Moreover, in comparison to methods reliant on semantic content for segmentation in text, this approach 
is more succinct, necessitating no additional trimming or superfluous operations. As a result, it maximizes the 
inclusion of all speech segments from the subjects.

Segment‑level feature extraction
Based on wav2vec 2.0 frame‑level feature extraction
Wav2vec 2.035 stands as a self-supervised learning framework specifically crafted for extracting robust repre-
sentations from raw speech signals. The fundamental concept underlying Wav2vec 2.0 involves formulating 
self-supervised training objectives through vector quantization, extensive input masking, and the utilization 
of a contrastive learning loss function during training. The architectural representation of the model is illus-
trated in Fig. 2. The model takes segmented speech sequence fragments {si,1, ..., si,j , ..., si,M} from the original 
audio and feeds them into a multi-layer convolutional feature encoder. This encoder transforms the input frag-
ments into latent speech representations with a frame length of 25 ms and a frame shift of 20 ms, resulting 
in {Z1,Z2, · · · ,ZT } . Consequently, all audio data in this study is upsampled to 16 kHz to adhere to the input 
requirements of wav2vec 2.0.Subsequently, the latent representations are input into the context encoder, which 
captures sequential information and outputs the final speech representations {h1, · · · , hn, · · · , hN } . The context 
encoder comprises multiple layers of Transformer encoders, categorized into the base model (12 layers) and the 
large model (24 layers) based on the number of layers employed. The model achieves commendable performance 
through pretraining on a substantial volume of unlabeled speech data, followed by fine-tuning on annotated 
speech data tailored to specific tasks.

In this investigation, we perform a comparative analysis between the original Wav2vec 2.0 base model and 
the Wav2vec 2.0 large model. Our approach involves inputting preprocessed speech data into both models and 
separately fine-tuning the last layer and all layers to derive the final speech representations. Fine-tuning of the 
Transformer layers within the Wav2vec 2.0 network is carried out while maintaining the integrity of the lower 
convolutional layers. Subsequently, the output of all Transformer layers for each audio segment is aggregated by 
summation, yielding the Wav2vec 2.0 feature sequence for the audio. This process ensures that the contributions 
from each Transformer layer are integrated to produce a comprehensive representation of the speech content 
in the audio segment.

Moreover, a significant association exists between depression and emotions. Wu et al.36 investigated depres-
sion detection by employing pretraining features derived from an emotion recognition model. Their proposed 
approach, termed emotion transfer, notably enhanced the model’s performance in detecting depression. Moti-
vated by this study, we conducted comparative experiments by utilizing a model fine-tuned on the IEMOCAP 
emotional dialogue dataset.

Figure 1.   The proposed model’s framework consists of three main components: (1) preprocessing, segmenting 
the audio signal into fixed time intervals; (2) Intra-segment feature extraction, extracting frame-level features 
from wav2vec in each segment, which undergo one-dimensional convolution and attention pooling for 
enhanced representations; (3) individual-level depression prediction for each segment using LSTM and self-
attention mechanisms based on learned features.
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1D‑CNN and attention pooling layer
To generate sophisticated feature representations of speech signals, we employed an acoustic feature extrac-
tion method that integrates both Convolutional Neural Network and self-attention pooling. This approach is 
designed to yield high-level representations of speech signals. The detailed network structure is depicted in the 
right portion of Fig. 2.

Initially, we established a sequential model aimed at extracting advanced features from each frame of the 
audio. This model consists of three convolutional blocks, each composed of a 1-D convolutional layer, a ReLU 
activation function, and a dropout layer. The number of filters for these convolutional layers is individually set 
to C = [80, 80, 80] . To introduce non-linearity and address overfitting, each convolutional layer is succeeded by 
ReLU and a random dropout layer. The input dimension of the convolutional layers corresponds to the audio 
feature dimension, while the output dimension is pre-defined as the hidden layer dimension. We incorporated 
an average pooling layer to extract higher-level features by reducing the time dimension. The convolutional 
layers execute convolution operations by sliding a fixed-size window over the input data, extracting features 
within the window, and mapping these features to the subsequent layer. For each speech sequence segment 
si,j = {h1, · · · , hn, · · · , hN } , we applied one-dimensional convolutional operations, yielding the advanced feature 
sequence Ci,j = {h1′, · · · , hn′, · · · , hN ′} , as depicted in Eq. (1).

where conv1d represents the one-dimensional convolution function, K represents the size of the convolutional 
kernel, resulting in the output tensor C , d signifies the compressed feature dimension, and T denotes the dura-
tion of the speech.

