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County land use carbon 
emission and scenario 
prediction in Mianyang Science 
and Technology City New District, 
Sichuan Province, China
Tianyi Wei 1, Bin Yang 1,2,3*, Guangyu Wang 1 & Kun Yang 1

The role of carbon emissions resulting from land use change in the compilation of national greenhouse 
gas emission inventories is of paramount significance. This study is centered on the Mianyang Science 
and Technology City New Area located in Sichuan Province, China. We used the CLUE-S model and 
Sentinel-2A remote sensing data from 2017 to simulate and validate land use changes in 2022. Based 
on this validation, we established three simulation scenarios: a baseline scenario, an agricultural 
development scenario, and a construction development scenario. Using remote sensing data from 
2022, we projected the land use for 2030. We also used CO2 concentration data collected in 2022 and 
2023, processed the data using ArcGIS and Python, and conducted a quantitative analysis of carbon 
emissions under each scenario. Ultimately, the accuracy of both measured and predicted CO2 values 
for 2023 was juxtaposed and authenticated, thus concluding the investigative cycle of this study. Key 
findings include: (1) The accuracy of the CLUE-S model in the study area was assessed using overall 
accuracy, quantity disagreement and allocation disagreement indexes. In 2022, the overall accuracy 
is 98.19%, the quantity disagreement is 1.7%, and the allocation disagreement is 2.2%. (2) Distinct 
land resource utilization characteristics in scenarios, highlighting potential impacts on economic 
development and pollution. (3) Increased carbon emissions across scenarios, with construction 
development showing the highest rise (4.170%) and agricultural development the lowest (0.766%). (4) 
The predictive accuracy of the validation group’s CO2 concentration values can reach 99.5%. This study 
proposes precise CO2 prediction at the county level, thus laying the groundwork for future research 
endeavors. Such findings are indispensable for informing carbon policy formulation and promoting 
low-carbon development strategies.
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With the waning influence of the pandemic on China’s production and daily life, the global economy is wit-
nessing a surge in growth, while the global land use cover pattern undergoes profound transformations. These 
alterations directly influence the carbon emission profiles of various regions. Research has documented1 that 
land use change has become the second-largest contributor to greenhouse gas emissions, following fossil fuel 
combustion. Achieving China’s “30–60” carbon peak and carbon neutrality goal is not only a prerequisite for 
fulfilling its climate commitments but also a crucial driver for advancing regional low-carbon development.

Land use and land management changes have been a focus point of scholarly inquiry as far back as 2003,2 
offering updated estimations of carbon fluxes spanning from 1850 to 2000. These transformations led to the 
annual release of around 740 million tons of carbon into the atmosphere, significantly influencing the global 
carbon cycle. Contemporary research on the spatial correlation of carbon emissions stemming from land use 
encompasses five primary dimensions: (1) Investigation into the Relationship Between Land Use Types and 
Carbon Emissions: This line of inquiry delves into how distinct land use types, encompassing farmland, forests, 
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wetlands, and urban areas, exert varied impacts on carbon emissions3. (2) Assessment of Land Use Change 
Impact on Carbon Emissions: Scholarship in this domain concentrates on evaluating the potential consequences 
of land use alterations (e.g., deforestation, land resettlement) on carbon emissions through simulation and obser-
vational analysis4. (3) Examination of Land Management Measures’ Effect on Carbon Emissions: This investiga-
tion explores the influence of land management measures such as afforestation, reforestation, and land protection 
on carbon equilibrium, appraising their efficacy in climate change mitigation5. (4) Examination of Urbanization 
and Carbon Emissions: Investigations within this domain scrutinize the repercussions of urbanization on carbon 
emissions, encompassing factors such as urban sprawl, transportation emissions, and energy consumption6. (5) 
Analysis of Land Use Policies and Carbon Emissions: Scholars scrutinize the impact of various land use policies, 
including carbon trading, carbon tax, and ecological compensation, on carbon emissions, assessing the efficacy 
and sustainability of these policies7. This study initiates with an exploration of the impact of land use types and 
alterations on carbon emissions, supplemented by the evaluation of land management measures, urbanization 
effects, and land use policies.

Nevertheless, contemporary approaches in carbon emission research pertaining to land use exhibit certain 
limitations and challenges: Estimation Utilizing Remote Sensing and GIS Technology Previous research8 esti-
mated carbon emissions resulting from land use and land cover changes in the Beijing–Tianjin–Hebei urban 
agglomeration in China using remote sensing and GIS technology. Although valuable, this approach might be 
constrained by its accuracy. A study proposed two monitoring, reporting, and verification (MRV) methods for 
national-level REDD + programs9. Nevertheless, deficiencies in the MRV methodology utilized in carbon emis-
sion studies concerning land use could influence the implementation and evaluation of REDD + programs. The 
study10 underscored that inconsistency in terminology could introduce uncertainty into the estimation of carbon 
emissions resulting from land use. Harmonizing and clearly defining relevant terms are suggested to enhance 
accuracy. Research11 identified errors in the estimation of land-use carbon emissions due to insufficient data and 
imprecise modeling. Global data on soil organic carbon sequestration rates were also subject to uncertainty due to 
scale issues and soil heterogeneity5. A study12 assessed the carbon recovery time of crop-based biofuel expansion 
in the tropics and found that carbon payback time may be longer than expected due to carbon emissions from 
crop production. A scholarly inquiry13 employed constraints from biomass observation data to analyze carbon 
emissions attributable to changes in land use and land cover from 1901 to 2012. Data acquisition and processing 
deficiencies were identified as potential sources of uncertainty. The study14 modeled the Earth system response 
to negative carbon emissions, highlighting challenges associated with model uncertainty and insufficient data. 
Research15 integrated global data on land use scenarios from 1500 to 2100, yet acknowledged uncertainty in 
estimating carbon emissions associated with land use due to inadequate historical data accessibility and mod-
eling techniques. A study16 attempted to detect large-scale crop acreage and major crop types from Landsat data 
using advanced machine learning algorithms. Nonetheless, challenges regarding accuracy in estimating carbon 
emissions resulting from land use endured due to insufficient precision in remote sensing data processing and 
algorithms. The models, methodologies, and data employed in the investigations are plagued by issues concern-
ing low accuracy and result uncertainty.

Presently, scholars have to some degree delved into the coupling relationship between regional land use change 
and carbon emissions, along with the associated influencing factors. Nonetheless, prevailing research perspec-
tives largely hinge on static assessments of the current land use scenario within the study area. Most research 
has centered around larger scales such as the national level17–19, provinces and cities20–22, and watersheds17,23. 
There exists a notable dearth of research at the county level, particularly in the examination of carbon revenue 
and expenditure trends predicated on prognostications of forthcoming land use alterations within counties. 
There is also a gap in the analysis of carbon balance trends based on predictions of future land use changes at the 
county level. Counties serve as the fundamental units of social and economic development, and it is imperative 
to study land use at this scale with high precision. Differences in land use resulting from various development 
plans can be substantial and play a pivotal role in determining the distribution of regional resources and the 
overall quality of development.

