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Rational Sine‑Gordon expansion 
method to analyze the dynamical 
behavior of the time‑fractional 
phi‑four and (2 + 1) dimensional 
CBS equations
Abdulla‑Al‑ Mamun 1,2,3*, Chunhui Lu 1,2, Samsun Nahar Ananna 4 & Md Mohi Uddin 5

This study uses the rational Sine‑Gordon expansion (RSGE) method to investigate the dynamical 
behavior of traveling wave solutions of the water wave phenomena for the time‑fractional phi‑four 
equation and the (2 + 1) dimensional Calogero‑Bogoyavlanskil schilf (CBS) equation based on the 
conformable derivative. The technique uses the sine‑Gordon equation as an auxiliary equation to 
generalize the well‑known sine‑Gordon expansion. It adopts a more broad strategy, a rational function 
rather than a polynomial one, of the solutions of the auxiliary equation, in contrast to the traditional 
sine‑Gordon expansion technique. Several explanations for hyperbolic functions may be produced 
using the previously stated approach. The approach mentioned above is employed to provide diverse 
solutions of the time‑fractional phi‑four equation and the (2 + 1) dimensional CBS equations involving 
hyperbolic functions, such as soliton, single soliton, multiple‑soliton, kink, cusp, lump‑kink, kink 
double‑soliton, and others. The RSGE approach enhances our comprehension of nonlinear processes, 
offers precise solutions to nonlinear equations, facilitates the investigation of solitons, propels the 
development of mathematical tools, and is applicable in many scientific and technical fields. The 
solutions are graphically shown in three‑dimensional (3D) surface and contour plots using MATLAB 
software. All screens display the absolute wave configurations in the resolutions of the equation 
with the proper parameters. Furthermore, it can be deduced that the physical properties of the 
found solutions and their characteristics may help us comprehend how shallow water waves move in 
nonlinear dynamics.

Keywords The rational sine-Gordon expansion (RSGE) method, Phi-four equation, Soliton wave, Travelling 
wave solution, Calogero-Bogoyavlanskil Schilf equation, Sine-Gordon, Water wave

To characterize the physical properties of various applied science problems, such as fluid dynamics, hydrodynam-
ics, plasma physics, and quantum mechanics, given the right circumstances, ordinary and partial differential 
equations may be used to represent the problems. Analytical solutions to partial differential equations (PDEs), 
particularly nonlinear equations, are more complex than those to ordinary differential equations (ODEs). PDEs 
frequently transform into ODEs using the Ansatz (direct) and Symmetry approaches to look for explicit solutions. 
Exact solutions help compare numerical systems and confirm accuracy. The endeavor to get precise, analytical 
solutions to PDEs is not just of an academic nature; it holds practical importance in verifying and comparing 
numerical and simulation techniques. In applied sciences, precise mathematical models and solutions are essen-
tial when doing direct experiments, which may be difficult or unfeasible. Although exact solutions are beneficial, 
they are infamously challenging for most nonlinear partial differential equations (PDEs), which are commonly 
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used to represent real-world processes. The complexity derives from the inherent nonlinearity, which frequently 
gives rise to intricate phenomena like chaos, turbulence, and wave breaking, which lack straightforward analyti-
cal explanations. Despite the difficulties, current research in mathematical methods, computational techniques, 
and theoretical physics is still progressing and increasing the number of partial differential equations (PDEs) 
for which we have exact solutions or effective approximation methods. This improves our understanding and 
ability to model complex systems in applied sciences.