Subsequently, acknowledging that each frame of every audio segment encapsulates distinct information, 
pooling operations become instrumental in extracting comprehensive insights from frame-level features. Con-
sequently, we introduced pooling layers to derive global features across speech segments. At this juncture, we 
evaluated three distinct pooling methods: max pooling, average pooling, and attention pooling. These methods 
contribute to capturing essential information in the audio sequence, thereby augmenting the expressiveness of 
the features.

Average Pooling: For each audio segment Ci,j , the feature values of all frames within this audio are summed 
and then divided by the number of frames to yield the average value, serving as the feature representation for 
each audio segment, as illustrated in Eq. (2).

Max pooling: For each audio segment Ci,j , select the maximum value of the feature values of all frames on 
this audio as the feature of each audio segment, as indicated in Eq. (3).

Attention Pooling: The incorporation of an additive attention mechanism enhances the network’s focus 
on significant frames within the audio, thereby boosting feature expressiveness in the pooling process. For 
each audio segment Ci,j , a weighted sum of frame-level features is conducted to generate the ultimate feature 

(1)Ci,j = conv1D(si,j ,K) ∈ RT×d

(2)AveragePoolingCi,j
=

1

N

∑N

n=1
hn′

(3)MaxPoolingCi,j
= maxNn=1hn′

Figure 2.   The framework for intra-segment feature extraction is structured as follows: on the left side, the pre-
trained model of wav2vec2.0 is depicted, with frozen encoding layers and fine-tuning employed for the decoding 
layers. On the right side, a combination of 1D-CNN and attention pooling layer is utilized to discern the varying 
significance of depression-related information present in different frames of speech.
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representation for that audio segment. This process dynamically adjusts weights in the time series to accentuate 
essential contextual information. Given an encoded sequence Ci,j = {h1′, · · · , hn′, · · · , hN ′} , the speech-level 
feature representation Vi,j is computed using the following formula:

where the matrix wc represents a learnable weight matrix, dynamically capturing the significance of each frame 
feature through weighted averaging to derive the final speech-level feature. This adaptive mechanism enables 
the network to focus more effectively on segments of the speech deemed critical for the task, resulting in feature 
vectors with heightened semantic expressiveness. Ultimately, the final feature representation is fed into the 
downstream network to assimilate global temporal information.

Depression prediction model incorporating temporal information
The LSTM model we have established adeptly captures both short-term and long-term temporal correlations 
between segments across the entire dialogue. This is achieved through the orchestrated interplay of the forget 
gate, input gate, and output gate within LSTM. These components effectively manage the neuron state, ensur-
ing the orderly transmission of relevant sequence information. Moreover, LSTM addresses challenges such as 
gradient explosion and gradient disappearance, which can arise when dealing with lengthy time series37. While 
LSTM demonstrates commendable predictive capabilities for the temporal dynamics of time series data in SDD, 
it encounters the potential challenge of forgetting early learning content in the context of long sequence samples. 
This could lead to the loss of crucial information, ultimately impacting predictive accuracy. The input for each 
participant xi based on the LSTM-based time series extraction network is outlined as follows:

The Self-Attention Mechanism38 proves to be a potent tool for capturing dependencies among different seg-
ments within extended dialogue sequences. It excels at assigning distinct attention weights to individual speech 
features, thereby enhancing the model’s comprehension of the depressive tendencies embedded in the entire 
conversation. Introducing the Self-Attention Mechanism effectively underscores the pivotal features influenc-
ing the prediction outcomes of depressive emotions. For the output sequence xi′ = {vi,1′, vi,2′, ..., vi,j′} from the 
LSTM model, three matrices are derived through linear transformations, specifically the Query vector ’ Q ’, Key 
vector ’ K ’ and Value vector ’ V  ’. The interplay among these vectors is calculated to yield the weight output, and 
the calculation process is expressed as follows:

where, dK represents the dimension of ’K’ and the Softmax function is applied to normalize the weights within 
the range [0,1]. The resulting context vector xi′ is obtained through the given equation and shares the same 
size as the input xi . Subsequently, the sum of the values of xi′ is fed into the classification layer, undergoes a 
linear transformation, and produces the binary classification result yi′ . The model architecture of this segment 
is illustrated in Fig. 3, encompassing input segment-level features, an LSTM layer, a self-attention mechanism 
layer, and a classification layer.

Result
Datasets description
The dataset employed in this study is the widely used Distress Analysis Interview Corpus with Wizard-of-Oz 
(DAIC-WOZ)39 and CMDC40.

DAIC-WOZ dataset comprises 189 clinical interviews meticulously crafted to facilitate the diagnosis of 
psychological distress conditions, including anxiety, depression, and post-traumatic stress disorder. The dataset 
is divided into a training subset (107 interviews), a development subset(35 interviews), and a test subset(47 
interviews), amounting to a total of 50 h of data. The majority of prior studies conduct validation on the develop-
ment set. For the sake of result comparison, our experiments are conducted on both the training subset and the 
validation subset. The collected data is multimodal, encompassing text, images, and speech information, with a 
focus on utilizing speech information as the experimental data. Each speech segment has an average length of 
15 min, and a consistent sampling rate of 16 kHz is maintained throughout the dataset.

The CMDC dataset is a clinical depression dataset based on confirmed cases in Chinese language corpus, aim-
ing to support screening and assessment of severe depression in China. This dataset also includes semi-structured 
interviews covering visual, auditory, and textual features. Unlike the DAIC-WOZ dataset, the CMDC dataset has 
predetermined twelve fixed questions during the interview. The CMDC dataset consists of 78 samples, including 
26 cases of severe depression patients and 52 healthy individuals. Compared to DAIC-WOZ, the CMDC dataset 
is smaller in scale, further highlighting the scarcity of depression data.

Evaluation metrics
Each participant contributes PHQ-8 scores, along with dichotomous labels. The PHQ-8 score indicates the degree 
of depression for each subject, while dichotomous labels signifies whether the subject is classified as depressed. 
The central aim of this paper is to predict whether the subject is a depression patient. Consequently, the evalu-
ation metrics utilized in this study include accuracy (P), recall (R), and F1 score, area under the curve (AUC). 
The higher the value, the better the performance.

(4)Vi,j = Softmax(wcCi,j
T )Ci,j

(5)xi′ = lstm([vi,1, vi,2, ..., vi,j])

(6)SelfAttention(x′i) = Softmax

(
QKT

√
dK

)
V
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Experimental settings
All experiments were executed on the Linux operating system, utilizing an NVIDIA V100 GPU, and implemented 
using the PyTorch framework. To optimize the fine-tuning of the audio pre-training model, we employed a small 
learning rate of 1e-5, while a learning rate of 0.006 was utilized for downstream tasks. The optimization process 
involved using an Adam optimizer with a weight decay of 0.001. The batch size of the training subset was set to 
32, and the number of training epochs was defined as 200. The training process featured an automatic termina-
tion mechanism, activated when the model’s performance on the validation set showed no significant improve-
ment over 10 consecutive training epochs. Additionally, we employed the OpenSMILE tool to extract the IS09 
emotion acoustic feature set. This set comprises 16 low-level descriptors (LLDs), such as Mel-frequency cepstral 
coefficients and zero-crossing rate, resulting in 32 LLDs computed by first-order differences. Subsequently, 12 
statistical functions were applied to these descriptors to derive a 384-dimensional sentence-level feature repre-
sentation. We utilized this representation for comparison with our fine-tuned features.