In this paper, we have chosen to utilize the CLUE-S model, revered for its outstanding precision in small-
scale regional inquiries and its capability to integrate numerous influential factors, to scrutinize scenarios at the 
county level. A previous study24 employed the CLUE-S model to downscale land use change scenarios from a 
global perspective to the European region, facilitating an evaluation of European landscape dynamics. This study 
attested to the commendable performance of the CLUE-S model across diverse scales. Furthermore,25 focused on 
sustainable land use development in northern Kosovo, combining normative scenarios with simulation modeling 
techniques. This research underscored the CLUE-S model’s proficiency in exploring future land use scenarios. 
Additionally, the CLUE-S model was utilized to project global urban expansion until 2030, allowing for an analy-
sis of its direct impacts on biodiversity and carbon storage26. This study underscored the model’s advantageous 
spatial scaling and land use change modeling capabilities in the context of global urbanization projections. In 
another investigation27, the CLUE-S model was employed to investigate the effects of urbanization on regional 
carbon emissions. This research highlighted the model’s capacity to consider the intricate interplay between 
human activities and environmental systems. Additionally, a study28 explored issues related to measurement 
variables’ errors and spatial autocorrelation within pathway modeling. The study revealed that the CLUE-S model 
is adept at addressing spatial autocorrelation and measurement errors. Furthermore, an assessment29 delved 
into the impact of urbanization on carbon sinks through integrated models and urban–rural gradients derived 
from remote sensing data. This study affirmed the CLUE-S model’s competence in scrutinizing the impact of 
urbanization on carbon emissions. Moreover, a comprehensive review30 summarized global land grab research 
and highlighted the CLUE-S model’s effectiveness in studying global land use changes. This research emphasized 
the model’s utility in assessing the impact of land use changes on ecosystem services.
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The merits of utilizing the CLUE-S model in the realm of analyzing carbon emissions stemming from land use 
are remarkable: (1) Multi-Scale Land Use Changes: The CLUE-S model’s capacity to simulate land use changes 
at various spatial scales, from local to global, aids in understanding the diverse factors influencing carbon emis-
sions across different scales31. (2) Integration of Anthropogenic Factors: The model can seamlessly incorporate 
anthropogenic factors like urbanization, agricultural expansion, and industrial development, all of which play 
pivotal roles in carbon emissions32. (3) Consideration of Land Use Policies: By accommodating the influence of 
land use policies on land utilization and carbon emissions, the CLUE-S model contributes to the formulation of 
more effective emission reduction policies33. (4) Predictive Power for Future Emissions: The model’s ability to 
forecast future changes in carbon emissions under different scenarios offers valuable decision-making support 
for carbon emission reduction strategies and climate change adaptation34. (5) Detailed Spatial Distribution: 
Providing intricate spatial details of land use and carbon emissions allows for the identification of high-emission 
regions and potential areas for emission reduction. (6) High Flexibility: The model’s adaptability to varying 
parameters based on distinct study areas and objectives enhances its applicability35. (7) Results Visualization: 
Visualization of results through maps and charts facilitates comprehension and communication of research out-
comes among scholars and decision-makers. (8) Data-Driven Approach: Leveraging extensive field observation 
data for simulation enhances model accuracy and credibility. (9) Interdisciplinary Utility: The CLUE-S model 
transcends disciplinary boundaries, finding applications in diverse areas such as carbon emissions, ecosystem 
services, and land planning36. (10) Support for Sustainable Development Decision-Making: By elucidating the 
relationship between land use and carbon emissions, the model furnishes a scientific foundation for informed 
sustainable development decisions37.

Expanding on the capabilities of the CLUE-S model, prior scholars have consistently asserted that construc-
tion and transportation land are the predominant and substantial sources of carbon emissions. Furthermore, 
the regional absorption of carbon is intricately intertwined with the proportion of ecological land areas, such 
as woodlands and grasslands. Therefore, for the purposes of this study, the author elected to employ the CO2 
concentration data for the study area in 2022, meticulously measured by their own research team. This methodol-
ogy diverges from the conventional practice of estimating CO2 concentration values, as it circumvents potential 
sources of error, including seasonal variations, temperature fluctuations, human activities, and weather condi-
tions. Thus, the utilization of authentic CO2 concentration data obtained in 2022 affords a more precise depiction 
of the real-world scenario, guaranteeing the reliability of the study’s conclusions.

In accordance with this methodology, the current study centers its investigation on the county level, utiliz-
ing Sentinel-2A data for the Mianyang Science and Technology City New Area spanning from 2017 to 2022. A 
supervised classification methodology, employing the Random Forest image classification tool, was utilized to 
produce a land use classification map. Furthermore, an Auto-Logistic regression model was applied to select 
seven pivotal factors, encompassing roads, rivers, slope direction, population density, among others. These factors 
were integrated into the CLUE-S model, facilitating the accurate simulation and validation of land use changes 
in Mianyang Science and Technology City New District for the year 2022. Expanding upon this groundwork, 
the study advances to forecast the land use distribution pattern for the Mianyang Science and Technology City 
New Area in 2030. This prediction is achieved by configuring multiple land use change scenarios and accounting 
for land use-related carbon emissions under each scenario. This multifaceted approach serves multiple crucial 
objectives: (1) It facilitates a quantitative analysis and discourse on CO2 concentration levels within the new area 
of Mianyang Science and Technology City, elucidating the environmental ramifications of land use alterations. 
(2) The study extends the application of the CLUE-S model to a small-scale study area, demonstrating its utility 
in predicting carbon emissions. (3) By harnessing quantitative remote sensing methodologies and employing 
counties as the fundamental unit of analysis, the study attains high-precision forecasts of surface CO2 concen-
tration. This innovative approach paves the way for new directions and insights in the realm of CO2 research.

Data and methods
Study area
The study area is situated within the Mianyang City (China Science and Technology City) Science and Technol-
ogy New Zone in Sichuan Province. This region was officially designated as the Mianyang Science and Technol-
ogy City New Zone on December 23, 2020, pursuant to the resolution of the People’s Government of Sichuan 
Province. The study area is located between 104° 28′ and 104° 44′ E longitude and 31° 24′ and 31° 36′ N latitude. 
It covers an area of approximately 396 km2, representing a relatively compact zone undergoing rapid develop-
ment. This area serves as a representative case for the examination of the relationship between land use and its 
impact on carbon emissions.