The (2 + 1)-dimensional CBS equation is a nonlinear partial differential equation and can exhibit various 
solutions, including solitons, rogue waves, and other nonlinear wave patterns. It has applications in studying 
multiple physical systems, including fluid dynamics, plasma physics, and nonlinear optics. Consider the subse-
quent generalized (2 + 1)-dimensional CBS circumstances:

or homogeneously,

where ∂−1
x =

∫
fdx and a, b are constraints. Equation (2) can be characterized in the probable time-fractional 

form of the CBS  equation1,2.

where 0 < θ ≤ 1.
The time-fractional Phi-Four equation is a partial differential equation that generalizes the standard Phi-Four 

equation by incorporating fractional derivatives concerning time. The standard Phi-Four equation is a well-
known equation in mathematical physics, often used to describe certain phenomena in fields like condensed 
matter physics and nonlinear optics. Adding fractional derivatives in time allows for more complex behaviors 
that capture specific anomalous diffusion processes. Due to the inclusion of fractional derivatives, the behavior, 
and solutions of the time-fractional Phi-Four equation can be more intriguing and complex than those of the 
ordinary Phi-Four equation. Anomaly diffusion and other unusual behaviors may result from the non-locality 
and memory effect introduced by the fractional derivative. The Phi-four equation is a specific form of the 
Klein–Gordon  equation1.

where � and µ are real numbers.
The main goal of this work is to directly apply the RSGE method to the dynamical analysis of the time-frac-

tional phi-four equation and the (2 + 1) dimensional CBS equation. There are several benefits when comparing 
our strategy to the other approaches. Simply put, it employs a more structured technique and more steps to gener-
ate an algebraic system. It also automatically creates kink and singular soliton  solutions3–5. The principal impor-
tant methodology of this method is too explicit the exact solutions of FNLEEs that satisfy the Nonlinear ODE of 
the form, U(ψ) =

∑N
i=1 tanh

i−1ψ(aisechψ + citanhψ + a0)/
∑N

i=1 tanh
i−1ψ(bisechψ + ditanhψ + b0) . Our 

method provides a more direct and concise approach to the exact travelling wave solution than the other exist-
ing systems. Some authors used this RSGE technique to determine the exact solution to multiple NLEEs in the 
deferential sense of derivative, such as Jumarie’s modified Riemann–Liouville derivatives, conformable deriva-
tives, and Kerr law nonlinearity. Nevertheless, no adequate studies utilizing this method have been conducted 
on our suggested time-fractional phi-four equation and the (2 + 1) dimensional CBS equation. Here, the recently 
found exact solution of the time-fractional phi-four equation and the (2 + 1) dimensional CBS equations is more 
accurate, efficient, and versatile enough to be used in many treatments in mathematical physics, engineering, 
and wave analysis. Thus, we can state that our proposed research is innovative in the sense of conformable 
derivatives as it employs the RSGE technique to dynamically analyze the time-fractional phi-four equation and 
the (2 + 1) dimensional CBS equation. We presented the results using the mathematical software Mathematica 
by choosing appropriate values for the employed parameters and then employing illustrations to simplify the 
physical interpretation suitably.

To establish a flow in a domain, air must be replaced by water in soils (and foams), or vice versa, in fluid 
recovery activities. The principles governing fluid flow are the same in both systems. However, depending on the 
media, these regulations may be conveyed differently or utilize different languages. Although the scientific fields 
of flow in soil and flow in foam are concerned with similar physical  laws6–8, communication between them has 
been impeded by a lack of common vocabulary. Water waves are a regular and fascinating example of traveling 
waves in nature. As a traveling wave passes over the water’s surface, the water’s surface oscillates up and down, 
creating wave patterns that move over the top. How water waves behave may be determined by their properties, 
including their wavelength, frequency, speed, and amplitude. The wave equation governs the dynamics of water 
waves, a partial differential equation that explains the relationship between wave motion, time, and space. The 
standard wave equation for small-amplitude waves in shallow water is the one-dimensional linear shallow water 
wave equation, sometimes referred to as the Korteweg-de Vries equation (KdV)9. It describes waves with a single 
wave profile and the ability to move without changing shape. In water, waves frequently disperse, which means 
they move at varied speeds depending on their wavelength. Longer waves with lower frequencies travel more 
quickly than shorter waves with higher frequencies.

