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Spatial non‑parametric Bayesian 
clustered coefficients
Wala Draidi Areed 1*, Aiden Price 1, Helen Thompson 1, Reid Malseed 2 & Kerrie Mengersen 1

In the field of population health research, understanding the similarities between geographical 
areas and quantifying their shared effects on health outcomes is crucial. In this paper, we synthesise 
a number of existing methods to create a new approach that specifically addresses this goal. The 
approach is called a Bayesian spatial Dirichlet process clustered heterogeneous regression model. 
This non-parametric framework allows for inference on the number of clusters and the clustering 
configurations, while simultaneously estimating the parameters for each cluster. We demonstrate 
the efficacy of the proposed algorithm using simulated data and further apply it to analyse influential 
factors affecting children’s health development domains in Queensland. The study provides valuable 
insights into the contributions of regional similarities in education and demographics to health 
outcomes, aiding targeted interventions and policy design.

Spatial data analysis in public health often involves statistical models for areal data, which aggregate health 
outcomes over administrative units like states, counties, or zip codes1 . Statistical models for areal data typically 
aim to provide estimates of geospatial outcomes of interest, find boundaries between abrupt changes in spatial 
patterns, describe smoothly varying spatial trends, identify and characterise spatial clusters, and so on. These 
models have been extensively employed in various fields, including geography, econometrics, ecology, epide-
miology and public health.

When spatial dependence is present in the data, traditional statistical models that assume independent obser-
vations are inadequate and can produce biased estimates of outcomes of interest. This necessitates the use of 
alternative spatial models that incorporate this dependence2. There is a very wide range of spatial models tailored 
to the inferential aim, the nature of the spatial dependence, and the type of data.

Recent advancements in methods for spatial boundary detection have focused on model-based approaches 
which focus on probabilistic uncertainty quantification3,4. An exemplar paper is by Lee5, who employs stochastic 
models for adjacency matrices in order to identify edges between regions with significant differences in health 
outcomes. Elaborations of this method have included control for multiple comparisons6 and Bayesian hierarchical 
approaches7. Other approaches in boundary detection include integrated stochastic processes8, stochastic edge 
mixed-effects models9, and methods for estimating adjacencies in areal modelling contexts10,11. This modelling 
introduces spatial dependence using stochastic models on graphs, where nodes represent regions, and edges 
connect neighbouring regions12 . Other methods include Markov random fields using undirected graphs13,14 or 
directed acyclic graphical autoregression (DAGAR) models15.

The most common regression methods for geographically referenced data are spatial linear regression16 and 
spatial generalized linear regression17. However, these models assume that the coefficients of the explanatory 
variables are constant across space, which can be overly restrictive for large regions where the regression coef-
ficients may vary spatially. Many methods include longitude and latitude coordinates as location variables, while 
others account for spatial variability in the model by including an additive spatial random effect for each loca-
tion. This technique has been applied to linear models by Cressie16, and generalized linear models by Diggle17.

Numerous methods have been developed to identify and describe smoothly varying patterns of regression 
coefficients, such as Gelfand’s18 spatially varying coefficient processes (SVCM ) and the spatial expansion methods 
proposed by Casetti19. In a follow-up paper, Casetti and Jones20 treat the regression coefficients that vary spatially 
as a function of expansion variables.

An alternative popular method for capturing smoothly varying spatial patterns is through geographically 
weighted regression (GWR)21. The GWR fits a local weighted regression model at the location of each observa-
tion and captures spatial information by accounting for nearby observations, using a weight matrix defined by 
a kernel function21. This approach has been extended in a variety of ways, for example to a Cox survival model 
for spatially dependent survival data to explore how geographic factors impact time-to-event outcomes22. Unlike 
SVCM, GWR does not assume a specific functional form for the relationship between covariates and the response 
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variable. This flexibility is advantageous when dealing with complex spatial data where relationships may vary 
across space23. The GWR can also be computationally more efficient, especially for large datasets, and the results 
from GWR are often more interpretable as they provide localized parameter estimates for each spatial location23. 
This allows for a deeper understanding of how relationships between variables vary across space, which may be 
more intuitive for practitioners and policymakers.

The traditional GWR models are typically fit using a frequentist framework. A critical limitation of this 
approach is the violation of the usual assumption of non-constant variation between observations, and the 
resultant normality assumption for the errors24. Additionally, the usual frequentist approach struggles to address 
issues of model complexity, overfitting, variable selection and multicollinearity24. The stability and reliability 
of frequentist GWR might also yield unstable results or high variance when dealing with small sample sizes25.

Bayesian GWR (BGWR) provides an appealing solution to these problems26. An exemplar paper is by 
Gelfand27, who built a Bayesian model with spatially varying coefficients by applying a Gaussian process to the 
distribution of regression coefficients. Lesage28 suggested an early version of BGWR, where the prior distribution 
of the parameters depends on expert knowledge. More recently, Ma29 proposed BGWR based on the weighted 
log-likelihood and Liu30 proposed BGWR based on a weighted least-squares approach. Spline approaches have 
been explored to estimate bivariate regression functions31 and to accommodate irregular domains with complex 
boundaries or interior gaps32. Other studies, including those by Li et al.30and Wang et al.33, also address this 
problem over irregular domains. However, all of these methods have a significant limitation, in that they cannot 
handle the possibility of a spatially clustered pattern in the regression coefficients. A recent development by Li 
et al.34is the spatially clustered coefficient (SCC) regression, which employs the fused LASSO to automatically 
detect spatially clustered patterns in the regression coefficients. Ma et al.35 and Luo et al.36 have proposed spa-
tially clustered coefficient models using Bayesian approaches. Ma et al.35 identified coefficient clusters based on 
the Dirichlet process, whereas Luo et al.36 used a hierarchical modelling framework with a Bayesian partition 
prior model from spanning trees of a graph. Sugasawa et al. proposed spatially clustered regression (SCR)37. The 
selection of the appropriate number of clusters is a crucial aspect of clustering analysis. Most traditional methods 
require the number of clusters to be specified beforehand, which can limit their applicability in practice. This 
applies for K-means38, hierarchical clustering39 and Gaussian Mixture Models (GMM)40. These constraints pose 
challenges in scenarios where the optimal number of clusters isn’t obvious from the start or varies across data-
sets, limiting the flexibility and adaptability of these clustering approaches in real-world applications. Dirichlet 
process mixture models (DPMM) have gained popularity in Bayesian statistics as they allow for an unknown 
number of clusters, increasing the flexibility of clustering analysis. However the DPMM does not account for 
the spatial information in the clusters.