Comparison with other methods
In this section, we conducted experiments comparing the DAIC and CMDC datasets in two different languages, 
as well as comparing the effects of different input features under the same model, to verify the robustness and 
effectiveness of our approach.

Performance evaluation on the DAIC‑WOZ dataset
Table 1 presents a comprehensive comparison of our proposed method with recent approaches for depression 
detection based on speech, particularly on the DAIC-WOZ dataset. Our method achieves superior performance 
in terms of precision and F1 score, attaining values of 84.49% and 79.00%, respectively. In contrast to methods 
such as Chlasta et al.41, who generates additional training samples by cutting and randomly sampling audio 
files, and Rejaibi et al.29, who adopts a transfer learning strategy by pretraining on the RAVDESS database, our 
approach surpasses them, showcasing enhanced performance. Moreover, Othmani et al.42 address sparse data 
issues through audio augmentation techniques, yet our model outperforms them significantly, exhibiting an 
average 16.62% higher F1 score. This superiority is attributed to our use of the more generalizable pretraining 
model, wav2vec2.0, extensively trained on large-scale datasets, enabling more accurate capture of key features 
in speech data. Comparisons with Ravi et al.43, who use the Wav2vec2.0 model as a feature extractor and employ 

Figure 3.   Temporal depression prediction model between inter-segment based on LSTM and self-attention 
mechanism.
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adversarial learning, demonstrate our model’s outperformance in F1 score by 9.8%. This underscores the effec-
tiveness of fine-tuned features in enhancing performance.

In contrast to Du et al.21, who extract MFCC and LPC features and use 1D-CNN and LSTM, our similar struc-
ture achieves significant improvements in precision, recall, and F1 score, outperforming them by 17.79%, 10.29%, 
and 4.4%, respectively. Examining the confusion matrix in Fig. 4 reveals a notable pattern: our model exhibits 
a higher count of true positives, contrasting with the comparator model that demonstrates a higher occurrence 
of false positives. This distinction suggests that our model is more discerning, effectively distinguishing non-
depressive states. This increased discriminative ability enhances the model’s reliability for practical applications, 
contributing to a heightened early detection rate for patients. This highlights the effectiveness of introducing 
wav2vec2.0 features, addressing the low-resource challenge, and incorporating a self-attention mechanism into 
the LSTM model to enable the model to ignore redundant information. Finally, despite Zhou et al.26 achieving 
the highest recall of 83% through the fusion of various descriptors, BoAW, functional features, and spectrograms, 
their precision and F1 score fall below our model’s performance. Their segmentation approach sacrifices tem-
poral information of the dialogue, while our model successfully retains richer long-term information, resulting 
in superior precision and F1 score.

Performance evaluation on the CMDC dataset
Table 2 presents the comparison results of our proposed method with recent speech-based depression detection 
methods on the CMDC dataset. Our method achieved the best performance in terms of precision and F1 score, 

Table 1.   A comparison of the proposed method with other methods for SDD on DAIC-WOZ dataset. 
Boldface highlights the highest score.

Method Feature Precision Recall F1-score

ResNet41 (2019) spectrogram 57.14% 57.14% 57.14%

LSTM29 (2022) MFCC 73.50% 64.50% 64.00%

EmoAudioNet42 (2021) MFCC + Spectrogram - - 66.00%

DepAudioNet43 (2022) wav2vec 2.0 - - 69.20%

MSCDR21 (2023) LPC + MFCC 66.70% 66.70% 74.60%

CNN + Channel-wise Attention26 (2022) MFCC + Spectrogram + eGeMAPs 71.00% 83.00% 77.00%

Ours
is09_emotion 79.60% 68.66% 70.09%

wav2vec 2.0 84.49% 76.99% 79.00%

Figure 4.   Comparative analysis of confusion matrices in depression detection: a comprehensive evaluation 
between the present study (left side) and DU et al. (right side). ND represents non-depression and D represents 
depression.