This dispersion results from the waves’ interactions with the surface tension, water depth, and waves. 
For waves with large amplitudes propagating over great distances, the dynamics of water waves can become 

(1)ut + φ(u)uy = 0,φ(u) = ∂2x + au+ bux∂
−1
x ,

(2)ut + uxxy + auuy + bvx∂
−1
x vy = 0,

(3)uxD
θ
t u+ 4uxuxy + 2uxxuy + uxxxy = 0, t > 0, x, y ∈ R,

(4)D2θ
t u− uxx + �

2u+ µu3 = 0, γ > 0, 0 < θ ≤ 1
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 nonlinear10. Rogue waves and solitons are intricate patterns that can develop due to nonlinear wave dynamics. 
Waves may get steeper and more unstable as they approach shallow water, eventually breaking into choppy 
whitecaps. This phenomenon is most noticeable near coastlines. Water waves, in general, show a wide variety of 
features, making them a significant subject of interest and research in fluid dynamics, oceanography, and other 
related fields. Wave characteristics, water depth, and interactions with the environment are only a few factors 
that influence how they behave  dynamically11,12. Figure 1 shows the dynamics of water waves. The wavelength 
of a water wave, represented by the symbol � , is the separation between two successive wave crests (or troughs). 
It symbolises the wave’s spatial period, or the length of time the wave repeats its shape. A wave’s wavelength in 
water is determined by a number of variables, such as the wave’s frequency and depth. The connection between 
wavelength ( � ), wave speed ( c ), and wave period ( T ) in deep water, when the depth is much higher than the 
wavelength, may be explained by � = c/f  . The amplitude of a water wave, represented by y . The amplitude of 
the water wave is measured vertically from the undisturbed water level (the equilibrium position) to the peak of 
the wave crest or the lowest point of the wave trough.

Nonlinear fractional differential equations have attracted a lot of attention lately. It significantly impacts how 
fractional calculus theory changes, and these forms are used in physics, engineering, and biology, among other 
 domains13. Traveling wave solutions of nonlinear partial differential equations must be investigated to distinguish 
between various nonlinear situations in applied research and engineering. Only a few of the many nonlinear wave 
techniques that have been used in the past to illustrate various physics issues include heat flow, shallow water 
waves, wave propagation, optical fibers, plasma physics, fluid mechanics, biology, electricity, chemical kinematics, 
and quantum  theory14–18. Thus, to investigate these substances, scores of effective strategies have been recom-
mended in the circulated works by scholars, namely the improved modified extended tanh-function  method4, the 
(G′/G,1/G)-expansion  technique19,20, the modified extended tanh-function  method1,9,21, the ( G′

/G2)-expansion 
 technique22,23, the advanced exp(−∅(ξ))-expansion  method24–26, the tanh-coth  method27, the variational iteration 
 method28–30, the method of  characteristics31, the multiple Exp-function  method32–34, the sine-Gordon expansion 
 method3,35,36, rational sine-Gordon expansion  method37,38, Backlund  transformations39, ultraspherical wavelets 
collocation  method40, extended direct algebraic  method41, the unified  method42, the hyperbolic trigonometric 
 method43, the new auxiliary equation  method5, transformed rational function  method44, the Hirota bilinear 
 method45–47, the generalized Hirota bilinear  method48, Soret and Dufour  effects49, the rational tan(K(ρ))-expan-
sion  technique50, the improved tan(�(ρ)/2)-expansion  technique51, the binary Hirota polynomial  scheme52, the 
Kudryashov  method53, etc.

The remainder of the paper is organized as follows. In Sect. “Algorithm of the RSGE method”, a basic descrip-
tion of the RSGE method is given. The mathematical formulation of the phi-four and CBS equations and their 
application using the RSGE approach are provided in Sect. “Application of the RSGE method”. Graphical depic-
tions of the solutions discovered are given in Sect. “Result and Discussion”. The conclusions are presented in 
Sect. “Conclusion”.

Algorithm of the RSGE method
The consistent fractional form u(x, t) = U(ψ) with ψ = a

(
x − vtα

α

)
 The unadventurous wave  renovation3,54–56 

decreases the fractional Sine-Gordon equation in one dimension of the form.

To the ODE

(5)∂2u

∂x2
− D

2α
t u = m

2
sinu,m is constant.