In this paper, we synthesise two approaches, namely, a Bayesian GWR and a Bayesian spatial DPMM, to cre-
ate a new method called the Bayesian spatial Dirichlet process clustered heterogeneous regression model. This 
method can detect spatially clustered patterns while considering the smoothly varying relationship between the 
response and the covariates within each group. We used a Bayesian geographically weighted regression algorithm 
to model the varying coefficients over the geographic regions and incorporated spatial neighbourhood informa-
tion of regression coefficients. We then combined the regression coefficient and a spatial Dirichlet mixture process 
to perform the clustering. The approach is demonstrated using simulated data and then applied to a real-world 
case study on children’s development in Queensland, Australia.

This approach meets the inferential aims of clustering and localised regression, for areal data. The clustering 
approach is preferred over the boundary detection approach in this context, since abrupt explainable changes in 
the spatial process are not anticipated and the prioritisation is to identify and profile broadly similar geospatial 
areas. The proposed use of GWR is also preferred over SCR, since GWR explicitly accounts for spatial variation 
in relationships between variables by estimating separate regression parameters for different locations, whereas 
SCR typically assumes spatial homogeneity within clusters and estimates a single set of parameters for each 
cluster. GWR is therefore capable of capturing fine-scale spatial variation, as it estimates parameters at the level 
of individual spatial areal units, whereas SCR aggregates data into clusters, potentially smoothing out fine-scale 
variation and overlooking localized patterns.

The strength of the proposed clustering method lies in several key features that set it apart from traditional 
clustering algorithms. Unlike K-Means and hierarchical clustering, which lack uncertainty measures, the pro-
posed method provides clusters with associated uncertainty measures, enhancing interpretability and making 
them more valuable for decision-making and analysis. Additionally, the proposed method incorporates spatial 
neighbourhood information. This ensures that the resulting clusters not only reflect data similarity but also 
account for spatial heterogeneity. Furthermore, this Bayesian framework allows for better handling of outliers 
and uncertainties in the data by incorporating prior information. This adaptability is particularly beneficial in 
scenarios where data quality varies or is incomplete. The paper proceeds as follows: In Sect. "Results", we present 
the results obtained from applying the proposed algorithm to both simulated and real case studies. Following 
this, Sect. "Methods" provides a detailed explanation of the proposed algorithm. Section "Discussion" includes 
the discussion for the results and its limitation. In Sect. "Bayesian estimation and inference", we delve into the 
sampling procedure utilized in the proposed algorithms, along with an analysis of cluster accuracy. Finally, Sect. 
"Conclusion" concludes the paper by summarizing the findings.

Results
The proposed method, described in detail in the "Methods" section below, is evaluated through a simulation 
study and applied to a real-world case study. These applications demonstrate the effectiveness of the approach 
in simultaneously estimating and clustering spatially varying regression coefficients, with associated measures 
of uncertainty.
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Simulation study
The simulation was structured based on the Georgia dataset with 159 regions introduced by Ma35, where spatial 
sampling locations represented geographical positions for data collection. Specifically, we used centroids of 
geographical areas as the sampling locations.

For the simulation, six covariates ( X1 to X6 ) were introduced as independent variables, each representing 
distinct features or characteristics at each sampling location. To incorporate spatial autocorrelation, we generated 
the covariates using multivariate normal distributions with spatial weight matrices derived from the distance 
matrix and parameter bandwidth.

The response variable (Y) in the simulation was generated using the GWR model21:

It is noteworthy that the true parameters ( β1 to β6 ) of the GWR model varied spatially, implying that they differed 
across sampling locations based on the spatial weight matrices. This spatial variation allowed us to capture 
spatially dependent effects in the simulation37. We generate simulated spatial data with six covariates using the 
following steps. First, we generate 159 spatial locations, denoted as s1, . . . , sn , based on the centroids of geographic 
areas. The locations are determined based on specific conditions related to the x and y coordinates of the cen-
troids. Next, six covariates, x1(si), x2(si), . . . , x6(si) , are generated for each spatial location si . These covariates 
are derived from a spatial Gaussian process with mean zero and a covariance matrix defined by an exponential 
function wij = exp

(

−
�si−sj�

φ

)

 , where φ is the bandwidth parameter with φ = 0.9 . This parameter influences the 
strength of spatial correlation in the covariates. Finally, the response at each location, y(si) , is generated according 
to a spatially varying linear model. This model includes the coefficients β1(si),β2(si), . . . ,β6(si) corresponding 
to the six covariates x1(si), x2(si), . . . , x6(si) , respectively. The error terms ǫ(si) are mutually independent.

To create distinct spatial patterns in the data, we visually partitioned the counties of Georgia into three large 
regions based on the spatial coordinates of centroids, defining true clustering settings. This approach enabled us 
to incorporate spatial autocorrelation, spatial variability, and true clustering effects in the simulated data. Figure 1 
visualizes partition of the counties into three large regions with sizes, 51, 49 and 59 areas.

The code for the proposed algorithm can be found in the first author’s GitHub https://​github.​com/​walad​raidi/​
Spati​al-​stick-​break​ing-​BGWR.

The simulation was repeated 100 times. Figure 2 illustrates the spatial distribution of the posterior mean 
parameter coefficients for each location over the 100 replicates. This figure showcases the diverse spatial patterns 
and disparities in these parameter coefficients across the study area, providing insights into the geographical 
variation.

