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A blind image super‑resolution 
network guided by kernel 
estimation and structural prior 
knowledge
Jiajun Zhang 1,6, Yuanbo Zhou 1,6, Jiang Bi 2, Yuyang Xue 3, Wei Deng 4, Wenlin He 2, Tao Zhao 2, 
Kai Sun 2, Tong Tong 1, Qinquan Gao 1* & Qing Zhang 5*

The goal of blind image super-resolution (BISR) is to recover the corresponding high-resolution 
image from a given low-resolution image with unknown degradation. Prior related research has 
primarily focused effectively on utilizing the kernel as prior knowledge to recover the high-frequency 
components of image. However, they overlooked the function of structural prior information within 
the same image, which resulted in unsatisfactory recovery performance for textures with strong self-
similarity. To address this issue, we propose a two stage blind super-resolution network that is based 
on kernel estimation strategy and is capable of integrating structural texture as prior knowledge. In 
the first stage, we utilize a dynamic kernel estimator to achieve degradation presentation embedding. 
Then, we propose a triple path attention groups consists of triple path attention blocks and a global 
feature fusion block to extract structural prior information to assist the recovery of details within 
images. The quantitative and qualitative results on standard benchmarks with various degradation 
settings, including Gaussian8 and DIV2KRK, validate that our proposed method outperforms the 
state-of-the-art methods in terms of fidelity and recovery of clear details. The relevant code is made 
available on this link as open source.

The task of image super-resolution (SR) is to reconstruct clear high-resolution images from low-resolution 
images. Image degradation is often considered as the inverse problem of SR, as it involves mathematically mod-
eling the processes that deteriorate the quality of image. According to previous works1–5, the pipeline of degrada-
tion is typically modeled as Eq. (1).

where x represents the high resolution (HR) image, while y corresponds to the low resolution (LR) image. 
The operator ∗ denotes the two-dimensional convolution operation and kh is the Gaussian kernel, ↓s means 
downsampling operation with a scale factor of s, n refers to additive Gaussian white noise (AGWN). The clas-
sical SR methods6–8 assumes that the degradation pipeline is a single bicubic downsampling. However, if the 
predefined degradation does not exactly match the practical situation, the reconstructed HR image may exhibit 
unpleasant artifacts1. Therefore, recovering shape edges and rich details in the case of LR images with unknown 
degradation1,2,5,9–12, is an extremely meaningful and challenging task.

The most common blind SR schemes are typically divided into two stages: the first stage is to model the 
kernel explicitly or implicitly through optimizing a deep neural network from the degraded image1–5,9, and the 
second stage inputs the LR image combined with additional degradation prior through the SR network to obtain 
reconstructed HR image. In first stage, the mismatch between estimated blur kernel and the actual one can lead 
to over-smoothed or over-sharpened results1–3. An available solution is to perform accurate estimation of the 
kernel1,9 and robust integration with the SR backbone2,3,5.

(1)y = (x ∗ kh)↓s + n,
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Recent research1–5,9 has mainly concentrated on the first stage of kernel modeling. DCLS3 proposes a robust 
dynamic kernel estimation network and introduces a module to achieve degradation representation embedding. 
However, its SR network has limited ability to represent spatial features, making it difficult to recover struc-
tural information well. Fig. 1 shows the reconstruction results of state-of-the-art methods and our method for 
structural textures. It can be observed obviously that current methods lacks the combination of structural prior 
knowledge, making the ambiguous details and edges in the recovered SR image.

It is broadly recognized that non-local operations15,16, which introduce self-similarity priors, are significant 
for recovering recurring textures within the same image. Moreover , the spatial attention and channel attention 
mechanisms can effectively capture local features. Motivated by these observations, we propose a network com-
bined kernel estimation and structural prior knowledge that can leverage both local spatial and global features 
to boost reconstruction performance for images with high self-similarity. To be specific, we employ the deep 
constrained least squares3 (DCLS) block as the module to deblur the original feature fo , in order to obtain a clean 
feature fc . Next, we divide the original feature fo into two vectors along the channel dimension: f̂o , and fo . These 
three vectors fc , fo , and f̂o , are together fed into a series of triple path attention blocks (TPAB) to perform deep 
feature extraction and utilize local spatial information to compensate for the gap caused by kernel estimation. 
Furthermore, the global texture fusion block (GTFB) adaptively adjusts the self-similarity scores of non-local 
features to achieve the embedding of global structural prior. We have performed several standard experiments on 
benchmarks with various degradation settings to evaluate our proposed method. The quantitative and qualitative 
results demonstrate that our network has excellent performance in all datasets, particularly for images with rich 
structural information. The main contributions of this paper are summarized as follows:

•	 We propose a blind SR network, capable of combining kernel estimation with structural prior knowledge to 
reconstruct the textures with high self-similarity.