The study area includes the primary land categories outlined in the IPCC (Intergovernmental Panel on Cli-
mate Change) guidelines for land use classification. These categories encompass Arable Land, Forest Land, Urban 
Area, Transportation, Water Body, Unused Land. The diversity of land categories in the study area is advanta-
geous for our research, and we can collect first-hand data on CO2 concentrations. Therefore, the study area was 
selected, and sampling points for CO2 concentration measurement were designated Fig. 1.

Data processing flow
Remote sensing technology plays a pivotal role in monitoring and analyzing land use and land cover. In recent 
years, the rapid advancement of deep learning technology, with techniques such as convolutional neural net-
works (CNNs) and recurrent neural networks (RNNs), has significantly improved the field of remote sensing 
image analysis. Among these, the remote sensing CLUE-S model, as a rapidly evolving pre-training model, has 
achieved significant milestones in the domain of land use and land cover research. The research roadmap is as 
follows Fig. 2, and we will discuss the following topics in this research:
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Data sources and processing
Remote sensing data
The land use data used in this study were derived from Sentinel-2A remote sensing data. These data were acquired 
from the Copernicus Open Access Hub (https://​scihub.​coper​nicus.​eu). The images were processed using ENVI 
software, including projection, correction, calibration, and resampling to a 10-m resolution, and then by the new 
version of the Random Forest Image Classification tool supervised classification to get the 2015–2022 land use 
data. After the initial classification, post-processing was performed to identify six major land categories: Arable 
Land, Forest Land, Urban Area, Transportation, Water Body, Unused Land. After experimenting with ten differ-
ent supervised classification methods, we carefully selected the latest version of the Random Forest method that 
proved to be suitable for our study area. To ensure classification quality, a minimum of 100 sample points were 
selected for each land cover type, and multiple rounds of testing and refinement were conducted. Ultimately, we 
obtained eight years’ worth of supervised classification results. Classification accuracy was characterized using 
Jeffries–Matusita (JM) and Transformed Divergence (TD) parameters. With the exception of Arable Land and 
Forest Land, which achieved accuracies of 1.97, and Urban Area and Transportation with an accuracy of 1.96, 
all other land cover categories achieved a separation accuracy of 2.00.

In addition to remote sensing data, various data sources, including Road, River, Township, and Natural Village 
Factors, were integrated into this study, and subjected to specific processing steps. These factors were extracted in 
ArcGIS using the 2022 land use data (Fig. 3a–d). Subsequently, they were exported as raster data in ASCII format 
with Euclidean distance values, as required for input into the CLUE-S model. Topographic Data: Elevation data 
with a 30-m resolution was obtained from the Geographic Data Space and is accessible at (http://​www.​gsclo​ud.​
cn). This dataset was employed to derive slope and slope direction data for the study area (Fig. 3e,f), which were 
then converted into ASCII format for further analysis. Population density data were obtained from World POP 
and can be accessed at (https://​www.​world​pop.​org) as shown in Fig. 3g.

Carbon dioxide (CO2) data
To measure carbon dioxide concentrations, an unmanned aerial CO2 concentration monitoring instrument was 
utilized. The instrument is developed and produced by Chinese private enterprises and has undergone rigorous 
technical inspections. It is characterized by its high accuracy, capable of measuring with precision up to 1 ppm 
(parts per million), which equals one part of CO2 in a million parts of air. To capture the spatial distribution of 
CO2 concentration within the study area, measurements were conducted at 26 distinct points within the new 
area of Mianyang Science and Technology City.

Figure 1.   The study area for the research on County Land Use Carbon Emission and Scenario Prediction is 
the newly designated Science and Technology City New Area in Mianyang City, Sichuan Province, China. Land 
use classification maps were obtained using Sentinel-2 satellite remote sensing data through the new version of 
random forest supervised classification. The map includes six major land use types used in the study and the 
location information of 26 CO2 concentration sampling points. Generated in the ArcGIS 10.6 software (www.​
esri.​com).

https://scihub.copernicus.eu
http://www.gscloud.cn
http://www.gscloud.cn
https://www.worldpop.org
http://www.esri.com
http://www.esri.com
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Figure 2.   The data processing flowchart for this study includes the main line of data processing in the middle, 
feasibility validation steps for using the CLUE-S model in the study area on the left side, and accuracy validation 
steps for this study on the right side. Generated in the Microsoft Office Word 2023 (https://​www.​micro​soft.​com).

(a) Distance of river (b) Distance of road (c) Distance of town point (d) Distance of natural village

(e) Slope (f) DEM (g) Population density

Figure 3.   The main influencing factor data selected for the study include the Euclidean distance of extracted 
river (a), road (b), town point (c), and natural village (d), as well as the slope aspect (e), digital elevation model 
(f), and population density (g) influencing factors. Generated in the ArcGIS 10.6 software (www.​esri.​com).

https://www.microsoft.com
http://www.esri.com
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Data collection took place from January 2022 to December 2023, with readings recorded three times per 
month. The instrument operated for an average of 3 min per measurement session at each measurement point. 
Roughly 500 data points were gathered at each measurement location. As a result, it took approximately 7 h to 
complete the data collection process for all 26 points. A comprehensive depiction of the data collection process 
in 2022 is furnished in Table 1, while data from 2023 is employed for verification purposes.

Since the data collected by the instrument consist of point measurements, it was necessary to derive the spatial 
distribution characteristics of overall CO2 concentration within the study area. To achieve this, three points were 
uniformly selected as validation points, while the remaining 23 points served as interpolation points. Python 
scripts were employed to implement and compare three different interpolation methods: kriging, inverse distance 
weighting, and BP (Backpropagation) neural network. The evaluation criterion for judging the effectiveness of 
these methods was the Root Mean Squared Error (RMSE), with smaller RMSE values indicating more effective 
interpolation and larger RMSE values indicating poorer interpolation performance. Table 2 displays the results 
of the analysis. Based on the results in Table 2, the kriging interpolation method was selected as the optimal 
choice due to its consistently low RMSE values across all four seasons. Subsequently, the kriging interpolation 
method was employed to detrend the CO2 data by removing the model trend38. Variational function analysis 
was performed on the residual dataset, allowing for the creation of spatial distribution maps that depict CO2 
concentration after cross-validation39. Statistical analysis of the CO2 concentration data was performed using 
SPSS and Excel software. Average concentration maps for each month were generated by plotting the data using 
Origin and ArcGIS software, as shown in Fig. 4.

We chose the method of monitoring at three time points each month and calculating the average primarily 
considering the feasibility of data collection and the aim to comprehensively capture monthly trends. This sam-
pling frequency allows us to maintain the effectiveness and cost-efficiency of operations while obtaining relatively 
stable and reliable representative data for CO2 concentrations throughout the entire month. By monitoring at 
three time points within the month, we can effectively smooth short-term fluctuations and reduce data noise 
caused by local variations. This approach aids in furnishing more stable and representative monthly averages, 
thereby better reflecting overall trends rather than being influenced by isolated events or specific time points.