The performance of these posterior estimates was evaluated by mean absolute bias (MAB), mean standard 
deviation (MSD), mean of mean squared error (MMSE), as follows:
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K
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Figure 1.   Regional cluster assignment for Georgia counties used for simulation study.

https://github.com/waladraidi/Spatial-stick-breaking-BGWR
https://github.com/waladraidi/Spatial-stick-breaking-BGWR
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where ¯̂
βs,k , is the average parameter estimate and has been calculated by the average of β̂s,k 

( s = 1, . . . , 159; k = 1, . . . , 6 ) in 100 simulations, and β̂s,k,r denotes the posterior estimate for the k-th coef-
ficient of county s in the r-th replicate. In each replicate, the MCMC chain length is set to be 10,000, and the first 
2000 samples are discarded as burn-in. Therefore, we have 8000 samples for posterior inference. Table 1 reports 
the the three performance measures in Eqs. (2)–(4) for the simulated data. The parameter estimates are very 
close to the true underlying values and have a small MAB, MSD, and MMSE.

Three distinct clusters were found within the 159 regions. The spatial layout of these clusters is visualized in 
Fig. 3, where two cluster configurations are described in the later section on cluster configurations. Notably, when 
examining Fig. 3, it is clear that the cluster assignments derived from Dahl’s and mode allocation approaches 

(4)MMSE =
1

159
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1

100

100
∑
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(β̂s,k,r − βs,k)
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Figure 2.   The spatial distribution of the posterior mean for the parameters obtained from the proposed model.

Table 1.   The performance of parameter estimates from the proposed model, where MAB mean absolute basis, 
MSD mean squared deviation, and MMSE mean of mean squared error.

Parameter MAB MSD MMSE

β̂1 0.84 1.06 0.23

β̂2 0.32 0.42 1.35

β̂3 0.37 0.26 1.98

β̂4 0.37 0.42 1.19

β̂5 1.37 2.72 0.43

β̂6 0.94 1.21 0.55

Figure 3.   (LHS) Cluster assignment for Georgia counties using Dahl’s method from the proposed algorithm. 
(RHS) The cluster assignment obtained from the proposed algorithm using the mode method.
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(see "Methods" section below) exhibit a high degree of similarity. The corresponding parameter estimates are 
shown in Table 2.

Since the kernel type, bandwidth prior and the number of knots play a crucial role in the spatial stick-breaking 
construction of the the proposed mode for the DPMM, the priors and kernel functions from Table 8 ("Methods" 
section) were utilised to test the accuracy of the proposed model. We explored different options to determine the 
optimal fit for the data using the Watanabe-Akaike onformation criterion (WAIC)39, and we performed a sensi-
tivity analysis on the proposed model with respect to number of knots. The results are summarized in Table 3.

According to the Table 3, the optimal number of knots for the simulated data as 9, as evidenced by the lowest 
WAIC value. In Table 4, we present a sensitivity analysis for our proposed algorithm, discussing its performance 
under various bandwidth priors and kernel functions. This table categorizes the results under two primary kernel 
types: uniform and squared exponential.

For each kernel type, two bandwidth priors were evaluated. Based on the WAIC values, the squared expo-
nential kernel with a bandwidth prior of ε1i , ε2i ≡ �

2

2  emerged as the most effective. Importantly, our algorithm 
not only demonstrated the stability of clusters when compared to two established methods but also managed to 
accurately assign clusters with an accuracy of 0.87. In the simulated dataset, our method effectively identified 
three distinct clusters.

Table 2.   Parameter estimates and their 95% highest posterior density (HPD) intervals for the three clusters 
identified.

Cluster 1 2 3

β̂1
− 1.0 0.62 2.31

(− 1.01, − 0.92) (− 0.03, 0.68) (2.06, 2.32)

β̂2
− 0.04 − 0.29 0.29

(− 0.06, − 0.04) (− 0.30, − 0.19) (0.19, 0.30)

β̂3
− 0.46 − 1.06 − 1.14

(− 0.49, − 0.46) (− 1.07, − 0.82) (− 1.14, − 1.13)

β̂4
1.29 − 0.06 0.53

(1.22, 1.29) (− 0.09, 0.47) (0.44, 0.54)

β̂5
2.46 3.71 2.19

(2.46, 2.53) (3.24, 3.74) (2.18, 2.42)

β̂6
− 1.05 − 0.51 0.37

(− 1.05, − 1.02) (− 0.73, − 0.49) (0.24, 0.37)

Table 3.   Sensitivity analysis for the number of knots in the spatial stick-breaking with the squared exponential 
kernel.

Number of knots WAIC

9 117044.3

14 117066.4

19 117051.6

29 117055.4

Table 4.   Sensitivity analysis for the proposed algorithm with different bandwidth priors and kernel functions 
with the number of knots is 9.

Bandwidth prior RI Summary WAIC

Uniform kernel

ε1i , ε2i ≡ � 0.86
C1=56,
C2=70,
C3=33

117067.4

ε1i , ε2i ≡ Exp(�) 0.87
C1=51,
C2=42,
C3=10

117058.4

Exp kernel

ε1i , ε2i ≡
�
2

2
0.88

C1=54,
C2=66,
C3=39

117044.3

ε1i , ε2i ∼ Inverse Gamma (1.5, �2/2) 0.84
C1=21,
C2=55,
C3=39,
C4=44

126134.4
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Real data analysis
Case study
Children’s Health Queensland (CHQ) has developed the CHQ Population Health Dashboard, a remarkable 
resource providing data on health outcomes and socio-demographic factors for a one-year period (2018-2019) 
across 528 small areas (Statistical area level 2 (SA2) in Queensland, Australia. The dashboard presents over 40 
variables in a user-friendly format, with a focus on health outcomes, particularly vulnerability indicators measur-
ing children’s developmental vulnerability across five Australian Early Development Census (AEDC) domains. 
These domains include physical health, social competence, emotional maturity, language and cognitive skills, 
and communication skills with general knowledge.