(6)
d2U

dψ2
=

m2

a2
(
1− v2

) sinU ,

Figure 1.  Dynamics of water waves.
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where v indicates the velocity of the traveling wave illustrated in the  transform57. Some simplifications lead

where C is an integrating constant and is supposed to be zero for simplicity. Let w(ψ) = U(ψ)
2  and b2 = m2

a2(1−v2)
 . 

Then (7) is converted to

Set b = 1 in (8). Then (8) yields two significant relations.

or

where d is a nonzero integrating constant. Then the fractional PDE of the form

can be reduced to an ODE

by using an equivalent wave transform u(x, t) = U(ψ) where the transform variable ψ is specified as a
(
x − vtα

α

)
 . 

Then, the expected solution (12) of the form

can be written as

use Eqs. (9) and (10), Eq. (13) is a bivariate polynomial function in tanhψ and sechψ , as is evident. Due to the 
relationships tanh2ψ+ sech2ψ = 1 , it is essential to note that this polynomial must be linear in one of these 
auxiliary functions. In this case, sechψ . We can now see that a subset of rational functions comprises polynomial 
functions. As a result, the latter is often far superior to the former in tasks like interpolation or approximating 
 functions58. It is simple to assume that the same will hold while attempting to solve nonlinear evolution equa-
tions. The concept of rational expansion has been utilized in the literature before, but only in the context of one 
auxiliary  function58–60. In this study, we propose expanding this concept to two additional tasks.

in place of Eq. (13), which can also be written as

owing to (15)–(16). Setting up index limits with a uniform balance of the conditions in (12) is the first step in the 
procedure. The projected solution (15), engaging in (12), is replaced, and the coefficient of powers of sin and cos 
is assumed to be zero. Next, the coefficients are explained by the ensuing algebraic system. a0, a1, b0, b1, . . . . . . .. 
If there are any answers, they are put together using (9)–(10) and ψ.

Application of the RSGE method
Application for the Phi‑four equation
Employing the subsequent traveling wave transformation

on Eq. (4), we get

(7)

(
d
(
U
2

)

dψ

)2

=
m2

a2
(
1− v2

) sin2U
2
+ C,

(8)
d(w)

dψ
= bsinw.

(9)sinw(ψ) =
2deψ

d2e2ψ + 1

∣∣∣∣
d=1

= sechψ ,

(10)cosw(ψ) =
d2e2ψ − 1

d2e2ψ + 1

∣∣∣∣
d=1

= tanhψ ,

(11)P
(
u,Dα

t u, ux ,D
2α
tt , uxx , . . . . . .

)
= 0,

(12)P̃ =
(
U ,U ′,U ′′, . . . . . .

)
= 0,

(13)U(ψ) = A0 +
s∑

i=1

tanhi−1(ψ)(Bi sechψ + Ai tanhψ),

(14)U(w) = A0 +
s∑

i=1

cosi−1(w)(Bi sinw + Ai cosw).

(15)U(ψ) =
∑N

i=1 tanh
i−1ψ(ai sechψ + ci tanhψ + a0)∑N

i=1 tanh
i−1ψ(bi sechψ + di tanhψ + b0)

,

(16)U(w) =
∑N

i=1 cos
i−1w(ai sinw+ ci cosw+ a0)∑N

i=1 cos
i−1w(bi sinw+ di cosw+ b0)

,

u(x, t) = U(ψ), whereψ = qx − p
tθ

θ
.
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With the asset of standardized balancing of the highest order derivative term U ′ ′ and nonlinear term U3 in 
Eq. 17, we find that N = 1 . Therefore, the auxiliary solution becomes:

Solving the SAE Eq. (18) for q, A0, A1, B1 we get several solutions sets as follows:

(17)
(
p2 − q2

)
U

′ ′
+ �

2U+ µU3 = 0,

(18)