Table 1.   The detailed information table for CO2 concentration sampling includes the date, weather, mean 
temperature, and AQI index. *The unit of temperature is Celsius. **AQI(CN) 0–50 is Excellent; 51–100 is 
good; 101–150 is light pollution; 151–200 is moderate pollution; 201–300 is heavy pollution; > 300 is serious 
pollution. Data is provided by BreezoMeter and Qweather and reflects data from air monitoring stations.

Acquisition 
time Weather Mean temperature* AQI**

Acquisition 
time Weather Mean temperature* AQI**

Jan

05th Fine 6.3 201

Jul

06th Fine 32.7 39

14th Cloudy 6.6 195 17th Cloudy 30.3 32

24th Fine 7.4 209 27th Fine 25.6 40

Feb

07th Cloudy 3.3 188

Aug

02th Fine 27.9 29

16th Cloudy 9.9 164 19th Fine 33.1 37

25th Fine 7.7 173 27th Cloudy 28 22

Mar

10th Cloudy 19.3 143

Sep

06th Fine 25.3 77

18th Fine 22.3 122 14th Fine 19.8 92

27th Fine 14.5 131 25th Fine 18.8 63

Apr

04th Cloudy 12.8 101

Oct

07th Fine 15.3 104

16th Fine 10.6 98 16th Fine 20.2 112

27th Fine 21.9 112 22th Cloudy 21 119

May

04th Fine 21 94

Nov

07th Cloudy 16.5 152

14th Fine 15.1 82 13th Fine 13 133

28th Fine 22.2 76 23th Cloudy 13.8 162

Jun

05th Fine 24.4 55

Dec

01th Cloudy 4.7 189

12th Fine 24.4 49 12th Cloudy 8 174

26th Fine 25.4 47 20th Cloudy 7.7 191

Table 2.   The Root Mean Square Error (RMSE) obtained from three different interpolation methods, where a 
smaller value indicates a better interpolation effect (units: ppm).

Spatial interpolation method Spring RMSE Summer RMSE Autumn RMSE Winter RMSE

Kriging interpolation 5.494089 3.608426 0.2411935 2.335347

Inverse distance weight 6.529146 5.754797 3.520913 3.236901

BP neural network 6.490193 7.732 3.5118673 5.122628
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Following the averaging of CO2 data for each month, a comprehensive map depicting the distribution of 
average CO2 concentration throughout the entirety of 2022 was generated (Fig. 5, left). This map concurs with 
empirical observations, illustrating that CO2 concentration tends to be elevated in towns situated in the south-
eastern region and diminishes gradually towards the periphery. Additionally, this distribution map of CO2 
concentration was juxtaposed with the 2022 land use map of the new area of Mianyang Science and Technology 
City (Fig. 5, right).

The main goal of this paper is to predict future trends in surface CO2 concentrations while controlling for 
various factors. To achieve this, the average CO2 concentration values derived from three consecutive measure-
ments for each month were utilized. This approach effectively reduces errors related to seasonality, temperature 
fluctuations, human activities, and weather variations, making it more applicable to real-world conditions than 
the conventional method of calculating CO2 concentrations.

To achieve this, we used Python scripts to extract CO2 concentration values for each land category on a per-
unit-area basis. Below is an overview of the core code utilized (The full Python code is shown in the appendix): 
(1) Vector Map Traversal: The code begins by traversing the two vector maps pixel by pixel, with a specific focus 
on filtering the white portions for faster recognition. The code stores the color of the current pixel in BGR format. 
(2) Color Correspondence: After processing the vector maps, the code identifies the content corresponding to 
each color in the image. This enables the extraction of coordinates for Arable Land, Forest Land, Urban Area, 
Transportation, Water Body, Unused Land from the vector map. Additionally, the coordinates of areas with 
median concentrations of the nine CO2 values are identified on the vector map. (3) The code creates a CO2 
concentration image by generating an image of the same size as the vector map and mapping the coordinates of 
each land category to their respective CO2 concentration values. (4) Extraction and Averaging: Finally, the code 
extracts the CO2 concentration values for each land category one by one and calculates their averages. These 

January December

April highest August lowest

Figure 4.   The distribution map of monthly average CO2 concentrations in the study area for the year 2022 
(the year when unit area CO2 concentration values were obtained) shows the highest concentration in April 
and the lowest concentration in August. The results align with the conclusions of previous research papers and 
is positively correlated with the AQI index recorded in Table 1. It corroborates the accuracy of the study data 
acquisition. Generated in the ArcGIS 10.6 software (www.​esri.​com).

Figure 5.   The distribution map of the annual average CO2 concentration for the year 2022 (left; units: ppm) and 
the land use classification map for the year 2022 (right). Generated in the ArcGIS 10.6 software (www.​esri.​com).

http://www.esri.com
http://www.esri.com
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averaged CO2 concentration values per unit area, which are retained to six decimal places, are then used for the 
calculation of CO2 values in 2030 and to verify CO2 values for 2023 (Table 3).

Modeling and validation
Auto‑logistic regression models
The CLUE-S model typically employs a binary logistic regression model to analyze the factors influencing land 
use change. This approach aims to reveal the causal relationship between different land use types and the factors 
driving changes in land use patterns within the study area. The Auto-Logistic regression model serves as a valu-
able extension that improves the precision of simulation results and provides a more accurate representation of 
the actual land use distribution patterns.

Parameter P signifies the probability that a particular land type may occur, α is the constant of the regression 
equation, x1, x2, … xn are the factors affecting the distribution of landforms, β1, β2, … , βn are regression coef-
ficients, Auto-Value is the spatial autocorrelation factor40.

The CLUE‑S model
The remote sensing CLUE-S model, which stands for Cross-lingual Pre-training with Unified Encoding and 
Supervision, is a deep learning-based pre-training model. It was developed to learn comprehensive semantic 
information and land-use features through self-supervised learning using extensive cross-lingual remote sensing 
data. This model integrates the concepts of multilingual pre-training and unified encoding, enabling effective 
analysis of land use data across various languages and regions. The CLUE-S model is designed to specifically 
analyze and predict land use changes in a particular region. It achieves this by considering two categories of 
drivers: biophysical and socio-economic factors, as referenced in previous studies35,41. This model offers a clear 
framework and explanation for spatial and temporal changes in land use within the region. The formula is used 
to express its functionality.