The AEDC also includes two additional domain indicators: vulnerable on one or more domains (Vuln 1) and 
vulnerable on two or more domains (Vuln 2). Socio-demographic factors, including Socio-Economic Indexes for 
Areas (SEIFA) score, preschool attendance, and remoteness factors are also incorporated, offering insights into 
potential links to health outcomes. The SEIFA score summarizes socio-economic conditions in an area, while 
remoteness factors categorize regions into cities, regional, and remote areas.

In the field of population health, publicly available data are often grouped according to geographical regions, 
such as the statistical areas (SA) defined in the Australian Statistical Geography Standard (ASGS). These areas, 
called SA1, SA2, SA3, and SA4, range respectively from the smallest to the largest defined geographical regions. 
Due to privacy and confidentiality concerns, personal-level information is typically not released. Therefore, in 
this paper, we focus on group-level data, and in the case study, we use data that have been aggregated at the SA2 
level41.

Data for the analysis are sourced from the 2018 AEDC, and focus on the proportion of vulnerable children in 
each SA2. Some missing data is handled through imputation using neighboring SA2s, with two islands having 
no contiguous neighbors excluded from the analysis. The study utilises the remaining data from 526 SA2 areas 
to conduct the analysis.

Our study uses the proposed methodology to analyse the influential factors affecting the development of 
children who are vulnerable in one or more domains (Vuln 1) in the Queensland SA2 regions. Data were found 
on the Australian Bureau of Statistics (ABS) official website and the AEDC. For each SA2 region, we considered 
several dependent variables, including the proportion of attendance at preschool, the remoteness factor which 
is converted using the one hot coding to three variables including zero and one and the index of relative socio-
economic disadvantage (IRSD) factor which is considered continuous in this case study. Before fitting the model, 
we scaled the variables using the logarithm. As a result, all the models are fitted without an intercept term. In our 
Bayesian Geographically Weighted Regression (GWR) analysis, we illustrate substantively important regions by 
plotting the 95% credible intervals for each coefficient. With (BGWR), a separate parameter estimate is indeed 
generated for each region. This means that the credible intervals obtained are specific to each region and its cor-
responding parameter. Therefore, the 95% credible interval associated with each region reflects the uncertainty 
in the parameter estimate for that particular geographical area. This is illustrated in the Fig. 4, where the blue 
line represents the mean.

Spatial cluster inferences
Figure 5 offers a geographical representation of five posterior mean parameters plotted on a map of Queensland. 
These values have been obtained through the proposed method, revealing that the relationship between the 
response variable (Vuln 1) and the covariates varies across different locations.

To find the suitable structure of spatial weighs kernel for SDPMM for the case study, we used the WAIC. The 
WAIC values of the uniform and exponentially weighted kernels associated with different bandwidth priors can 
be found in Table 5. Comparison of the WAIC value leads to the conclusion that the exponential kernel is the 
most suitable for the real dataset. Additionally, Table 6 shows that as the complexity of the model (in terms of 
the number of knots) increases, the fit of the model to the data (WAIC) also improves. However, since the total 
number of SA2 is just 526, in this case study we assumed the number of knots to be 9.

Figure 6 showed the cluster distribution on the map obtained from the proposed algorithm with 6 clusters 
using Dahl’s method. The cluster sizes are 124, 103, 90, 101 , 101 and 7. The strength of the proposed algorithm 
lies in its capability to create smaller cluster sizes compared to other cluster algorithms. This is beneficial for 
policy interventions targeting specific regions in Queensland, especially for identifying regions with high devel-
opmental vulnerabilities. Further, we provide a summary (Table 7) for each of these clusters according to the 
parameter estimation and 95% highest posterior density (HPD) interval.

Cluster 1 (124 out of 526) stands out due to its negative effect on the regression parameters for “Attendance at 
Preschool” with a narrow credible interval. The positive effects for the three levels of “Remoteness” are reliable, 
with the broadest uncertainty observed for the “Cities” parameters in comparison with the rest of the clusters. 
There’s also some uncertainty in the “IRSD” parameters, which exhibit a negative effect, although they remain 
influential. Cluster 2 (103 out of 526) is characterized by a significant negative effect for “Attendance at Preschool” 
with a narrowest credible interval across the six clusters, indicating a strong impact and high confidence. Addi-
tionally, There are more positive effects for the “Cities”, “Regional” and “Remote” parameters compared to Cluster 
1, there is a more negative relationship for “IRSD” parameters compared to Cluster 1. Cluster 3 (90 out of 526) 
also exhibits a significant negative effect for “Attendance at Preschool” parameters but with a broader credible 
interval, indicating a strong impact with more uncertainty. The positive effects for “Remoteness” parameters are 
still significant and confident, with the broadest uncertainty for the “Regional” parameters across the six clusters, 
“IRSD” exhibits the most negative parameters in this cluster in comparison with the rest. Cluster 4 (101 out of 
526) maintains a significant negative effect for “Attendance at Preschool” with a narrow credible interval, with a 
positive effects for “Remoteness” parameters. In this cluster “IRSD” has a positive effect with a narrow credible 
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interval in comparison with clusters 1, 2 and 3. Cluster 5 (101 out of 526) has a negative effect for “Attendance at 
Preschool” and a narrow credible interval. Similar to Cluster 4, the positive effects for “Remoteness”. But in this 
cluster “IRSD” has more positive effect in comparison with cluster 4. Cluster 6 (7 out of 526) stands out with it 
negative effect for “Attendance at Preschool” even though it has a wider credible interval. The positive effects for 
“Remoteness” are similar to the previous clusters, with the narrowest credible intervals for the “Cities, Regional, 
and Remote” parameters, also the “IRSD” has a negative effect with a narrow credible interval.

Figure 4.   95% posterior credible interval form the proposed algorithm.

Figure 5.   The spatial distribution of the posterior mean parameters derived from the proposed model.
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Table 5.   Sensitivity analysis for the proposed algorithm with different bandwidth priors and kernel functions 
with 9 knots.