µa30 + 3µa0a
2
1 + �

2a0b
2
0 − p2a1b0b1 + q2a1b0b1 + 2�2a1b0b1 − p2a0b

2
1 + q2a0b

2
1 + �

2a0b
2
1

−2p2b0c1d1 + 2q2b0c1d1 + 2p2a0d
2
1 − 2q2a0d

2
1 = 0,

3µa20c1 + 3µa21c1 − 2p2b20c1 + 2q2b20c1 + �
2b20c1 + p2b21c1 − q2b21c1 + �

2b21c1 + 2p2a0b0d1
−2q2a0b0d1 + 2�2a0b0d1 − p2a1b1d1 + q2a1b1d1 + 2�2a1b1d1 = 0,
−3µa0a

2
1 + p2a1b0b1 − q2a1b0b1 − 2�2a1b0b1 + 3p2a0b

2
1 − 3q2a0b

2
1 − �

2a0b
2
1 + 3µa0c

2
1

+2p2b0c1d1 − 2q2b0c1d1 + 2�2b0c1d1 − 2p2a0d
2
1 + 2q2a0d

2
1 + �

2a0d
2
1 = 0,

−3µa21c1 + 2p2b20c1 − 2q2b20c1 − p2b21c1 + q2b21c1 − �
2b21c1 + µc31 − 2p2a0b0d1 + 2q2a0b0d1

+p2a1b1d1 − q2a1b1d1 − 2�2a1b1d1 + �
2c1d

2
1 = 0,

−2p2a0b
2
1 + 2q2a0b

2
1 = 0,

µa30 + 3µa0a
2
1 + �

2a0b
2
0 − p2a1b0b1 + q2a1b0b1 + 2�2a1b0b1 − p2a0b

2
1 + q2a0b

2
1 + �

2a0b
2
1

−2p2b0c1d1 + 2q2b0c1d1 + 2p2a0d
2
1 − 2q2a0d

2
1 = 0,

3µa20a1 + µa31 − p2a1b
2
0 + q2a1b

2
0 + �

2a1b
2
0 − p2a0b0b1 + q2a0b0b1 + 2�2a0b0b1 + �

2a1b
2
1

−2p2b1c1d1 + 2q2b1c1d1 + 2p2a1d
2
1 − 2q2a1d

2
1 = 0,

6µa0a1c1 − p2b0b1c1 + q2b0b1c1 + 2�2b0b1c1 + 2p2a1b0d1 − 2q2a1b0d1 + 2�2a1b0d1
−3p2a0b1d1 + 3q2a0b1d1 + 2�2a0b1d1 = 0,
−µa31 + 2p2a1b

2
0 − 2q2a1b

2
0 − �

2a1b
2
1 + 3µa1c

2
1 + p2b1c1d1 − q2b1c1d1 + 2�2b1c1d1

−p2a1d
2
1 + q2a1d

2
1 + �

2a1d
2
1 = 0,

2p2a0b1d1 − 2q2a0b1d1 = 0.

q = −
√
p2 − 2�2, a0 = 0, a1 = ±

√
�2b20 − �2b21

√
µ

, c1 = ±
i�b0√
µ
, d1 = 0.

q =
√
p2 − 2�2, a0 = 0, a1 = ±

√
�2b20 − �2b21

√
µ

, c1 = ±
i�b0√
µ
, d1 = 0.

q = −
√
p2 − 2�2, a0 = ±

i�d1√
µ
, a1 = ±

√
�2b20 − �2d21

√
µ

, b1 = 0, c1 = ±
i�b0√
µ
.

q =
√

p2 − 2�2, a0 = ±
i�d1√
µ
, a1 = ±

√
�2b20 − �2d21

√
µ

, b1 = 0, c1 = ±
i�b0√
µ
.

q = −
√
2p2 − �2

√
2

, a0 = −
i�d1√
µ
, a1 = 0, b1 = 0, c1 = −

i�b0√
µ
.

q = −
√
2p2 − �2

√
2

, a0 =
i�d1√
µ
, a1 = 0, b1 = 0, c1 =

i�b0√
µ
.

q =
√

2p2 − �2

√
2

, a0 = −
i�d1√
µ
, a1 = 0, b1 = 0, c1 = −

i�b0√
µ
.