Table 2.   A comparison of the proposed method with other methods for SDD on CMDC dataset. Boldface 
highlights the highest score.

Method Feature Precision (%) Recall (%) F1 (%)

Unsupervised encoder + Transformer44 (2022) MFCC 92.00 83.00 87.00

OURS
is09_emotion 82.31 79.17 80.36

Wav2vec 2.0 94.83 88.33 90.53
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reaching 94.83% and 90.53%, respectively. Compared to methods using acoustic prosodic features extracted 
from IS09, our precision increased by 12.51%, recall increased by 10.16%, and F1 score increased by 10.17%.

Comparing the binary classification performance of different acoustic features
In this section, we further compared the binary classification performance of two different features in the same 
model. Through the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) 
metric, we evaluated the overall performance of the model. The ROC curve shows the performance of the clas-
sifier at different thresholds, where the closer the ROC curve is to the upper left corner, the better the classifier’s 
performance. From Fig. 5, it can be seen that the fine-tuned wav2vec features are positioned more to the left and 
have a higher AUC value. It is worth noting that, on the CMDC dataset, although there are some misclassifica-
tions, the model performs well in terms of the AUC metric, reaching the highest value of 1, indicating that the 
model can perfectly rank positive instances ahead of negative instances, showing a high classification ability.

Comparison of different acoustic features
To assess the performance of our model in acoustic feature recognition, we conducted a clustering analysis, 
focusing on three aspects: the is09_emotion feature set, features extracted by wav2vec2.0, and those extracted 
by the fine-tuned wav2vec2.0. The is09_emotion feature set offers abundant prosodic features, and the clustering 
analysis results are shown in Fig. 6(a). As can be seen from the figure, the clustering effect is not satisfactory, 
with blurred boundaries between clusters, indicating that the model is unable to effectively divide the data into 
meaningful groups. After clustering the features extracted by the raw-wav2vec2.0 model, the results are presented 
in Fig. 6(b). Compared to the is09_emotion feature set, there is some improvement, but still many features are 
incorrectly assigned to the wrong clusters. The fine-tuned wav2vec2.0 achieved significant improvement in feature 
clustering, and the results are shown in Fig. 6(c). We observed that the feature points clustered into two tightly 
connected groups, with distinct boundaries between them. This indicates that the fine-tuned wav2vec2.0 model 
demonstrates enhanced speech representation capability, effectively distinguishing features between individuals 
with depression and healthy controls.

Ablation analysis
In this section, we perform a thorough validation of each module’s functionality through an ablation study of the 
model modules. The ablation experiments are conducted with a consistent setup, where configurations remain 
uniform, and variations are constrained to the modules under scrutiny.

Comparison of fine‑tuning strategies on depression detection performance
In this section, we meticulously compare the performance of fine-tuned and non-fine-tuned models in the 
task of speech-based depression detection through A and B experiments. Experiment A employs a pre-trained 
model without fine-tuning on depression speech data, whereas Experiment B incorporates fine-tuning on the 
depression speech dataset. This design aims to assess the effectiveness of domain-specific fine-tuning and the 
direct application of pre-trained models in the target domain. The experimental results are presented in Table 3.

Foremost, it is crucial to highlight that the A and B experiments demonstrate a noteworthy performance 
improvement in fine-tuned models compared to non-fine-tuned models. This aligns with expectations, indicating 
that fine-tuning more effectively captures depression-related speech features, thereby enhancing performance in 
the task of SDD. Additionally, our observation reveals that the large model outperforms the base model, likely 
owing to its increased parameter count, allowing for a more comprehensive learning of features in the target 
domain and subsequently improving depression detection accuracy. This observation is consistent with the 
prevailing perspective in the field of deep learning, where larger models typically exhibit better performance on 
complex tasks. Furthermore, we note that the wav2vec 2.0 model, when fine-tuned on the IEMOCAP emotional 