Kernel type Bandwidth prior WAIC

Uniform
ε1i , ε2i ≡ � 3564.28

ε1i , ε2i ∼ Inverse Gamma(1.5, �2/2) 3568.94

Exponential
ε1i , ε2i ≡

�
2

2
3550.91

ε1i , ε2i ∼ Inverse Gamma(1.5, �2/2) 3565.42

Table 6.   Sensitivity analysis for the number of knots in the spatial stick-breaking.

Number of knots WAIC

9 3550.91

19 2705.90

24 1679.01

32 1279.32

Figure 6.   Cluster distribution from the proposed algorithm for the case study.

Table 7.   Parameter estimates and their 95% highest posterior density (HPD) intervals for the six clusters 
identified.  β̂1 : attendance at preschool parameters, β̂2, β̂3, β̂4 : remoteness parameters, with three levels (cities, 
regional, and remote), and β̂5 : IRSD parameters.

Cluster β̂1 β̂2 β̂3 β̂4 β̂5

1 − 0.083 (− 0.126, − 0.003) 0.206 (0.199, 0.216) 0.214 (0.197, 0.235) 0.259 (0.221, 0.293) − 0.014 (− 0.029, − 0.001)

2 − 0.075 (− 0.112, − 0.035) 0.216 (0.205, 0.230) 0.217 (0.200, 0.232) 0.262 (0.231, 0.294) − 0.049 (− 0.070, − 0.031)

3 − 0.095 (− 0.138, − 0.046) 0.198 (0.189, 0.207) 0.213 (0.199, 0.231) 0.259 (0.221, 0.299) − 0.005 (− 0.018, 0.009)

4 − 0.056 (− 0.112, − 0.004) 0.196 (0.186, 0.205) 0.202 (0.178, 0.221) 0.244 (0.221, 0.278) 0.063 (0.044, 0.086)

5 − 0.087 (− 0.134, − 0.040) 0.199 (0.189, 0.207) 0.207 (0.187, 0.224) 0.255 (0.224, 0.296) 0.013 (− 0.003, 0.036)

6 − 0.125 (− 0.173, − 0.102) 0.200 (0.194, 0.208) 0.192 (0.177, 0.199) 0.256 (0.235, 0.278) − 0.017 (− 0.028, − 0.010)
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These clusters are distinguished primarily by the magnitude and certainty of the effect of “Attendance at Pre-
school” and the reliability of the “Remoteness” and “IRSD”. Cluster 1, 4,5, and 6 share a strong negative impact 
of “Attendance at Preschool” with narrow credible intervals. Cluster 2 , with a broader credible interval, indicates 
more uncertainty in the impact of “Attendance at Preschool”. Cluster 3, despite having a wider credible interval 
for “Attendance at Preschool” still shows a significant negative effect. Additionally, the “IRSD” exhibits variations 
across clusters, adding another layer of distinction.

Discussion
In this paper, we introduce a new statistical framework aimed at addressing the challenges in clustering posed 
by spatially varying relationships within regression analysis. Specifically, we present a Bayesian model that inte-
grates geographically weighted regression with a spatial Dirichlet process to cluster relevant model parameters. 
This solution therefore not only identifies clusters of the model parameters but effectively captures the inherent 
heterogeneity present in spatial data. Our exploration encompasses various weighting schemes designed to 
effectively model the complex spatial interaction between neighborhood characteristics and the positioning of 
key points (or “knots”). This modelling is supported by a discussion of Bayesian model selection criteria, a crucial 
step in the analysis process that ensures selection of an appropriate and well-fitted model. Spatial variation in the 
effects of covariates empowers our model to provide a better fit to spatial data compared to conventional models, 
offering insights into the complex patterns of heterogeneity across diverse geographical locations. Additionally, 
making smaller group sizes helps decision-makers identify which regions need more help. To demonstrate the 
efficacy of our methodology, we have presented a simulation study. Moreover, we have extended our investigation 
to a real-world application: a thorough analysis of the factors influencing children’s development indicators in 
Queensland. Through this practical example, we showcase the benefits of our proposed approach, emphasizing 
its ability to find hidden dynamics that might otherwise remain obscured.

In our case study, we aimed to explore the influential factors affecting child development vulnerability in 
Queensland’s statistical area level 2 (SA2) regions. Our analysis utilised a dataset consisting of 526 observations, 
each corresponding to one of Queensland’s SA2 regions. The dataset included various explanatory variables, 
including preschool attendance, remoteness factors, and socio-economic factors. The primary objective was 
to identify spatial clusters of children’s vulnerability and gain insights into the regional disparities in children’s 
development domains. To select the appropriate spatial weights kernel for our model, we employed WAIC and 
found the uniform kernel, suggesting that it provides a better fit for our real dataset. Furthermore, we performed 
a sensitivity analysis to determine the optimal number of knots in the spatial stick-breaking process and found 
increasing the complexity of the model by adding more knots improved its fit to the data. We selected 9 knots 
as the optimal number for our analysis. Using the selected model with an exponential kernel and 10 knots, we 
applied the proposed algorithm to identify spatial clusters of child vulnerability. Our analysis revealed a total of 
6 clusters across Queensland’s SA2 regions. These clusters vary in size, with the largest containing 124 regions 
and the smallest comprising only 7 regions. The ability of the proposed algorithm to create smaller cluster sizes 
is noteworthy, as it allows for more targeted policy interventions in regions with specific developmental needs. 
Moreover, we conducted a detailed analysis of the clusters to understand their characteristics and implications. 
For instance, the presence of smaller clusters may indicate isolated areas with unique developmental challenges 
that require tailored interventions. In contrast, larger clusters could represent regions with similar vulnerabilities, 
suggesting the need for broader policy strategies. These findings offer valuable insights for policymakers and 
stakeholders interested in addressing child development disparities in Queensland.

Both the Bayesian Geographically Weighted Regression (GWR) and the Bayesian Spatially Varying Coeffi-
cient Model (Bayesian SVCM) offer powerful tools for understanding spatially varying relationships within data. 
Comparing and contrasting these two approaches can help in justifying the consideration of Bayesian GWR.