q =
√

2p2 − �2

√
2

, a0 =
i�d1√
µ
, a1 = 0, b1 = 0, c1 =

i�b0√
µ
.

q = −
√
p2 + �2, a0 = 0, a1 = ±

√
2
√

−�2b20 + �2d21
√
µ

, b1 = 0, c1 = 0.

q =
√
p2 + �2, a0 = 0, a1 = ±

√
2
√

−�2b20 + �2d21
√
µ

, b1 = 0, c1 = 0.
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We obtained the precise Eq. (4) solutions concerning these solution sets.

q = −
√
p2 − 2�2, a0 = 0, a1 = 0, b0 = ±b1, c1 = ±

i�b1√
µ
, d1 = 0.

q =
√

p2 − 2�2, a0 = 0, a1 = 0, b0 = ±b1, c1 = ±
i�b1√
µ
, d1 = 0.

q = −
√

p2 − 2�2, a0 = ±
i�d1√
µ
, a1 = ±

i�d1√
µ
, b0 = 0, b1 = 0, c1 = 0.

q = −
√
p2 − 2�2, a0 = 0, a1 = ±

�b0√
µ
, b1 = 0, c1 = ±

i�b0√
µ
, d1 = 0.

q =
√
p2 − 2�2, a0 = ±

i�d1√
µ
, a1 = ±

i�d1√
µ
, b0 = 0, b1 = 0, c1 = 0.

q =
√

p2 − 2�2, a0 = 0, a1 = ±
�b0√
µ
, b1 = 0, c1 = ±

i�b0√
µ
, d1 = 0.

q = ±
√
2p2 − �2

√
2

, a0 = 0, a1 = 0, b1 = 0, c1 = ±
i�b0√
µ
, d1 = 0.

q = −
√
p2 + �2, a0 = 0, a1 = ±

√
2�d1√
µ

, b0 = 0, b1 = 0, c1 = 0.

q = −
√
p2 + �2, a0 = 0, a1 = ±

i�d1√
µ
, b0 = ±

√
3

2
d1, b1 = 0, c1 = 0.

q = −
√
p2 + �2, a0 = 0, a1 = ±

i
√
2�d1√
µ

, b0 = −
√
2d1, b1 = 0, c1 = 0.

q = −
√

p2 + �2, a0 = 0, a1 = ±
i
√
2�d1√
µ

, b0 =
√
2d1, b1 = 0, c1 = 0.

q = −
√
p2 + �2, a0 = 0, a1 = ±

i
√
2�b0√
µ

, b1 = 0, c1 = 0, d1 = 0.

q =
√

p2 + �2, a0 = 0, a1 = ±
√
2�d1√
µ

, b0 = 0, b1 = 0, c1 = 0.

q =
√

p2 + �2, a0 = 0, a1 = ±
i�d1√
µ
, b0 = ±

√
3

2
d1, b1 = 0, c1 = 0.

q =
√

p2 + �2, a0 = 0, a1 = ±
i
√
2�d1√
µ

, b0 = ±
√
2d1, b1 = 0, c1 = 0.

q =
√

p2 + �2, a0 = 0, a1 = ±
i
√
2�b0√
µ

, b1 = 0, c1 = 0, d1 = 0.

U1,2,3,4(x, t) = ±
i�Sinh[ψ]b0 ±

√
�2
(
b20 − b21

)

√
µ(Cosh[ψ]b0 + b1)

;ψ = −
ptθ

θ
− x

√
p2 − 2�2.
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U5,6,7,8(x, t) = ±
i�Sinh[ψ]b0 ±

√
�2
(
b20 − b21

)

√
µ(Cosh[ψ]b0 + b1)

;ψ = −
ptθ

θ
+ x

√
p2 − 2�2.