Figure 5.   ROC curves were generated for various feature inputs using the same model. The left side represents 
the DAIC-WOZ dataset, while the right side corresponds to the CMDC dataset.
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analysis dataset, using the last layer as feature input, demonstrates good precision but relatively lower recall and 
F1 score. This underscores the significance of fine-tuning in the depression detection task to more effectively 
adjust to the speech expression features of the target domain and enhance model performance. Finally, the results 
suggest that, within the fine-tuning strategy, fine-tuning all layers surpasses the performance of fine-tuning 
only the last layer. This indicates that, in the depression detection task, adjusting features at deeper levels more 
comprehensively captures depression-related information in speech data. In contrast, fine-tuning only the last 
layer may not sufficiently capture domain-specific features, thus limiting performance improvement.

Comparison with different pooling strategies
In addition to fine-tuning, we extended our investigation to compare various pooling strategies. Figure 7 illus-
trates that attention pooling outperformed max pooling and average pooling in F1 score by 4.69% and 2.26%, 
respectively. While average pooling has been proven effective in capturing features of the entire speech segment, 
and max pooling is adept at highlighting the most prominent features within the segment, attention pooling 
demonstrated superior performance. Unlike average pooling, attention pooling facilitates the model in focus-
ing on important frame information within speech segments, contributing to enhanced model accuracy. In the 

Figure 6.   Clustering results of is09_emotion (a), raw-wav2vec2.0 (b) and fine-tuning wav2vec2.0 features (c).

Table 3.   Comparison of fine-tuning strategies on depression detection performance.

Num_layers Pretrained_model Precision (%) Recall (%) F1-score (%)

A.frozen The last layer

wav2vec2-base 68.00 66.30 66.86

wav2vec2-large 68.30 68.30 68.30

wav2vec2-IEMOCAP 83.82 54.17 48.04

B.fine-tune

The last layer
wav2vec2-base 64.32 62.14 70.86

wav2vec2-large 75.00 72.64 73.48

All layer
wav2vec2-base 88.33 70.83 72.81

wav2vec2-large 84.49 76.99 79.00
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context of depression detection, a more comprehensive consideration of speech segment information is shown 
to contribute to improved model performance.

Comparison with and without self‑attention mechanism
To evaluate the effectiveness of the self-attention module in selecting valid information in speech segments, we 
conducted an ablation study by excluding this module from our proposed method. Specifically, in the absence 
of the self-attention module, we utilized the output of the last step of the LSTM model and connected it to a fully 
connected classification layer to obtain the classification result. Table 4 illustrates that the model integrated with 
self-attention surpasses the performance of the model lacking self-attention. This outcome suggests that, in the 
task of speech-based depression detection, emotional expression may concentrate in specific speech segments, 
and the self-attention mechanism proves more effective in capturing these crucial pieces of information.

Comparison of different audio lengths
We selected the analysis of audio segments between 4 and 9 s to explore the influence of different audio lengths 
on model performance. This range is a commonly used segmentation method in current literature. For each 
segmentation strategy, we applied the aforementioned fine-tuning method and the optimal model structure for 
validation. Each segmentation experiment was repeated 5 times, and the averages were taken. The experimental 
results are depicted in Fig. 8. It is observed that with the increase in audio segment duration, the model perfor-
mance shows an upward trend before 7 s, reaching a performance plateau around 7 and 8 s. This suggests that 
shorter speech segments may disrupt the continuity of emotions, while excessively long segments may result 
in insufficient sample quantity. Considering the impact of audio length on the overall sample size and model 
computational efficiency, we selected 7 s as the optimal duration.