•	 We employ a channel split strategy to take advantage of the original local spatial and channel features in order 
to compensate for artifacts generated by the kernel estimation and the deblurring operation.

•	 We design a global texture fusion block that aggregates local spatial features with non-local operations to 
enhance recovery performance in images with high self-similarity.

•	 Extensive experiments with various degradation settings demonstrate that our method achieves outstanding 
performance in the task of blind SR.

Related work
SR of bicubic and multiple degradation
The pioneering work of SRCNN6 has successfully motivated interest among researchers in the field of SR. Inspired 
by hierarchical architecture7,8,17 and robust loss function11,12,18–21, CNN-based methods have achieved outstanding 
performance on predefined bicubic downsampling in the SR task, while the degradation process in the real-world 
are generally unknown and complicated11,12. In practical applications, if the bicubic kernel assumed by classical 
methods does not match the actual degradation kernel, it will lead to unpleasant artifacts in the reconstructed 
SR image, severely affecting the visual perception quality. This discrepancy between the assumed kernel and the 
actual kernel give rise to domain gap22–24, which is a challenge in practical applications of SR.

Another approach to non-blind SR method4,25–28 is designed to super-resolve multiple types of degraded 
images with corresponding kernels. These methods make classical SR networks more robust and applicable to a 
wider range of real-world scenarios. FFDNet25 utilizes a noise level map as additional input, allowing it to handle 
various noisy images affected by different types of degradation. Similarly, SRMD4 proposes a kernel stretching 
strategy that incorporates the two degradation parameters, the blur kernel k and the noise level n, together with 
the LR as input to SR network. Zhang et al.29 combines learning-based methods with model-based methods to 
design an end-to end unfolding networks that can handle various types of degraded images with different scales. 
UDVD27 introduces dynamic convolution in the kernel estimation network, where the parameters of the filters 
can be dynamically adjusted based on the adaptivity of the input degraded image. KMSR26 utilizes generative 
adversarial networks to learn the distribution of kernels in real degraded images. Inspired by KMSR26, Son 
et al.28 propose an adaptive downsampling model that employs an unsupervised approach to simulate the actual 

Figure 1.   Blind super-resolution of Img100 from DIV2KRK9, for scale factor 4. Based on the fusion of local and 
global features, our method is effective in restoring sharp and clean edges, and outperforms previous state-of-
the-art approaches such as ZSSR13, IKC1, AdaTarget14, DANv22, and DCLS3.
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degradation process of real-world images. They then synthesize paired data and develop an SR network capable 
of handling various types of degradation.

SR of unknown kernel
The most common approach for the blind SR task is based on kernel estimation methods1–5,9,30. KernelGAN9 
utilizes cross-scale image similarity to accomplish kernel estimation on specific images and combined it with a 
classical method13 to achieve blind reconstruction. MANet30 further investigates spatially variant blur kernels 
in order to super-resolve objection motion and out-of-focus in real world scenarios. Gu et al.1 use an iterative 
correction method to alleviate the effects caused by the mismatch between estimated result and practical kernel. 
Luo et al.2,5 adopt an end-to-end network to alternately optimize estimator and restorer. These two methods1,2 
are effective but time-consuming owing to the elaborate optimization steps. DCLS3 reformulates a practical 
degradation model and proposes a deep constrained least squares module to operate deconvolution in order to 
achieve robust degradation awareness. In the aforementioned methods1–3,5,9,22,23, the solution is concentrated on 
modeling degradation either implicitly22,23,31 or explicitly1–5,9,10,32 without delving into the function of structural 
textures as prior knowledge. This may be a potential factor leading to the upper bound of blind SR performance.

Method
Architecture
In this subsection, we will introduce the overall architecture of our model. As shown in Fig. 2, our method 
mainly contains two stages: degradation representation embedding, and texture details recovery. The first stage 
includes the dynamic kernel estimation and deblurring operation based on the DCLS3 module. The estimator 
Ne accomplishes robust kernel estimation from degraded LR image. Next, the LR image and the estimated blur 
kernel k are jointly input into the DCLS module for deblurring. Lastly, the clean and original shallow features 
are fed into the triple path attention network to achieve local and global features fusion, which consists of triple 
path attention blocks (TPAB) and global texture fusion blocks (GTFB). Details on the pipeline of our method 
and the relevant blocks will be described in the following subsections.