Here, TPROPu,i represents the overall suitability of raster ’u’ for land use type ’i’. ELASi denotes the transfer 
elasticity coefficient for land type ‘i’, signifying the conversion cost of the respective land use type. ITERi stands 
for the competition factor of land type ’i’, which is automatically adjusted during the iterative process of the model 
simulation. Pu,i signifies the probability distribution of raster ’u’ for land use type ’i’, derived through regression 
analysis based on the current state of land use and various driving factors.

(1)	 Land use transfer rules

The land use transfer rules encompass two critical components: the land use transfer elasticity coefficient and 
the land use transfer matrix. The transfer elasticity coefficient, which ranges from 0 to 1, reflects the stability of 
a particular land use type. Smaller values indicate a higher likelihood of that land use type being converted to 
other types. In this study, we determined the transfer elasticity coefficients for Arable Land, Forest Land, Urban 
Area, Transportation, Water Body, Unused Land in Mianyang Science and Technology City New Area across 
three simulation scenarios, drawing from relevant literature42,43 and iterative parameter adjustments (Table 4). 
When combined with the 2017–2022 land use area conversion matrix for Mianyang Science and Technology 
City New Area, we generated a map (Fig. 6). The results highlight a significant increase in Urban Area, primar-
ily driven by the conversion of Arable Land and Transportation. The Forest Land nearly doubles, mainly due 
to Arable Land conversion, while the Water Body and Unused Land remain largely unchanged, aligning with 

(1)ln

[

P

1− P

]

= α + β1x1 + β2x2 + · · · + βnAutoValue

(2)TPROPu,i = ELASi + ITERi + Pu,i

Table 3.   The CO2 concentration values per unit area for different land use types (units: ppm).

Land classify Arable land Forest land Urban area Transportation Water body Unused land

Concentration 368.2222229 383.3471659 397.7473112 402.3450751 379.3919228 364.5272401

Table 4.   The transfer elasticity coefficients assigned to each land use type in this study. These values range 
from 0 to 1, with smaller values indicating a higher likelihood of transfer to other land use types.

Land use scenario Arable land Forest land Urban area Transportation Water body Unused land

Baseline 0.7 0.6 0.9 0.9 0.9 0.2

Agricultural development 0.9 0.5 0.7 0.7 0.7 0.2

Construction development 0.5 0.5 0.9 0.9 0.7 0.2
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the current development trend. These parameters are subsequently integrated with the 2017–2022 land use area 
leveling results and the land use transfer matrix.

(2)	 Land use type requirements

Determining land use type requirements necessitates a method independent of the CLUE-S model. In this 
study, we determined the area requirements for different land use types in the study area for the year 2030 under 
various simulation scenarios. This was achieved using a linear interpolation method, considering different land 
use scenarios.

Accuracy assessment
To evaluate how closely the CLUE-S model simulations match real-world data, we use the quantity disagree-
ment and allocation disagreement, which offers a comprehensive measure of agreement between the model’s 
results and actual observations. Because of the two simple measures of quantity disagreement and allocation 
disagreement are much more useful to summarize a cross-tabulation matrix than the various Kappa indices for 
the applications that we have seen. These measurements can be computed easily by entering the cross-tabulation 
matrix into a spreadsheet available free of charge at44.

Quantity Disagreement and Allocation Disagreement are metrics used to assess the consistency between 
different data sources or algorithms. Quantity Disagreement measures variance in quantity, while Allocation 
Disagreement evaluates spatial disparities in land cover classification. Both metrics range from 0 to 1, with 
lower values indicating greater consistency and 0 representing perfect agreement, while 1 signifies complete 
disagreement or incongruity.

6972.34 hm2

4849.35 hm2

1559.86 hm2

500.50 hm2

259.87 hm2

6153.55 hm2

9110.72 hm2

2552.24 hm2

3099.74 hm2

532.39 hm2

346.51 hm2

4653.84 hm2

Arable Land Forest Land Urban Area Transportation Water Body Unused Land

2017 2022

Figure 6.   The Sankey diagram illustrating the Land Use Area Transfer Matrix from 2017 to 2022 (units: hm2). 
Generated in the Origin 2023 (https://​www.​origi​nlab.​com).

https://www.originlab.com
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Results and analysis
Precision analysis of CLUE‑S model simulation results
The objective of this study was to evaluate the high-accuracy predictive capabilities of the CLUE-S model in a 
small-scale context. Our goal was to verify the model’s feasibility and the related parameter settings. To achieve 
this, we employed the 2017 land use data to predict the 2022 land use data and compared these predictions with 
actual values to avoid drawing conclusions based on previous concerns regarding model accuracy. The data were 
subjected to logistic regression analysis using SPSS, and ROC (Related Operating Characteristic) curves (Fig. 7 
left) were generated to evaluate the model’s similarity to actual data. The Auto-Logistic regression equation test 
results indicated that the model successfully simulated the probability distribution of each land use class within 
the Mianyang Science and Technology City’s new area. ROC values for Arable Land, Forest Land, Urban Area, 
Transportation, Water Body, Unused Land types all exceeded 0.7, meeting the regression requirements of the 
model. This affirmed that the selected factors could effectively simulate land use changes within the study area 
(Table 5). Based on the 2017 land use data for Mianyang Science and Technology City New Area, we simulated 
the land use layout for 2022. This simulation incorporated relevant data such as restricted areas, land transfer 
rules, land use demand, and Auto-Logistic model regression results into the CLUE-S model (Fig. 7). There are 
150 well-distributed random samples used as ground truth data to assess the accuracy of the classification. The 
indexes of overall accuracy, quantity disagreement and allocation disagreement were calculated by using section 
“The CLUE-S model”. The quantity disagreement and allocation disagreement were 1.7% and 2.2%, respectively, 
indicating a high degree of agreement between the model and actual data. The overall simulation accuracy was 
an impressive 98.19%. Notably, the only discrepancy observed was in the southwestern part of the study area, 
where the prediction of unutilized land did not align with the actual situation. This discrepancy is attributed 
to government development policies and is considered an unavoidable error. Apart from this, the simulation 
results consistently matched the current situation. This result highlights the model’s effectiveness in simulating 

Figure 7.   The ROC curve plot (left, where a curve closer to the upper-left corner indicates higher ROC 
values and thus higher model prediction accuracy) and the comparison plot of actual and forecast land use 
classification for the year 2022 (right). Generated in the IBM SPSS Statistics 26 (https://​www.​ibm.​com/​spss) and 
ArcGIS 10.6 software (www.​esri.​com).

Table 5.   The Auto-Logistic model regression analysis and display of β values for all influencing factors, 
resulting in ROC values for each land use type. The ROC values range from 0 to 1, with higher values 
indicating higher model accuracy. *Euclidean distance.