Firstly, both Bayesian GWR and Bayesian SVCM operate within a Bayesian framework, allowing for the 
incorporation of prior knowledge and uncertainty into the modelling process. However, they differ in their 
approaches to capturing spatial variation. Bayesian GWR explicitly models spatial heterogeneity by allowing 
regression coefficients to vary across space, making it well-suited for exploring localized relationships between 
variables. On the other hand, Bayesian SVCM focuses on estimating spatially varying coefficients for a global 
regression model, which may overlook finer-scale variations present in the data.

Furthermore, it is important to note that coefficients obtained from these methods may differ. Bayesian 
GWR produces coefficients that are specific to each geographic location, reflecting the spatially varying nature 
of relationships within the data. In contrast, Bayesian SVCM estimates coefficients that represent spatially vary-
ing effects within the context of a global model. These differences in coefficient estimation highlight the distinct 
strengths and interpretation nuances of each approach, the Bayesian GWR approach can complement existing 
non-Bayesian techniques such as the Spatial Clustered Regression (SCR) proposed by Sugasawa and Murakami37 
While SCR provides an alternative for capturing spatial clustering effects, it may lack the flexibility to adequately 
model spatially varying relationships. Bayesian GWR, with its emphasis on local estimation, can offer additional 
insights into how relationships between variables change across different geographic areas .

Bayesian SVCM and our method have their computational challenges. Our proposed algorithm is not com-
putationally intensive, in comparison with other clustering Bayesian methods. The time to run the simulated 
data was around 25 minutes, while for the real data set it took around 2:23 hours using the high performance 
computer (HPC).

While our paper represents a step forward in the field of spatial regression, it is essential to acknowledge the 
avenues for further exploration that our research did not study. For instance, while we thoroughly examined the 
full model that incorporates all relevant covariates, we did not delve into methodologies for variable selection 
within the context of clustered regression. This presents a clear direction for future research, where approaches 
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for selecting the most influential variables among a clustered regression could enhance the performance of our 
model even further. Additionally, our work touched upon the utilisation of the spatial Dirichlet process mixture 
model (SDPMM) to derive cluster information for regression coefficients. However, we acknowledge that the 
posterior distribution of the cluster count might not always be accurately estimated through the SDPMM, as 
demonstrated by Miller and Harrison42. Our simulation studies confirm this observation. This area emerges as a 
critical focus for future studies. Another area for future work involves expanding our methodology to accommo-
date non-Gaussian data distributions, a direction that holds promise for a wider range of applications. Moreover, 
the pursuit of adapting our model to handle multivariate response scenarios represents an essential avenue for 
future exploration, offering the potential to unlock insights and applications across various domains. Lastly, 
extend the proposed algorithm to a semi-parametric GWR scenario where certain exploratory variables remain 
fixed while others vary spatially43. Further, GWR allows regression coefficients to vary by location; it typically 
assumes a linear relationship between all predictor variables and the response within each location. However, in 
some real-world scenarios, not all predictor variables may exhibit linear relationships with the response variable. 
Some variables might have non-linear patterns or lack a certain discernible pattern altogether. These features 
could be included in the linear model through polynomials, splines, interactions, and so on, and alternative 
non-parametric regression models could be developed. It would be interesting to extend the proposed algorithm 
to allow for more flexibility in modeling complex relationships between predictor variables and the response44.

Methods
This section outlines the proposed model called the spatial Dirichlet process clustered heterogeneous regression 
model. The model utilises a non-parametric spatial Dirichlet mixture model applied to the regression coefficients 
of the geographically weighted regression model. The model is cast in a Bayesian framework.

Bayesian geographical weighted regression
The Bayesian geographically weighted regression (BGWR) model can be described as follows. Given diagonal 
weight matrix W(s) for a location s, the likelihood for each y(s) is:

where y(s) is the i th observation of the dependent variable, x(s) is the i th row (or observation) from the design 
matrix X and Wi(s) is the i th diagonal element from the spatial weight matrix W(s) . The weighted matrix W(s) 
is constructed to identify the relative influence of neighbouring regions on the parameter estimates at locations.

When working with areal data, the graph distance is an alternative distance metric that can be used. It is based 
on the concept of a graph, where V = {v1, ..., vm} represents the set of nodes (locations) and E(G) = {e1, ..., en} 
represents the set of edges connecting these nodes. The graph distance is defined as the distance between any 
two nodes in the graph35.

where |V(e)| is the number of edges in e45. The graph distance-based weighted function is given as:

where di(s)b is the graph distance between locations i and s, f is a weighting function, and b represents the band-
width. In this study, we suppose that f() is a negative exponential function29, so,

where b represents the bandwidth that controls the decay with respect to distance46. Here, di(s) indicates that 
an observation far away from the location of interest contributes little to the estimate of parameters at that loca-
tion. In this paper, we used the graph distance and the greater circle distances47 and both of these methods show 
consistent parameters. The proposed model is constructed in a Bayesian framework with conjugate priors on 
the regression parameters and other model terms. The full model is given in the (Full Bayesian spatial Dirichlet 
process mixture prior cluster heterogeneous regression) section.