Degradation representation embedding
Inspired by the work of3, our method employs the dynamic kernel estimation, as shown in Fig. 3. Given an LR 
image with unknown degradation as input, three residual blocks are applied to extract deep features fs , followed 
by global average pooling to obtain the flattened features fs . The fully connected layer maps the specific degrada-
tion information to the four various filters, ĥ0 , ĥ1 , ĥ2 , and ĥ3 , with kernel sizes set to 11× 11 , 7× 7 , 5× 5 and 
1× 1 , respectively, to adjust the receptive filed consistency with the kernel sizes of predicted kernel k. The process 
of dynamic estimation is shown in Eq. (2).

Figure 2.   The overall architecture of our network and the structure of related blocks. Given an LR image, we 
first estimate the kernel k, and feed into DCLS module to achieve degradation presentation embedding. The 
triple path attention groups utilize the clean feature fc and the chunked original feature fo and f̂o as input to 
restore the clean SR image.
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where Ik is the identity kernel, and ĥ0 , ĥ1 , ĥ2 , and ĥ3 are specific filters mapped from degradation information, 
k is the estimated kernel through Estimator Ne . The Ik is sequentially convolved with these filters, enabling the 
parameters in network Ne to vary with different degraded inputs. Meanwhile, the DCLS3 module utilizes decon-
volutional operations to obtain clean feature as Eq. (3).

where fo represents the blurry original features extracted by a 3× 3 convolution layer and three residual blocks 
from the LR image, k is the kernel predicted by the network Ne , fc represents the deblurred clean features through 
the deconvolutional operation via the DCLS3 module.

Texture details recovery
Even with introducing deconvolutional operation through the DCLS3 module, the damaged high-frequency 
information cannot be fully restored. Therefore, we propose a novel network that not only strongly extracts 
local features to compensate for the decline of high-frequency components but also incorporates non-local15,16 
operation to fuse the local and global features.

Figure 2 illustrates the proposed SR network, mainly consists of the extraction process of original features and 
the fusion process of local features with global features. A 3× 3 convolutional kernel and three residual blocks 
without batch normalization33 is used to extract original features fo as Eq. (4).

where ILR ∈ RH×W×C is an LR image as input, H and W represent the height and width of the patch that is 
cropped from a sub-image, and C is the RGB channels in the image.

In previous stages we have obtained clean features fc . FAIG34 demonstrates that one branch network without 
degradation prior can achieve comparable performance to the two-branch method with degradation informa-
tion. Although it may be reasonable to directly use the clean feature fc as input to the SR network for recovery, 
the offset of kernel estimation9,30 and insufficiency of deblurring function in the DCLS3 module would prevent 
the SR network from effectively restoring highly structured textures in the SR backbone. Therefore, we propose 
a Triple Path Attention Group (TPAG) to extract deep feature f as Eq. (6).

where the ψ(fc, fo, f̂o) represents TPAG that adopts the clean feature fc , chunked original feature fo and f̂o as 
additional inputs, hGTFB(hnTPAB) means that the group is composed of n Triple Path Attention Blocks (TPAB) and 
one Global Texture Fusion Block (GTFB). f is the deep clean feature, N is the number of TPAG in our SR network.

In addition, we further refine the deep feature f through a 3× 3 convolutional layer with the original low-
frequency feature fo connected through long skip connections7,8,35,36, as Eq. (7).

(2)k = Ik ∗ ĥ0 ∗ ĥ1 ∗ ĥ2 ∗ ĥ3,

(3)fc = DCLSdeconvolve(fo, k),

(4)fo = hReslobck(hconv(ILR)),

(5)ψ(fc, fo, f̂o) = hGTFB(h
n
TPAB(fc, fo, f̂o)),

(6)f = ψN (ψN−1(ψ2(· · ·ψ1((fc, fo, f̂o)))),

(7)ISR = hupsample(hconv(f )+ fo).

Figure 3.   The overall architecture of dynamic kernel estimation. Given an LR image input, it first generate four 
specific filters. Then, these filters convolved sequentially with an identity kernel Ik to produce a single kernel k 
with a larger receptive field corresponding kernel size.
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Finally, pixel shuffle37 serves as the upsampling module and completes the mapping from feature maps to HR 
image ISR.

Triple path attention block
Deep SR networks contain specific filters that can handle various types and levels of degraded images34. These 
specific filters, which can be used to address corresponding degradation such as noise and blur, are located at 
different positions and branches within a single SR network. Channel attention8,36,38,39 and spatial attention40,41 
mechanisms can enhance the local modeling ability. Therefore, we introduce these mechanisms as two branches 
in TPAB, allowing the network to strengthen its generalization and better handle different types of degradation.