U9,10,11,12(x, t) = ±
i�d1 ± Sech[ψ]

√
�2(b20 − d21)+ i�b0Tanh[ψ]

√
µ(b0 + d1Tanh[ψ])

;ψ = −
ptθ

θ
− x

√
p2 − 2�2.
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Application for the (2 + 1)‑dimensional CBS equation
Employing the subsequent traveling wave transformation

on Eq. (3), we get,
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We obtained the precise Eq. (3) solutions concerning these solution sets.

Result and discussion
This section defines the recently discovered precise solutions to the time-fractional phi-four equation and the 
(2 + 1) dimensional CBS equation using physical and visual examples. The best way to illustrate every essential 
component of real-life events is through visualization. By selecting proper fractional values, we also used MAT-
LAB’s computational capabilities. We assessed its conventional features while charging various exorbitant fees for 
unknown factors. The detailed proofs for the equations are shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.

Graphical and physical explanation
A famous example of this wave is a traveling wave that forms on the surface of an ocean, lake, or river. Water 
waves have a particular behavior because of how gravity and surface tension forces interact to determine their 
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velocity. When the water’s surface impedes, visualize a body of calm water at rest and experiencing moving 
waveforms. The wind blowing across the sea, dumping of an object, seismic activity, and other factors might all 
be factors in this disruption. Take pond ripples as an example, which are caused by the wind. Water molecules 
are drawn together at a body of water’s surface by surface tension, which is a cohesive force. In addition, the force 
of gravity is pulling the water downward.

The interaction of these two forces results in a restoring force that tends to bring the water’s surface back to 
its equilibrium position. A portion of the water molecules are forced to flow upward to form crests, which are 
recognized, and downward to produce troughs when the wind blows over the water, transferring energy to the 
surface. The disturbance propagates over the water’s character due to oscillations brought on by the up-and-down 

Figure 2.  Kink-soliton shape of the imaginary part of U9(x, t) for the parameters p = 0.5, b0 = 1, d1 = 0.1, � = 1,

µ = 1, θ = 0.3, 0.6, 1.

Figure 3.  Kink-soliton shape of the real part of U17(x, t) for the parameters p = 0.5, b0 = 1, d1 = 0.1,

� = 1,µ = 1, θ = 0.3, 0.6, 1.
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motion of water molecules. When water molecules contact, they exchange energy and momentum. Gravity, 
surface tension, and a small amount of horizontal water molecule displacement work together to disperse these 
oscillations throughout the water. The wave’s wavelength and the water’s depth are two factors that influence 
how quickly a wave moves. The major influences on the wave speed of deep-water waves are the acceleration 
brought on by gravity and the water depth. The water wave’s motion transfers energy from one place to another. 
The wave disperses the importance of the initial disturbance across the water’s surface without displacing a large 
amount of water mass in the direction of propagation. Waves in water can interfere with one another and pro-
duce interference patterns. Dissipation is the term for this. Positive interference raises wave amplitudes, leading 
to more enormous waves than destructive interference, which can cause wave cancellation. As long-distance 
water waves travel through the water, friction, and viscosity eventually cause the waves to lose energy, which 

Figure 4.  Kink shape of the imaginary part of U19(x, t) for the parameters p = 0.5, b0 = 1, d1 = 0.1, � = 1,

µ = 1, θ = 0.3, 0.6, 1.

Figure 5.  The rogue wave shape of the real part of U27(x, t) for the parameters p = 0.5, � = 1,µ = 1, θ = 0.3, 0.6, 1.
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leads to the waves dissipating. Coastal dynamics, marine transportation, and engineering all depend on water 
waves. Understanding the behavior of ocean waves is essential for predicting coastal erosion, building ships, 
and guaranteeing maritime safety.

Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 depict the many solution versions of the time-fractional phi-
four and (2 + 1) dimensional CBS equation. Each picture has two rows: the first row represents the 3D surface 
plot, while the second row represents the contour plot. Here, we presented the contour and 3D surface plots of 
many solutions. We have implemented some innovative solutions: Various shapes such as kink, multiple kink, 
rogue wave, soliton, lone soliton, multiple soliton, dark soliton, double soliton, and lump can be observed. The 
data have been altered for various values of θ , where θ ranges from 0.3 to 1. When the value of θ is changed 
from 0.3 to 1, the solution forms can transform solitary soliton shapes to multiple soliton shapes, from singular 

Figure 6.  The rogue wave shape of the real part of U37(x, t) for the parameters p = 0.5, � = 1,µ = 1, θ = 0.3, 0.6, 1.