Discussion and limitation of our work
In this study, we conducted an extensive exploration of the potential application of the audio pre-training model 
wav2vec 2.0 in the context of SDD. Through comparisons with traditional methods, we validated that the wav2vec 
model, after transfer learning on tasks with limited speech data, significantly outperforms traditional acous-
tic feature representations, demonstrating advanced feature representation. This underscores the feasibility of 
employing speech-based depression detection in low-resource scenarios. Moreover, our implementation of abla-
tion experiments unveiled a critical insight: not all depressed patients exhibit obvious depressive characteristics in 
their speech, emphasizing the necessity of extracting key information from dialogues. Concurrently, we observed 
that traditional feature representations often overlook the temporal relationships between frames. To address 
this, we introduced an attention pooling structure, which, in comparison to traditional statistical functions, more 

Figure 7.   The impact of different pooling methods on model performance.

Table 4.   Comparison between the model with and without self-attention mechanism.

Method Precision Recall F1-score

Without self-attention 82.14% 72.83% 74.72%

With self-attention 84.49% 76.99% 79.00%
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effectively captures the temporal relationships between frames, yielding more expressive sentence-level vector 
representations for downstream tasks.

Despite these advancements, our work is not without limitations. Firstly, the integration of multiple acous-
tic features remains an area for improvement. While our study generates depression acoustic features based 
on wav2vec through transfer learning, the potential benefits of effectively fusing various acoustic features to 
enhance model performance and robustness cannot be overlooked. Secondly, the real-time aspect of depression 
detection systems requires addressing. With the prevalence of smart devices and the Internet of Things, future 
research should prioritize the advancement of real-time speech analysis systems for immediate and personalized 
depression risk assessment. The key challenge lies in achieving the real-time deployment of complex machine 
learning technologies45, such as large pre-trained models like wav2vec 2.0. We must explore embedding these 
large models into real-time analysis solutions and ensure their effectiveness in real-time environments through 
adaptive data transformations. Solving this issue is crucial for the practical application of depression detection 
technology in real-world scenarios.

Conclusion and future work
In the realm of speech-based depression detection, this study has yielded significant results through thorough 
research and optimization of the wav2vec 2.0 model. The comparison between fine-tuned and non-fine-tuned 
models revealed that fine-tuned models excel in capturing speech features related to depression, consequently 
enhancing detection performance. Particularly noteworthy is the finding that, within the fine-tuning strategy, 
fine-tuning all layers surpasses the performance of fine-tuning only the last layer, underscoring the importance 
of adjusting features at a deeper level to adapt to the task. Regarding model structure, our exploration of differ-
ent pooling strategies indicated that attention pooling achieves a higher F1 score compared to max pooling and 
average pooling. The incorporation of attention mechanisms proved instrumental in enhancing model accuracy. 
Furthermore, the ablation study confirmed the efficiency of the self-attention module in capturing key informa-
tion within speech segments. This study not only provides guidance for the task of SDD but also imparts valuable 
experience and insights for employing deep learning in the domain of speech emotion analysis. Our work has not 
only achieved superior performance in acoustic feature extraction but has also presented an effective approach 
to address the issue of data sparsity.

Future endeavors will delve into exploring more effective feature extraction methods and strive to integrate 
multiple acoustic features efficiently, thereby further improving the accuracy and robustness of speech-based 
depression detection. Additionally, efforts will be directed towards overcoming the challenge of real-time imple-
mentation by investigating approaches such as lightweight models or employing model pruning techniques. 
Finally, because of the high temporal resolution, non-invasiveness, and harmlessness of electroencephalography 
(EEG)46, we plan to incorporate EEG signals into our considerations and conduct comprehensive analysis in 
combination with acoustic features. This approach is expected to lead to a more comprehensive and accurate 
depression detection method, which will provide strong support for early diagnosis, treatment, and intervention 
of depression, and thereby improve patients’ medical experience and quality of life.

Data availability
The DAIC-WOZ dataset is publicly available at (https://​dcaps​woz.​ict.​usc.​edu/). The CMDC dataset is publicly 
available at (https://​ieee-​datap​ort.​org/​open-​access/​chine​se-​multi​modal-​depre​ssion-​corpus).

Figure 8.   Comparison of performance across different segment lengths.

https://dcapswoz.ict.usc.edu/
https://ieee-dataport.org/open-access/chinese-multimodal-depression-corpus
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