The triple path attention blocks, consisting of residual channel attention and residual local spatial blocks, 
is shown in Fig. 2. The original shallow features fo are split into two feature maps fo and f̂o along the channel 
dimension. They are combined with the deblurred clean features fc and passed through TPABs to refine local 
texture features and compensate for the loss of high-frequency texture details. Specifically, fo and f̂o are processed 
respectively by residual channel attention branches8 and residual local spatial branches41 to extract deep local 
features. Meanwhile, fo and f̂o are concatenated with fo and fused by a convolutional layer. Lastly, the aggregated 
local features pass through a GTFB to establish connections between local and non-local features.

Global texture fusion block
Non-local15,16,42 operations are capable of capturing long-range dependencies between different parts of an image, 
addressing the limitation of receptive filed by introducing self-attention mechanisms that enable each position to 
attend to all other positions in the input data. This operation is particularly instrumental in restoring structural 
textures that exhibit strong self-similarity. Previous researchers15,42 hypothesized that non-local textures with 
higher similarity scores would be more advantageous for restoring edge information. However, they overlooked 
an objective fact that when an image suffers from severe degradation, non-local textures with low similarity 
scores may actually be more useful for restoring edges16.

Fusing the local spatial texture features without careful consideration does not significantly improve the net-
work’s ability to restore textures. Therefore, we cascade a global texture feature fusion block (GTFB) at the end 
of each TPAG. In the module, we adopt the global learnable attention block16 after the local feature fusion. The 
global learnable attention block adaptively adjusts the similarity scores of non-local textures, allowing the net-
work to effectively utilize non-local textures that previously had low similarity scores but can provide rich details.

As shown in Fig. 4, we input the feature map X ∈ RH×W×C as the input and convert X into three 1D vectors 
Q, L and V ∈ RC×HW to achieve global attention mechanism. Super-Bit Locality-Sensitive Hashing (SB-LSH) 
divides the feature map into buckets to reduce computation costs, as shown in the Eq. (8).

where M ∈ Rb×c is a randomly initialized orthogonal matrix and b is the number of hash buckets, Xi ∈ RC is the 
i − th component of Qi , �i is the index set corresponding to Qi . Next, we use learnable similarity score Xl (LSS) 
and fixed dot product similarity score Xf  (DPSS) to measure self-similarity as Eq. (9).

where Sf (Xi) = XT
i Xi , Sl(Xi) is defined as Eq. (10).

(8)�i =
{
xj|argmax(MXi) = argmax(MXj)

}
,

(9)S(Xi) = Sf (Xi)+ Sl(Xi),

Figure 4.   The details about global learnable attention16 block.
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where σ is the ReLU activation and W1,W2, b1, b2 are learnable parameters.

Loss function
Our model includes the kernel estimation task and the reconstruction task. We jointly optimize our model using 
L1 Loss Lkernel and Charbonnier Loss Lpixel , as shown in the Eq. (11).

where the Lkernel = ||k − kl|| is the L1 loss between estimated kernel k and the ground truth blur kernel kl . The 
pixel loss is defined as Lpixel =

√
(ISR − IHR)2 + ǫ , where ISR and IHR denote the super-resolved image and the 

ground-truth HR image, ǫ is a constant and usually 1× 10−6.

Experiments
Datasets and implementation details
Datasets and metrics
Following previous work1,2,5, we used the DIV2K50 (800) and the Flickr2K51 (2650) as the training data, which 
together contain 3450 2K HR images. We adopt both isotropic and anisotropic Gaussian kernels as assumed 
degradation to synthesize corresponding LR images according to Eq. (1). The experimental results are evalu-
ated using the PSNR and SSIM52 metrics for fidelity, which are only calculated on the Y channel of the YCbCr 
color space.

Isotropic Gaussian kernels
In the setting 1, isotropic Gaussian kernels are first applied in our study as the same in1–3,5. The kernel size is 
fixed to 21× 21 during both the training and testing phases. During the training process, we randomly sampled 
the kernel width from the ranges of [0.2, 2.0] , [0.2, 3.0] , and [0.2, 4.0] uniformly for scale factors of 2, 3, and 4, 
respectively. During the testing phase, we used Gaussian8 kernels to degrade five benchmarks, including Set543, 
Set1444, B10045, Urban10046, and Manga10947. Gaussian8 uniformly selects 8 kernels from the ranges [0.80, 1.60], 
[1.35, 2.40], and [1.80, 3.20] for scale factors 2, 3, and 4, respectively. Subsequently, the HR images are convolved 
with 8 various blur kernels and downsampled to obtain corresponding LR images.