Heterogeneous regression with spatial Dirichlet process mixture prior
In a Bayesian framework, coefficient clustering can be achieved by using a Dirichlet process mixture model 
(DPMM). This approach links the response variable to the covariates through cluster membership. The DPMM 
is defined by a probability measure G that follows a Dirichlet process, denoted as G ∼ (α,G0) , where α is the 
concentration parameter and G0 is the base distribution35. Hence,

where (A1, ...,Ak) is a finite measurable partition of the space � , and the variable k represents the number of 
components or clusters in a (DPMM). Several formulas have been proposed in the literature for specifying the 
DPMM’s parameters and incorporating spatial dependencies48,49. A popular approach is the spatial stick-breaking 
algorithm50,51, which in a BGWR setup is applied at each location as follows:

(5)y(s)|β(s), x(s),Wi(s), σ
2(s) ∼ N(xT (s)β(s), σ 2(s)W−1

i (s))

W(s) =

{

|V(e)| if e is the shortest distance connecting a pair of nodes,
∞ if the two nodes are not connected

W(s) =

{

1 if di(s) ≤ b,

f (di(s)
b) otherwise

W(s) =

{

1 if di(s) ≤ 1,

e(−di(s)/b) otherwise

(6)(G(A1), ...,G(Ak)) ∼ Dirichlet(αG0(A1), ...,αG0(Ak))
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where δ(θi) is the Dirac distribution with a point mass at ( θi) , and pi(s) is a random probability weight between 
0 and 1. The distribution of G(s) depends on Vi and θi ; the distribution varies according to the kernel function 
li(s) . However, the spatial distributions of the kernel function li(s) vary, constrained within the interval [0, 1]. 
These functions are centered at knots ψi = (ψ1i ,ψ2i) , and the degree of spread is determined by the bandwidth 
parameter ǫi = (ǫ1i , ǫ2i) . Both the knots and bandwidths are treated as unknown parameters with independent 
prior distributions, unrelated to Vi and θi . The knots ψi are assigned independent uniform priors, covering the 
bounded spatial domain. The bandwidths can be modelled to be uniform for all kernel functions or can vary 
across kernel functions, following specified prior distributions50,52. The most common kernels are the uniform 
and the square exponential functions. This kernel can take different formats. Table 8 provides examples of the 
most popular kernels used for the spatial stick-breaking configuration.

A vector of latent allocation variables Z is generated to characterize the clustering explicitly. Let 
Zn,k = {z1., ..., zn} , where zi ∈ {1, ..., k} and 1 ≤ i ≤ n represents all possible clustering of n observations into 
K clusters.

Full Bayesian spatial dirichlet process mixture prior cluster heterogeneous regression
Adapting the spatial Dirichlet process to the heterogeneous regression model, we focus on clustering of spatial 
coefficients β(s1), ...,β(sn) and β(si) = βzi ∈ {β1, ...,βk} . The full model is described as follows with the most 
commonly adopted priors:

(7)

G(s) =

K
∑

i=1

pi(s)δ(θi)

p1(s) = V1(s)

pi(s) = Vi(s)

i−1
∏

j=1

(1− Vj(s)) for all i > 1

Vi(s) = li(s)Vi

Vi ∼ Beta(a, b)

(8)y(s)|β(s), x(s),Wi(s), σ
2(s) ∼ N(xT (s)β(szi ), σ

2(s)W−1
i (s))

(9)Wi(s) = f (di|b)

(10)b ∼ Uniform(0,D)

(11)βzi ∼ Np(µzi ,�zi )

(12)zi ∼ categorical(p1(s), p2(s), ..., pk(s))

(13)µk|�k ∼ Np(mk ,�k)

(14)�k ∼ IW(Dk , ck)

(15)σ 2(s) ∼ IGamma(α1,α2)

(16)P(zi = k|p) = pk(s)

Table 8.   Examples of kernel functions, where IG presents inverse Gamma function.

Name li(s) Model for ε1i and ε2i
Uniform ∏2

j=1 I
(

|sj − ψji | <
εji
2

)

ε1i , ε2i ≡ �

Uniform ∏2
j=1 I

(

|sj − ψji | <
εji
2

)

ε1i , ε2i ∼ Exp(�)

Squared exp.
∏2

j=1 exp

(

−
(sj−ψji)

2

2ε2ji

)

ε1i , ε2i ≡
�
2

2

Squared exp.
∏2

j=1 exp

(

−
(sj−ψji)

2

2ε2ji

)

ε1i , ε2i ∼ IG(1.5, �2/2)
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Here, the response variable Y  is assumed to follow a Gaussian distribution; the design matrix representing the 
predictors is denoted by X, and the spatial weight matrix W(s) depends on two key aspects: the distance between 
observations, represented as di , and a parameter b , which controls the bandwidth. This bandwidth is assumed 
to follow a uniform distribution between 0 and a certain value D , which represents the bandwidth parameter. 
A common prior for the bandwidth is given by: b-Uniform(0,D), where D > 0. Without any prior knowledge, 
D can be selected to be large enough that we begin to approximate with a non-informative prior; i.e. we begin 
with an approximate global model in which all observations are weighted equally. We used a bandwidth param-
eter D set to 100. The maximum great circle distance in the spatial structure of the 159 regions is 10, so using 
a bandwidth of 100 induces a weighting scheme that ensures relative weights are assigned appropriately. If the 
distance between two regions is considerable, the relative weight is approximately exp(-10/100) = 0.904. This 
approximation thus allows the model to behave similarly to a global model where every observation is equally 
weighted, ensuring a sufficiently non-informative prior bandwidth b. please see the method section. f is the 
graph weighting function. The regression coefficients βzi are associated with a specific group, or cluster, zi , for a 
particular observation. The mean and spread of cluster zi are denoted as µ and �zi , respectively, and the maxi-
mum number of possible clusters is K.

The hyper-parameter mk is a prior mean value for the µzi and �k is a way to express how different a cluster can 
be. Similarly, Dk is the scale matrix, and ck > p− 1 is the degrees of freedom. Another important aspect is the 
variation in the data, which is σ 2(s) . This variation changes across locations and follows a specific prior pattern, 
which is assumed to be an inverse Gamma distribution with parameters α1 and α2.

we focus on the probability P(zi = k) that observation i belongs to cluster k . This assignment probability at 
a specific location s is denoted as pk(s) . For the clusters, we also consider “stick-breaking weights”, denoted by 
Vk(s) , which change across locations. The values av and bv are related to how these weights are determined using 
a beta distribution. Here 

∑k
j=1 pk(s) = 1 almost surely under the constraint that Vk(s) = 1 for all locations s53.

Bayesian estimation and inference
This section covers using MCMC to obtain samples from posterior distributions of model parameters. It explains 
the sampling scheme, covers the use of posterior inference for cluster assignments, and methods for evaluating 
accuracy.