Driving factor

β coefficient

Arable land Forest land Urban area Transportation Water body Unused land

River* − 0.434 0.663 − 0.343 − 1.365 0.172 1.943

Transportation* − 0.360 0.560 0.554 − 1.311 2.123 0.293

Township point* − 0.608 5.049 1.131 − 0.936 − 1.148 − 1.751

Natural village* − 1.839 − 1.518 − 2.238 1.817 − 2.203 − 1.116

Slope − 2.026 − 0.421 − 1.249 − 5.503 0.996 1.668

Aspect of slope 0.863 − 0.499 0.365 1.511 0.483 − 4.369

Population density 0.654 − 0.244 0.520 6.812 − 1.841 − 0.770

Auto-value 10.751 20.128 10.978 13.032 18.576 14.152

Constant − 4.168 0.296 − 6.621 − 1.431 − 1.691 − 3.552

ROC value 0.984 0.741 0.801 0.910 0.883 0.829

https://www.ibm.com/spss
http://www.esri.com


11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9310  | https://doi.org/10.1038/s41598-024-60036-3

www.nature.com/scientificreports/

land use changes and its suitability for predicting future developments within the new area of Mianyang Science 
and Technology City.

Analysis of land‑use change characteristics and scenario simulation
Land use scenario analysis for 2030
In this section, we analyze the land use scenarios for 2030, considering the natural resource status, economic 
and social development requirements, and development strategies of Mianyang Science and Technology City 
New Area. Three scenarios were constructed, each with distinct characteristics:

(1)	 Baseline scenario

The baseline scenario represents the natural evolution of the study area, maintaining consistent develop-
ment policies. In this scenario, Mianyang Science and Technology City New Area continues the land use poli-
cies of 2017–2022, with land demand changing at a constant rate based on the average rate of change for each 
category during this period. Specifically, Arable Land increases by 7.88% (from 6110.72 to 6586.18 hm2), Forest 
Land increases by 11.66% (from 3552.20 to 3966.56 hm2), Urban Area decreases by 3.51% (from 6653.84 to 
6420.27 hm2), Transportation increases by 31.06% (from 1800.74 to 2360.10 hm2), Water Bodydecreases by 3.50% 
(from 632.39 to 610.24 hm2), and Unused Land decreases by 73.85% (from 1346.51 to 352.05 hm2).

(2)	 Agricultural development scenario

The Agricultural Development Scenario represents the spatial expansion of agricultural production. In this 
scenario, Mianyang Science and Technology City New Area ensures an adequate supply of agricultural land. 
Existing agricultural land remains stable, and efforts prioritize meeting the demand for land for agricultural 
development. Urban Area, Unused Land, and Forest Land are converted into Arable Land through initiatives 
like rural settlement reclamation, Unused Land development, and Forest Land restructuring. By 2030, the Arable 
Land in Mianyang Science and Technology City New Area increases by 29.70% compared to 2022, reaching 
7925.68 hm2. Forest Land decreases by 13.94% (from 3552.20 to 3056.82 hm2), Urban Area decreases by 1.11% 
(from 6653.84 to 6579.51 hm2), Transportation increases by 1.57% (from 1800.74 to 1772.45 hm2), Water Body 
increases by 1.32% (from 632.39 to 640.78 hm2), and Unused Land decreases by 77.72% (from 1346.51 to 
299.89 hm2).

(3)	 Construction development scenario

The Construction Development Scenario represents the spatial expansion of construction and development, 
primarily driven by the secondary and tertiary industries. In this scenario, Mianyang Science and Technology 
City New Area actively promotes the conversion of Arable Land, Forest Land and Unused Land (except per-
manent basic Arable Land) into Urban Area. All expansion potentials of rural settlements and Urban Area are 
realized, with a priority on meeting the demand for land for economic development. By 2030, almost all land 
categories are converted to Urban Area, with the area of other Unused Land reduced by 99.48%. Specifically, 
Urban Area increases by 22.15% (from 6653.84 to 8128.02 hm2), Arable Land increases by 1.72% (from 6110.72 
to 6216.37 hm2), Forest Land increases by 8.10% (from 3552.20 to 3840.00 hm2), Transportation increases by 
8.87% (from 1800.74 to 1960.60 hm2), Water Body increases by 4.22% (from 632.39 to 659.08 hm2).

Simulation analysis of spatial distribution of land use in 2030
To forecast the spatial distribution of land use in Mianyang Science and Technology City New Area for the year 
2030, we relied on the area specifications delineated in the three scenarios (Table 6). These scenarios encompass 
the Baseline Scenario, Agricultural Development Scenario, and Construction Development Scenario. The CLUE-
S model was utilized for this simulation, commencing from the land use data in 2022 as the initial state. The 
simulation process incorporated the elasticity coefficients of land use transfer and the land use transfer matrices 
specific to each scenario. This enabled us to produce land use type maps for Mianyang Science and Technology 
City New Area under each of the three scenarios (Fig. 8a–c). This simulation yields valuable insights into the 

Table 6.   The area of various land use types under three different scenarios for the year 2030 (units: hm2).

Land class

2030 scenario simulation

Baseline Agricultural development Construction development

Arable land 6586.18 7925.68 6216.37

Forest land 3966.56 3056.82 3840

Urban area 6420.27 6579.51 8128.02

Transportation 2363.7 1772.45 1460.6

Water body 610.26 640.78 659.08

Unused land 352.05 299.89 6.97
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prospective spatial distribution of land use in the new area of Mianyang Science and Technology City in the year 
2030 under diverse development strategies.

(1)	 Baseline scenario (Fig. 8a)

In the baseline scenario, the new area of Mianyang Science and Technology City undergoes significant 
changes. The most notable transformation is observed in the unutilized land at the intersection of Mujia and 
Hebian townships in the southwest, which experiences substantial alterations. These changes are driven by 
Mianyang’s development policy, which emphasizes growth in the northeast and southwest regions. This area 
experiences a substantial alteration, while other land types undergo relatively normal changes. Arable Land and 
Forest Land expand to varying degrees, with Transportation seeing a more pronounced increase.

(2)	 Agricultural development scenario (Fig. 8b)

Under the agricultural development scenario, agricultural land in the new area of Mianyang Science and 
Technology City remains stable and undergoes substantial expansion, which bolsters food security. However, 
this expansion places notable pressure on Forest Land and leads to a significant reduction in the area of Water 
Body. However, in this scenario, despite the concentration and continuous distribution of agricultural land in 
the southwestern region, Forest Land area shrinks notably due to the dual pressure of land and water resource 
demands. Additionally, the area of Water Body shows a significant reduction. This suggests that the agricultural 
development scenario may have a more pronounced impact on the ecological and water security of the new area 
of Mianyang Science and Technology City.