Anisotropic Gaussian kernels
In the setting 2, anisotropic Gaussian kernels were employed in our study follwing the work in1–3,5,9. The kernel 
size is 11× 11 and 31× 31 for scale factors 2 and 4 respectively in the training stages. During the training pro-
cess, we randomly sampled the kernel width from the ranges of [0.6, 5] and rotated it from the range [ −π ,  π ] . 
During the testing process, blind SR benchmark DIV2KRK9 were used for evaluation.

Implementation details
We cropped the training data into sub-images of size 480× 480 , and utilized LR patches of size 64× 64 to feed 
into our model. Our SR network consists of 6 groups of TPAG, each consisting of 11 TPABs and 1 GTFB. We 
trained the model using 8 RTX2070 GPUs, with a batch size of 4 for each GPU. The initial learning rate was 
1× 10−4 and decayed by half at every 2× 105 iterations, the total number of iterations was 1× 106 . We used the 
Charbonnier loss21 as loss function and Adam53 optimizer with β1 0.9 and β2 0.99 for optimization. We also adopt 
horizontal flipping and 90◦ rotation as data augmentation strategies during the training phase.

Comparison with state‑of‑the arts
Evaluation with isotropic Gaussian kernels
We have evaluated our method on benchmarks synthesized by Gaussian8 kernels and compared its performance 
with those using state-of-the-art blind SR methods, including ZSSR13, IKC1, DANv15, DANv22, AdaTarget14, 
KOALAnet32, and DCLS3. Additionally, CARN48 as a lightweight non-blind SR model that combined with blind 
deblurring49 method was also implemented for comparison.

The quantitative comparisons on benchmarks with Gaussian8 kernels are shown in Table 1. Our method 
achieves remarkable results on various benchmarks, particularly exhibiting noticeable performance on datasets 
with strong self-similarity, such as Urban10046 and Manga10947, nearly + 0.16dB and + 0.15dB than DCLS3 on × 4 
factor. Bicubic interpolation and CARN48 are non-blind SR methods that assume a known bicubic degradation, 
which deviates from the actual situation, resulting in a severe drop in performance. ZSSR13 utilizes the internal 
statistics of patch recurrence to build an image-specific super-resolution method that does not require external 
datasets. This approach slightly improves performance due to the lack of abundant training data and powerful 
fitting ability. Performing the blind deblurring49 operation on the reconstructed image can moderately improve 
performance by reducing artifacts caused by domain gap. Conversely, applying the inverse operation may further 
damage details in the LR image, leading to unsatisfactory SR results. The IKC1 and DAN5 compensate for the 

(10)Sl(Xi) = (W2σ(W1L[�i] + b1)+ b2),

(11)Ltotal = Lkernel + Lpixel ,
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offset caused by kernel estimation through iterative correction and end-to-end alternate optimization, respec-
tively, significantly improving the performance. DCLS3 can retain the spatial information of the blur kernel while 
introducing dynamic convolution to boost the robustness of estimation, thus achieving superior performance.

Our proposed TPAB compensates for the attenuation of high-frequency components caused by the DCLS3 
deconvolution module and the GTFB integrates non-local features with low similarity scores to assist in the fusion 
of local and global features. The qualitative visual results in Fig. 5 also demonstrate that our method is capable 
of recovering sharp edges and rich details. Furthermore, considering the complexity of actual degradation, we 
conduct an extra experiment to handle images with Gaussian8 kernels and additional noise. The quantitative 
results, shown in Table 2, validate that our method also has a certain degree of robustness to additional noise.

Table 3 shows the quantitative results of these methods on the DIV2KRK9 dataset. The results indicates 
that ZSSR13 can serve as a method for improving bicubic interpolation performance. When combined with the 
kernel estimation by KernelGAN9 as a prior, the performance of ZSSR13 is further improved. SRMD4 shows 
the consistently with bicubic interpolation. Classical SR methods such as RCAN8, EDSR7, and DBPN54, which 
adopted paired training data degraded by bicubic downsampling, suffer an extreme decrease in performance due 
to domain gap. The correction filter55 modifies the blurry image to match bicubic kernel, significantly improving 
the performance of DPBN54 trained on bicubic kernel.

Among the remaining blind SR methods, which contain IKC1, DAN2,5, KOALAnet32, AdaTarget14,and DCLS3, 
our method performed slightly superior than the DCLS3. This circumstance is consistent with our hypothesis. 
Due to the wild degradation of the DIV2KRK9 dataset, the textures and edges are damaged severely. The compen-
sation of TPAB module for high-frequency features is limited. GTFB cannot accurately adjust the similarity score 
of local textures, resulting in the reconstruction of high-frequency information that is not as good as isotropic 
Gaussian kernels with mild degradation.