The MCMC sampling schemes
The main R function for the model is implemented using the nimble package54. This function encapsulates the 
model and provides an interface for executing the MCMC sampling scheme, performing posterior inference, and 
evaluating estimation performance and clustering accuracy. The model itself is wrapped within a nimbleCode 
function, which allows the nimble package to generate and compile C++ code to execute the MCMC sampling 
scheme efficiently. This can result in substantial speed improvements over pure R implementations, especially 
for models with large datasets or complex parameter space. In the context of the proposed algorithm, the nimble 
package provides several MCMC sampling methods, including the popular Gibbs and Metropolis-Hasting algo-
rithms for inferring the posterior distribution of the regression and other model parameters. Nimble also allows 
for the specification of priors and likelihood functions for the parameters to customise the MCMC sampling 
process. In our study, the Gibbs sampling algorithm was used to obtain the clusters of the parameters.

Block Gibbs sampling is a MCMC technique used for sampling from the joint distribution of multiple random 
variables. The primary idea behind block sampling is to group related variables together into “blocks” and sample 
them jointly, which can improve the efficiency and convergence of the sampling process55. An explanation of this 
sampling algorithm for the proposed algorithm can be found in the Appendix.

Cluster configurations
Two methods are used to determine cluster configurations. In the first, the estimated parameters, together with 
the cluster assignments Zn,k are determined for each replicate from the best post-burn-in iteration selected using 
Dahl’s method56, which involves estimating the clustering of observations through a least-squares model-based 
approach that draws from the posterior distribution. In this method, membership matrices for each iteration, 
denoted as B(1), . . . ,B(M) , with M being the number of post-burn-in MCMC iterations, are computed. The 
membership matrix for the c-th iteration, B(c) is defined as:

where 1(·) represents the indicator function. The entries B(c)(i, j) take values in {0, 1} for all i, j = 1, . . . , n and 
c = 1, . . . ,M . When B(c)(i, j) = 1 , it indicates that observations i, and j belong to the same cluster in the cth 
iteration.

To obtain an empirical estimate of the probability for locations i and j being in the same cluster, the average 
of B(1), . . . ,B(M) can be calculated as:

(17)p1(s) = V1(s), pk(s) = Vk(s)

K−1
∏

j=1

(1− Vj(s)),Vk(s) = lk(s)Vk

(18)Vk ∼ Beta(av , bv)

(19)B(c) = (B(c)(i, j))i,j∈{1:n} = 1(z
(c)
i = z

(c)
j )n×n
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where 
∑

 denotes the element-wise summation of matrices. The (i, j)th entry of B provides this empirical estimate.
Subsequently, the iteration that exhibits the least squared distance to B is determined as:

where B(c)(i, j) represents the (i, j)th entry of B(c), and B(i, j) denotes the (i, j)th entry of B . The least-squares 
clustering offers an advantage in that it leverages information from all clusterings through the empirical pairwise 
probability matrix B.

The second method utilised here is the posterior mode method. This method leverages posterior samples 
from iterations associated with zi , where z denotes the cluster assignments specific to each region. Each iteration 
generates a new set of cluster assignments z, which are dependent on the parameters. Consequently, following 
multiple iterations, each region will have an empirical posterior distribution of cluster assignments z. The mode 
indicates the cluster with the highest probability of assignment for a given region.

Cluster accuracy
In order to assess the accuracy of the proposed algorithm, we compared the cluster configurations with the 
true labels provided for the simulated data. It is important to note that while the true labels are available for the 
simulated data, such information is not readily available for real-world datasets. In practice, true labels are often 
unknown, which poses a challenge for the evaluation of clustering accuracy. In this study, we utilised the Rand 
index (RI)57. This index measures the level of similarities between two sets of cluster assignments, labelled as C 
and C′ , with respect to a given dataset X = {x1, x2, . . . , xn} . Each data point x(s) is assigned a cluster label ci in 
C and c′i in C′ . The RI is computed using the following formula:

Hhere a , represents the number of pairs of data points that are in the same cluster in both C and C′ (true posi-
tives); b indicates the number of pairs of data points that are in different clusters in both C and C′ (true nega-
tives); c represents the number of pairs of data points that are in the same cluster in C but in different clusters in 
C′ (false positives); and d stands for the number of pairs of data points that are in different clusters C but in the 
same cluster in C′ (false negatives).

The Rand index ranges from 0 to 1, with a value of 1 denoting a complete concordance between the two 
clusterings (both C and C′ perfectly agree on all pairs of data points). Conversely, a value close to 0 indicates a 
weak level of agreement between the two clusterings.

Conclusion
This paper introduces a method called the spatial Dirichlet process clustered heterogeneous regression model. 
The method employs a non-parametric Bayesian clustering approach to group the spatially varying regression 
parameters of a Bayesian geographically weighted regression, and also determines the best number and arrange-
ment of clusters. The model uses advanced Bayesian techniques to cluster the parameters and determine the 
best number and arrangement of clusters. The model’s abilities were demonstrated using simulated data and 
then applied to actual data related to children’s development vulnerabilities in their first year of school. In this 
application, the model successfully identified key factors. This approach enhances our understanding of how 
children develop in various regions, revealing the factors that impact their health and well-being. With these 
insights, policymakers can create targeted policies that are suited to each area’s unique characteristics. As a result, 
this innovative method not only improves the suite of analytical tools but also contributes to the broader goal of 
enhancing the health and development prospects of children in different places.

Data availibility
All the datasets used in this article are publicly accessible and free to download. Anyone interested can access 
them without special privileges. Likewise, the authors did not have any special privileges when accessing the 
data for analysis in this article. The datasets can be obtained from the following sources: Children’s Health Data 
is sourced from the Australian Early Development Census, available upon request at https://​www.​aedc.​gov.​au/​
data-​explo​rer/. The Explanatory Data is obtained from the Australian Bureau of Statistics and is publicly available 
at https://​www.​abs.​gov.​au/​census/​find-​census-​data/​quick​stats/​2021/3.
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