(3)	 Construction development scenario (Fig. 8c)

In the construction development scenario, there is a remarkable increase in the area of Urban Area, driven 
by a substantial conversion of Arable Land and Forest Land to fulfill economic development requirements. 
However, this expansion leads to the further fragmentation of agricultural and ecological land, posing potential 
threats to food security and ecological safety. This scenario witness’s significant expansion of construction land 
in the central and western regions, including urban cores, and a rapid increase in the area of rural settlements. 
Consequently, there is a further fragmentation of agricultural and ecological land, posing a serious threat to 
food security and ecological safety. This occurs despite the region’s ability to meet its land requirements for 
economic development.

These scenario analyses shed light on the potential outcomes and implications of different development 
strategies for the new area of Mianyang Science and Technology City.

Analysis of carbon emissions changes
Taking into account the CLUE-S simulation results and carbon emission data, we calculated the regional carbon 
emissions for Mianyang Science and Technology City New Zone in 2030 under various simulation scenarios 
and validation group data for 2023. (Table 7). Generate the conclusive carbon emission quantitative research 
overview (Fig. 9) based on the data presented in Table 7.

Based on the data presented in Table 7, we can draw the following conclusions: (1) The carbon emissions for 
Mianyang Science and Technology City New District in the year 2022 were recorded at 96.57 tons. (2) Projec-
tions for carbon emissions in Mianyang Science and Technology City New Area for the year 2030, considering 
different simulation scenarios, are as follows:

1.	 Baseline Scenario: 97.77 tons

a. Baseline b. Agricultural development c. Construction development

Figure 8.   Land use distribution maps under three prediction scenarios for the year 2030. Generated in the 
ArcGIS 10.6 software (www.​esri.​com).

http://www.esri.com
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2.	 Agricultural Development Scenario: 97.312 tons
3.	 Construction Development Scenario: 100.60 tons

Compared to the emissions in 2022, this represents an increase in carbon emissions of 1.233% under the 
Baseline Scenario, 0.766% under the Agricultural Development Scenario, and the highest increase of 4.170% 
under the Construction Development Scenario.

These empirical results elucidate that amidst the triad of modeled scenarios, carbon emissions attain their 
apogee within the precincts of the Construction Development Scenario. Such augmentation can be ascribed to 
the ascension in energy utilization and concomitant carbon emissions stemming from the vicissitudes of con-
struction undertakings and urban sprawl. Conversely, the Agricultural Development Scenario exhibits lower 
carbon emissions, which may be attributed to improved management and efficiency in the agricultural produc-
tion process. Carbon emissions under the Baseline Scenario fall between these two extremes.

Through the analysis of the 2023 validation group data, it is evident that there are minor fluctuations in data 
for various land categories. Due to changes in relative area, the impact of Unused Land and Forest Land on 
CO2 has slightly diminished. Overall, consonant with the overarching trajectory, the aggregate CO2 emissions 

Table 7.   Statistical data of CO2 concentration values and total emissions for various land use types in 2022 
(actual measurement), 2023 (prediction and verification scenarios), and 2030 (three different prediction 
scenarios) (units: t).

Land class 2022 2023

2030

Baseline Agricultural development Construction development

Arable land 28.1712883 28.4718888 30.36322656 36.5385121 28.6583499

Forest land 17.048807 16.7863726 19.03753057 14.6712275 18.430105

Urban area 33.1347681 34.1273622 31.97163702 32.7646198 40.4758842

Transportation 9.07097626 9.07123149 11.88867414 8.92846934 9.87624868

Water body 3.0038442 3.00423424 2.89863199 3.04369659 3.13062135

Unused land 6.14531147 5.17279808 1.606714322 1.36866229 0.03181025

Total 96.5749954 96.6338874 97.7664146 97.3151876 100.603019

Figure 9.   A bar chart comparing the data of CO2 concentration values and total emissions for various land 
use types in 2022 (actual measurement), 2023 (prediction and verification scenarios), and 2030 (three different 
prediction scenarios). Generated in the Origin 2023 (https://​www.​origi​nlab.​com).

https://www.originlab.com
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persevere in their annual ascent antecedent to cresting at the carbon pinnacle in 2030, albeit at a conspicuously 
mitigated pace of expansion.

Validation section
We did the whole process of chapter 3 from the beginning again after the above study, again using the CLUE-
S model to import the data from 2017 to 2022, only this time the prediction was aimed at 2023, and through 
the method described in chapter 3, we inverted to get the predicted value of CO2 for the whole year of 2023 as 
96.6338874 tones. Finally, after verifying the predicted value of CO2 in comparison with our actual measured 
value for the whole year of 2023: 96.62 tones, it was found that the prediction accuracy was more than 99.5%. 
Then we revalidated the accuracy of our model using the method outlined in Section “The CLUE-S model”. There 
are 150 well-distributed random samples used as ground truth data to assess the accuracy of the classification. 
When comparing the predicted and actual data for the year 2023. The quantity disagreement and allocation disa-
greement were 1.3% and 1.4%, respectively, indicating a high degree of agreement between the model and actual 
data. The overall simulation accuracy was an impressive 98.76%. This finding not only validates the feasibility 
of the entire study process, but also highlights its high degree of accuracy. Thus, we were able to confirm that a 
closed validation loop had been successfully formed for the entire study.

Discussion and conclusions
Discussion
In this investigation, we have employed the CLUE-S model, conjoined with empirically measured carbon dioxide 
concentration data, to undertake a comparative analysis of simulations of land use scenarios and carbon emis-
sions at the county level. This endeavor serves as a scientific foundation for future county-level land use planning 
and the pursuit of carbon neutrality and peaking.

Through a thorough examination of land use and carbon emissions in the Mianyang Science and Technology 
City New Area in 2022, under various scenarios (Fig. 9), we can formulate the following integrated conclusions:

(1)	 Impact of land use types on carbon emissions

It is apparent from these scenarios that land use types exert a substantial impact on regional carbon emissions. 
Forest Land emerges as a key determinant influencing carbon emissions owing to its robust capacity for carbon 
absorption, thereby assisting in the alleviation of carbon emissions. Conversely, roads, acting as a significant 
contributor to carbon emissions, exert a considerable influence on regional carbon emissions.

(2)	 Construction development scenario

In the construction and development scenario, there is a notable expansion in roads and urban areas, leading 
to a considerable rise in carbon emissions. This escalation can be attributed to increased carbon emissions aris-
ing from activities such as transportation and energy consumption during road construction and urbanization. 
However, it is imperative to note that the ecological resource advantage is considerably compromised under 
this scenario.

(3)	 Agricultural development scenario

In the agricultural development scenario, although the expansion of Arable Land and Forest Land may 
sequester some carbon, it could potentially impede regional economic growth due to the extensive conversion 
of land for construction purposes.

In summary, diverse land use types and development scenarios have significant ramifications on regional 
carbon emissions. Effectively addressing carbon emission reduction requires a nuanced approach that balances 
economic growth with ecological preservation. Striking this equilibrium is vital for minimizing carbon emissions 
while safeguarding precious ecological resources.