Table 1.   The quantitative results on benchmarks with Gaussian8 kernels. The best two results are marked in 
bold and italic, respectively.

Method Scale

Set543 Set1444 BSD10045 Urban10046 Manga10947

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

x2

28.82 0.8577 26.02 0.7634 25.92 0.7310 23.14 0.7258 25.60 0.8498

CARN48 30.99 0.8779 28.10 0.7879 26.78 0.7286 25.27 0.7630 26.86 0.8606

Bicubic+ZSSR13 31.08 0.8786 28.35 0.7933 27.92 0.7632 25.25 0.7618 28.05 0.8769

Deblurring49+CARN48 24.20 0.7496 21.12 0.6170 22.69 0.6471 18.89 0.5895 21.54 0.7946

CARN48+Deblurring49 31.27 0.8974 29.03 0.8267 28.72 0.8033 25.62 0.7981 29.58 0.9134

IKC1 37.19 0.9526 32.94 0.9024 31.51 0.8790 29.85 0.8928 36.93 0.9667

DANv15 37.34 0.9526 33.08 0.9041 31.76 0.8858 30.60 0.9060 37.23 0.9710

DANv22 37.60 0.9544 33.44 0.9094 32.00 0.8904 31.43 0.9174 38.07 0.9734

DCLS3 37.63 0.9554 33.46 0.9103 32.04 0.8907 31.69 0.9202 38.31 0.9740

Ours 37.71 0.9548 33.56 0.9099 32.10 0.8912 31.80 0.9214 38.81 0.9745

Bicubic

x3

26.21 0.7766 24.01 0.6662 24.25 0.6356 21.39 0.6203 22.98 0.7576

CARN48 27.26 0.7855 25.06 0.6676 25.85 0.6566 22.67 0.6323 23.85 0.7620

Bicubic+ZSSR13 28.25 0.7989 26.15 0.6942 26.06 0.6633 23.26 0.6534 25.19 0.7914

Deblurring49+CARN48 19.05 0.5226 17.61 0.4558 20.51 0.5331 16.72 0.5895 18.38 0.6118

CARN48+Deblurring49 30.31 0.8562 27.57 0.7531 27.14 0.7152 24.45 0.7241 27.67 0.8592

IKC1 33.06 0.9146 29.38 0.8233 28.53 0.7899 24.43 0.8302 32.43 0.9316

DANv15 34.04 0.9199 30.09 0.8287 28.94 0.7919 27.65 0.8352 33.16 0.9382

DANv22 34.12 0.9209 30.20 0.8309 29.03 0.7948 27.83 0.8395 33.28 0.9400

DCLS3 34.21 0.9218 30.29 0.8329 29.07 0.7956 28.03 0.8444 33.54 0.9414

Ours 34.15 0.9213 30.40 0.8340 29.13 0.7978 28.30 0.8491 33.92 0.9436

Bicubic

x4

24.57 0.7108 22.79 0.6032 23.29 0.5786 20.35 0.5532 21.50 0.6933

CARN48 26.57 0.7420 24.62 0.6226 24.79 0.5963 22.17 0.5865 21.85 0.6834

Bicubic+ZSSR13 26.45 0.7279 24.78 0.6268 24.97 0.5989 22.11 0.5805 23.53 0.7240

Deblurring49+CARN48 18.10 0.4843 16.59 0.3994 18.46 0.4481 15.47 0.3872 16.78 0.5371

CARN48+Deblurring49 28.69 0.8092 26.40 0.6926 26.10 0.6528 23.46 0.6597 25.84 0.8035

IKC1 31.67 0.8829 28.31 0.7643 27.37 0.7192 25.33 0.7504 28.91 0.8782

DANv15 31.89 0.8864 28.42 0.7687 27.51 0.7248 25.86 0.7721 30.50 0.9037

DANv22 32.00 0.8885 28.50 0.7715 27.56 0.7277 25.94 0.7748 30.45 0.9037

AdaTarget14 31.58 0.8814 28.14 0.7626 27.43 0.7216 25.72 0.7683 29.97 0.8955

DCLS3 32.12 0.8890 28.54 0.7728 27.60 0.7285 26.15 0.7809 30.86 0.9086

Ours 32.07 0.8891 28.62 0.7747 27.63 0.7304 26.31 0.7860 30.98 0.9097
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Ablation study and discussion
In this subsection, we performed a series of ablation experiments on the two crucial modules proposed by us, 
TPAB and GTFB, to quantitatively study their contributions to our method. The specific settings related to the 
ablation experiments are shown in the Table 4.