Figure 7.  Kink shape of the imaginary part of U41(x, t) for the parameters p = 0.5, � = 1,µ = 1, θ = 0.3, 0.6, 1.
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kink-soliton shapes to multiple kink-soliton shapes, and from soliton shapes to dark soliton shapes, among oth-
ers. The wave’s nonlinearity induces temporal variations in its profile as it traverses the medium, but dispersion 
counteracts this effect, preventing the wave from diffusing or distorting. Overall, solitary waves are captivating 
occurrences that arise from the delicate equilibrium between dispersion and nonlinearity in a medium. These 
waves are crucial in several fields of physics and engineering due to their capacity to maintain their shape and 
propagate across long distances without dispersing or losing energy, owing to this state of equilibrium.

Figure 8.  Soliton shape of the imaginary part of U58(x, t) for the parameters p = 0.5, � = 1,µ = 1, θ = 0.3, 0.6, 1.

Figure 9.  Soliton shape of the real part of U59(x, t) for the parameters p = 0.5, � = 1,µ = 1, θ = 0.3, 0.6, 1.
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Conclusion
The traveling wave solution for the time-fractional phi-four equation and the (2 + 1) dimensional CBS equation 
was found using the rational sine-Gordon expansion approach. A tried-and-true technique is the rational sine-
Gordon expansion to resolve nonlinear partial differential equations. When the wave profile is investigated for 
the created generic parametric values, many depicted solitons, rogue waves, singular kink, periodic, lump, and 
asymptotic type solitons may be found. These solitons were constructed utilizing exponential, hyperbolic, and 
trigonometric structures. We have mainly focused on the influence of the values or quantities of changes for 

Figure 10.  Multiple Kink-soliton shapes of the real part of U65

(
x, y, t

)
 for the parameters a0 = 1, b0 = 0.5,

d1 = −0.1, � = 1,µ = 1, y = 0, θ = 0.3, 0.6, 1.

Figure 11.  Multiple soliton shapes of the real part of U68

(
x, y, t

)
 for the parameters a0 = 1, b0 = 0.5,

b1 = −0.1, � = 1,µ = 1, y = 0, θ = 0.3, 0.6, 1.
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different values of one parameter ( θ ) on the dynamic behavior of the water waves. Exponential and trigonomet-
ric functions express the calculated solutions. The space–time fractional NLS + , NLS- and UNLS models from 
nonlinear optics, fluid mechanics, quantum theory, and other theoretical and numerical fields will be used to 
explain the physical significance of the traveling wave solutions in this work. This method may be used with 
complex nonlinear physics, engineering, and applied mathematics models. It is conceivable that certain types 
of nonlinear problems may not be solvable using this methodology. While it may not be capable of handling 
complex nonlinear systems, it is highly efficient in solving specific types of equations. Employ other methods to 
verify the obtained solutions, such as asymptotic analysis, numerical simulations, or, if accessible, comparison 
with empirical data. This enhances the reliability and accuracy of the generated solutions. Utilise the rational 

Figure 12.  Kink-soliton shape of the real part of U73

(
x, y, t

)
 for the parameters c1 = 1, d1 = 0.5, � = 1,

µ = 1, y = 0, θ = 0.3, 0.6, 1.

Figure 13.  Kink-soliton shape of the real part of U74

(
x, y, t

)
 for the parameters a0 = 1, b0 = 0.5, � = 1,

µ = 1, y = 0, θ = 0.3, 0.6, 1.
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Sine-Gordon expansion technique as part of a broader set of tools. Integrate additional perturbation, analytical, 
or numerical approaches to mitigate the limitations and enhance the method’s strengths.
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The data used to support the findings of this study are available from the corresponding author upon request.
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