In this paper, we introduced the Auto-Logistic regression model to analyze the driving factors behind regional 
land use changes. This integration significantly improved the accuracy of CLUE-S model predictions, achieving 
an impressive verification accuracy of 98.19%. Furthermore, we systematically categorized and summarized land 
use data based on the relevant IPCC guidelines, enhancing the comprehensiveness and accuracy of our data 
sources. Consequently, our study results are highly practical and carry significant implications for county-level 
land use planning and the formulation of carbon emission reduction policies.

Challenges and considerations were addressed through comparisons with previous studies: (1) Difficulty of 
Data Acquisition and Processing: Land use carbon emission studies demand copious observational data and 
field sampling, which can be intricate and time-consuming45. (2) Uncertainty and Complexity: Carbon emissions 
from land use are influenced by a multitude of factors, leading to varying degrees of uncertainty and complex-
ity in different regions and under different land use types46. (3) Spatial and Temporal Scale Limitations: The 
dynamic nature of land use change and carbon emissions often restricts studies to specific spatial and temporal 
scales, which may not encompass all change scenarios47. In our approach, we utilized actual CO2 concentration 
data rather than relying solely on calculation methods. This methodological choice eliminates accidental errors 
linked to seasonal fluctuations, temperature, anthropogenic factors, and weather conditions. Our combination 
of remote sensing, CLUE-S modeling, and surface observation data allowed for the simulation and evaluation 
of land use change impacts on carbon emissions and carbon stock. This holistic model application enhances 
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our understanding of the intricate relationship between land use changes, the carbon cycle, and climate change, 
providing valuable support for informed land management and carbon emission reduction strategies.

Due to various factors, including policy changes and socio-economic development, regional land use and 
carbon emission efficiency may undergo significant changes in the future. Consequently, the predictive results 
may deviate from reality to some extent. A study conducted by48 utilized the CLUE-S model to investigate the 
impact of cross-scale land use changes on global land allocation. This study pointed out that the CLUE-S model 
might compromise the accuracy of simulation results due to its limited consideration of cross-scale interactions. 
Another study by49 applied the CLUE-S model to analyze the effect of urban expansion on agricultural land use 
intensity in China. However, the model’s oversimplified representation of the land use decision-making pro-
cess could introduce uncertainty into the simulation outcomes. Furthermore,50 employed the CLUE-S model 
to simulate land use changes in the urban–rural interface areas of the Beijing–Tianjin–Hebei region in China. 
Nevertheless, the model’s spatial resolution and data availability limitations may restrict the accuracy of the 
simulation results. In a study by51, a CLUE-S model in conjunction with a Markov model was used to simulate 
land use changes in the Cerrato region of Brazil. It’s important to acknowledge that future changes in regional 
land use and carbon emission efficiency may be subject to significant shifts due to evolving policies and socio-
economic developments. Predictive results may inherently contain errors when compared to real-world out-
comes. Addressing these challenges is essential for refining the accuracy and practical utility of land use and 
carbon emissions modeling.

In conclusion, our study marks a substantial advancement in comprehending the intricate interplay between 
land use modifications and carbon emissions at the county level. To augment the applicability of our findings, 
future investigations should delve into supplementary driving forces, including socio-economic and policy influ-
ences, and contemplate the nuanced transformation processes of distinct land use categories to enhance the 
refinement of data analysis and application.

Conclusion
In this investigation, we utilized Sentinel-2A remote sensing data covering the period from 2017 to 2022 for the 
Mianyang Science and Technology City New Area. We employed the CLUE-S model to simulate and validate 
land use change patterns for the year 2022. Subsequently, we formulated three distinct scenarios—the baseline 
scenario, agricultural development scenario, and construction development scenario—to simulate the land use 
arrangement in 2030 and evaluate its corresponding carbon emissions. Our analysis yields the subsequent key 
conclusions:

(1)	 Our study demonstrates the robust simulation capabilities of the CLUE-S model concerning land use layout 
changes within the study area. The model achieved quantity disagreement and allocation disagreement were 
1.7% and 2.2%, indicating a high level of agreement with observed data. The overall simulation accuracy 
reached an impressive 98.19%. These results affirm the suitability of the model and its pertinent parameters 
for predicting future land use layouts in Mianyang Science and Technology City New Area.

(2)	 Under the three distinct simulation scenarios, land use layout in 2030 exhibits diverse characteristics:

(a)	 The construction and development scenario demonstrates optimal land resource utilization for short-
term development but is concurrently associated with heightened pollution concerns.

(b)	 The baseline scenario portrays a more gradual and sustainable development trajectory suitable for 
medium- and long-term goals.

(c)	 The agricultural development scenario succeeds in achieving lower surface CO2 concentrations in 
alignment with the objectives of “peak carbon” and “carbon neutrality.” However, it comes at the cost 
of substantial ecological and water resource degradation.

	   In summary, each of these simulation scenarios carries its own set of development risks: the baseline 
scenario poses threats to ecological and food security in certain regions due to a deteriorating land-use 
structure; the agricultural development scenario prioritizes food security but at the expense of ecologi-
cal and water resources; and the construction development scenario, while ensuring land availability for 
economic growth, faces significant challenges concerning food security and ecological safety.

(3)	 Compared to the year 2022, the overall carbon emissions in the Mianyang Science and Technology City 
New Area are on the rise. Under the scenario of agricultural development, the carbon emissions show the 
smallest increase, at 0.766% (97.36 tons). In contrast, under the scenario of construction industry develop-
ment, the carbon emissions exhibit the highest increase, reaching 4.170% (exceeding 100 tons).

(4)	 The predictive accuracy of the validation group’s CO2 concentration values can reach 99.5%.

Our study reveals crucial relationship into county-level land use patterns and carbon emissions across various 
simulation scenarios. These findings constitute a crucial scientific basis for future regional development efforts. 
Nonetheless, considering the potential challenges inherent in these scenarios, policymakers and planners should 
exercise careful consideration of diverse factors to realize the sustainable development goals. Subsequent research 
should delve further into the underlying mechanisms of impact across various scenarios, while integrating a 
broader range of driving factors to offer even more comprehensive and precise decision-making support.



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9310  | https://doi.org/10.1038/s41598-024-60036-3

www.nature.com/scientificreports/

Data availability
The datasets generated and analysed during the current study are not publicly available due [The research area 
may involve the sensitive military industrial area of China’s nuclear research, and the continuous CO2 data 
measured by us can be used for this study, but it is not convenient for public display. Other basic data is provided 
for download on the website, the processing process is too cumbersome and most of the results are obtained 
using common processing methods.] but are available from the corresponding author on reasonable request.
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