Firstly, the DCLS3 adopt clean feature fc with original fo as input to feed into Double Path Attention Groups 
(DPAG) to reconstruct HR images. The DCLS was used as baseline to explore the function of our proposed 
modules TPAB and GTFB.

Secondly, we placed DPAG with our proposed TPAG, where original feature fo was split into fo and f̂o to 
extract channel and spatial local feature to compensate for high-frequency decline. In this setting, without the 
function of global feature fusion, the single GTFB was placed by a TPAB. It can be observed from Table 5 that 
adding only the TPAB module resulted in a minimal improvement in performance(+ 0.02db in Set1444 and + 
0.01dB in Manga10947). This may be because the depth of TPAG is already sufficient for extracting degrada-
tion feature, and using TPAB alone to capture local texture features has limited compensatory effects on high-
frequency information.

Table 2.   The quantitative comparison on benchmarks with Gaussian8 kernels and various noise levels. The 
best two results are marked in bold and italic, respectively.

Method Noise level

Set543 Set1444 BSD10045 Urban10046 Manga10947

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic+ZSSR13

15

23.32 0.4868 22.49 0.4256 22.61 0.3949 20.68 0.3966 22.04 0.4952

IKC1 26.89 0.7671 25.28 0.6483 24.93 0.6019 22.94 0.6362 25.09 0.7819

DANv15 26.95 0.7711 25.27 0.6490 24.95 0.6033 23.00 0.6407 25.29 0.7879

DANv22 26.97 0.7726 25.29 0.6497 24.95 0.6025 23.03 0.6429 25.32 0.7896

DCLS3 27.14 0.7775 25.37 0.6516 24.99 0.6043 23.13 0.6500 25.57 0.7969

Ours 27.29 0.7812 25.47 0.6554 25.04 0.6075 23.45 0.6630 25.89 0.8063

Bicubic+ZSSR13

30

19.77 0.2938 19.36 0.2534 19.43 0.2308 18.32 0.2450 19.25 0.3046

IKC1 25.27 0.7154 24.15 0.6100 24.06 0.5674 22.11 0.5969 23.80 0.7438

DANv15 25.32 0.7276 24.15 0.6138 24.04 0.5678 22.08 0.5977 23.82 0.7442

DANv22 25.36 0.7264 24.16 0.6121 24.06 0.5690 22.14 0.6014 23.87 0.7489

DCLS3 25.49 0.7323 24.23 0.6131 24.09 0.5696 22.37 0.6119 24.21 0.7582

Ours 25.63 0.7369 24.32 0.6166 24.13 0.5721 22.54 0.6222 24.24 0.7635

Figure 5.   The visual results of sig1.8_img093,sig2.4_img024,sig3.0_img073 in Urban10046 and sig3.2_
YouchienBoueigumi in Manga10947.
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Lastly, we utilized a variant network consisting of Double Path Attention blocks (DPAB) and Global texture 
fusion block to evaluate the contribution of GTFB, we appended a GTFB in each DPAG. The results shows a 
similar trend to the previous experiments, indicating GTFB could better utilize non-local textures to reconstruct 
high-frequency details. However, due to the lack of tiny compensation from the TPAB module, there is only 
a moderate performance improvement(about + 0.05dB in Urban10046), and the ability to reconstruct texture 
information was still insufficient.

Performance on real degradation
To further demonstrate the effectiveness of our method, we utilized the proposed model with isotropic Gauss-
ian kernels and additional noise level 15 on real degradation images where the degradation is complicated and 
unknown. Our model was compared with classical real-world super resolution methods including RealSR10, 
BSRGAN11, Real-ESRGAN12, DASR31, and MM-RealSR56 on Real2011 dataset. An example of super-resolving 
chip image is shown in Fig. 6. Our method still produce rich details and sharp edges.

Table 3.   The quantitative results on DIV2KRK benchmark with isotropic Gaussian kernel. The best two 
results are marked in bold and italic, respectively.

Method

DIV2KRK9

x2 x4

PSNR SSIM PSNR SSIM

Bicubic 28.73 0.8040 25.33 0.6795

Bicubic+ZSSR13 29.10 0.8215 25.61 0.6911

EDSR7 29.17 0.8216 25.64 0.6928

RCAN8 29.20 0.8223 25.66 0.6936

DBPN54 29.13 0.8190 25.58 0.6910

DPBN54+Correction55 30.38 0.8717 26.79 0.7426

KernelGAN9+SRMD4 29.57 0.8564 27.51 0.7265

KernelGAN9+ZSSR13 30.36 0.8669 26.81 0.7316

IKC1 – – 27.70 0.7668

DANv15 32.56 0.8997 27.55 0.7582

DANv22 32.58 0.9048 28.74 0.7893

AdaTarget14 - - 28.42 0.7854

KOALAnet32 31.89 0.8858 27.77 0.7637

DCLS3 32.75 0.9094 28.99 0.7946

Ours 32.92 0.9054 29.04 0.7982

Table 4.   The details of ablation study. The SR Network contains five groups that consist of various number of 
input and blocks based on whether channel split strategy is adopted.

Abalation study Channel split

Input Block in each group

fc fo f̂o DPAB TPAB GTFB

Baseline × � � × 10 × ×

w.o/ GTFB � � � � × 12 ×

w.o/ TPAB × � � × 11 × 1

Ours � � � � × 11 1

Table 5.   The ablation study on benchmarks with Gaussian8 kernels. The FlOPs are calculated with input size 
of 270×180.

Baseline TPAB GTFB Params(M) FLOPs (G) Inference(s)

Set543 Set1444 BSD10045 Urban10046 Manga10947

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

� × × 13.63 368.15 0.061 32.12 0.8890 28.54 0.7728 27.60 0.7285 26.15 0.7809 30.86 0.9086

× � × 21.33 723.72 0.096 32.03 0.8879 28.56 0.7729 27.60 0.7293 26.15 0.7814 30.87 0.9071

× × � 15.43 448.77 0.078 31.95 0.8872 28.52 0.7721 27.61 0.7295 26.20 0.7827 30.81 0.9074

× � � 21.98 747.90 0.108 32.07 0.8891 28.62 0.7747 27.63 0.7304 26.31 0.7860 30.98 0.9097
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Discussion
The specific results of the ablation experiments are shown in Table 5. It is evident that adding either module 
alone only results in a marginal performance gain(approximately + 0.05dB in Set1444 and BSD10045). However, 
the flexible combination of two modules achieves astonishingly higher performance (+ 0.16dB and + 0.13dB in 
Urban10046 Manga10947 respectively than only one module). One possible reason is that even slight compensa-
tion of high-frequency information is crucial for the adaptive adjustment of similarity scores in global learnable 
attention16 block. With the aggregation of local features on both channel and spatial dimensions introduced by 
the TPAG module, the GTFB exhibits a stronger ability to fuse global information.

Limitation
Our model has achieved good results in super-resolving images with both synthetic degradation and real-world. 
However, since our training data only covers blurring and noise, without considering more severe and com-
plicated degradation, our model’s performance is not satisfactory when facing images with wild degradation. 
Meanwhile, due to the dependence on predicting specific kernel parameters, the accuracy of kernel estimation 
still has a moderate impact on the reconstructed image. We also conducted a comparison of running time and 
mode size with state-of-the-arts methods, and the results are shown in Table 6. Due to the global information 
modeling performed by the GLA16 module, the computational cost is increased. And channel split strategy 
increases memory access cost, which is a significant factor affecting inference speed.

Conclusion
In this work, we propose a blind SR network that is capable of combining kernel estimation with structural prior 
knowledge. Our method consists of two steps: degradation representation embedding and texture details recov-
ery. A triple path attention block was first proposed to extract local spatial and channel features to compensate 
for the loss of high-frequency components caused by the first steps.

Subsequently, the global texture fusion block was used to fuse local and global textures, thus providing com-
plementary information for the recovery of HR images. A serious of experiments on benchmarks with different 
degradation settings demonstrates that our method achieves outstanding performance in blind SR. In future 
work, we primarily have three main tasks: First, we will utilize contrastive learning to predict the degradation 
representation of images to disguise different types and levels of degradation, rather than specific parameters 
of kernel. Second, we will attempt more practical degradation methods to further generalize the model to real-
world images.

Data availability
The test datasets analyzed during the current study on DIV2K​RK and Gauss​ian8.

Code availability
The relevant code is made available on this link as open source.

Figure 6.   Comparison of real-world image of chip in Real2011 dataset for x4 SR. The methods include RealSR10, 
BSRGAN11, Real-ESRGAN12, DASR31, MM-RealSR56.

Table 6.   The comparison of complexity of different models. The inference latency is tested on RTX3090 GPU. 
The FLOPs are calculated with input size of 270 × 180.

Method Params (M) FLOPs (G) Inference (s)

IKC1 5.29 2178.72 0.503

DANv15 4.33 926.72 0.082

DANv22 4.71 918.12 0.076

DCLS3 19.05 368.15 0.061

Ours 27.40 747.91 0.108

http://www.wisdom.weizmann.ac.il/%7evision/kernelgan/DIV2KRK_public.zip
https://github.com/megvii-research/DCLS-SR/tree/master
https://github.com/fzuzyb/KESKPSR
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