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Comparative analysis 
of feature‑based ML and CNN 
for binucleated erythroblast 
quantification in myelodysplastic 
syndrome patients using imaging 
flow cytometry data
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Myelodysplastic syndrome is primarily characterized by dysplasia in the bone marrow (BM), 
presenting a challenge in consistent morphology interpretation. Accurate diagnosis through 
traditional slide-based analysis is difficult, necessitating a standardized objective technique. Over 
the past two decades, imaging flow cytometry (IFC) has proven effective in combining image-based 
morphometric analyses with high-parameter phenotyping. We have previously demonstrated 
the effectiveness of combining IFC with a feature-based machine learning algorithm to accurately 
identify and quantify rare binucleated erythroblasts (BNEs) in dyserythropoietic BM cells. However, 
a feature-based workflow poses challenges requiring software-specific expertise. Here we employ 
a Convolutional Neural Network (CNN) algorithm for BNE identification and differentiation from 
doublets and cells with irregular nuclear morphology in IFC data. We demonstrate that this simplified 
AI workflow, coupled with a powerful CNN algorithm, achieves comparable BNE quantification 
accuracy to manual and feature-based analysis with substantial time savings, eliminating workflow 
complexity. This streamlined approach holds significant clinical value, enhancing IFC accessibility for 
routine diagnostic purposes.
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PE	� R-Phycoerythrin
TP	� True positives
TPR	� True positive rate

Myelodysplastic syndrome (MDS) is characterized as a highly heterogeneous group of clonal stem cell 
disorders marked by a range of different dysplastic changes in the bone marrow (BM) together with disrupted 
hematopoiesis, varying degrees of cytopenias, and an increased risk of progression to acute myeloid leukemia 
(AML)1–5. In the diagnostic setting, morphologic BM dysplasia together with persistent cytopenia remain the 
hallmarks of MDS5,6. However, accurate diagnosis of cases in which mild cytopenias and subtle dysplastic 
changes are present can be difficult, and inter-scorer variability and subjectivity may be present, even among 
experienced hematopathologists1,3,7,8. Furthermore, in many cases qualifying dysplasia is not identified, and 
indefinite conclusions may be arrived at despite the presence of persistent cytopenias, categorizing patients into 
two streams: idiopathic cytopenia of undetermined significance (ICUS)9 or, when evidence of clonality is present, 
clonal cytopenia of undetermined significance (CCUS)10. Interestingly, carrying certain mutational patterns leads 
to similar overall survival and risk of disease progression for high-risk CCUS and low-risk MDS patients, thus 
suggesting that such high-risk CCUS cases should be classified as low-risk MDS11. As a result of this diagnostic 
complexity, high-throughput, objective, standardizable and reproducible methods that permit distinction of 
MDS from non-clonal reactive causes of cytopenia and dysplasia are desirable. Moreover, rare events that are 
indicative of MDS such as binucleated erythroblasts (BNEs), while easy to identify using visual microscopy can 
be challenging to quantify in large numbers, thus limiting statistical robustness.

Imaging flow cytometry (IFC) using the ImageStream®X MKII (ISX) may be able to address this, as it combines 
high-throughput data acquisition capacity and statistical robustness of conventional multicolor flow cytometry 
(MFC) together with high-resolution imaging capabilities of microscopy in a single system. The ISX permits 
simultaneous capture of 12 images (2 brightfield (BF) and 10 fluorescent) from every individual cell that passes 
through the system12. The acquired image data from thousands of cells may be analyzed using traditional MFC 
gating strategies to identify phenotypical markers, as well as applying feature-based algorithms and artificial 
intelligence to quantify morphometric changes that can be standardized and automated, reducing subjectivity 
and scorer variability13,14.

In recent years, several publications have illustrated the relevance and potential of IFC to supplement 
and perhaps enhance traditional visual microscopic techniques15,16. In the clinical space, applications such 
as phenotypical and morphological changes in red blood cell structure in sickle cell disease17–19, hereditary 
spherocytosis20, red blood cell storage lesions21,22, phenotypic blast heterogeneity23, assessment of leukocyte-
platelet aggregates24, detection of numerical and structural chromosomal abnormalities25–27, and detection of 
cytoplasmic nucleophosmin in NPM1 mutated AML patients28,29 show the potential strength of IFC. Recently, 
we applied the IFC technology to show that dysmorphometric changes in the erythroid cell lineage in MDS 
BM samples with known dyserythropoiesis could be identified and quantified both phenotypically and 
morphometrically. We also applied a newly available feature-based machine learning (FBML) algorithm to 
identify distinct image morphologies present in rare BNEs to maximize accuracy in their identification and 
quantification30.

While feature-based analysis is the gold standard method to examine IFC data, generating effective and 
appropriate analysis strategies can be extremely challenging, time-consuming and ineffective given the rigidity 
of image segmentation22,31. Therefore, AI-based approaches are rapidly gaining ground32–35 based on their ability 
to examine information from multiple levels in image data. As such, convolutional neural networks (CNNs) 
can identify subtleties in complex image morphologies and are able to discriminate populations with more 
flexibility and accuracy than feature-based analysis36,37. However, one significant disadvantage regarding the 
use of AI algorithms has been the reliance on computer scientists for development, optimization and validation 
due to the advanced coding knowledge required for implementation. To address this challenge, the Amnis® AI 
(AAI) software package was developed with a convenient graphical user interface to allow researchers without 
advanced coding skills to directly develop, train, and validate CNN models to analyze IFC image data. This new 
software package has been used recently to differentiate silicone oil droplets from protein aggregates38, to quantify 
micronuclei in genetic toxicology14, and to assess boar sperm acrosome health39.

In this paper, using the raw data from our previous work30, we examine the use of the AAI software to identify 
BNEs and differentiate them from doublet events and other non-BNE images. We compare the AAI-derived BNE 
frequencies to results previously obtained using FBML and illustrate their similarities. Importantly, the imagery 
of every individual cell, from both patients and controls, was manually examined to visually detect and validate 
the genuineness of the BNEs. Ultimately, we show that an AI-based analysis is more straightforward to construct 
and implement in comparison to traditional feature-based analysis. We believe that our AI-driven approach 
has the potential to both improve and streamline work procedures in clinical laboratories which is of major 
importance as limited resources in our health care system calls for implementing less labor-intensive methods.

Methods
Image data
For this study, we leverage the IFC imagery and raw data acquired in our prior study30. The dataset was comprised 
of BM samples from 14 MDS patients, six ICUS/CCUS patients, six non-MDS controls, and 11 healthy controls. 
The selection of MDS and control BM samples, along with sample preparation, data acquisition, gating procedure 
for erythroblast subpopulations, and FBML quantification of BNEs, were extensively described previously30. The 
Central Denmark Region Committee on Health Research Ethics (record no.: 1-10-72-125-17) and the Danish 
Data Protection Agency (record no.: 1-16-02-849-17) approved the study.
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FBML model development using IDEAS machine learning module
The current study extends our prior research on BNE identification and quantification, leveraging data and 
processing procedures from our previous investigations30. In summary, we utilized the IDEAS-based ML 
module (version 6.3.17) in our forgoing study to differentiate BNEs from doublets and erythroblasts exhibiting 
irregular nuclear shapes. The ML module integrated within IDEAS generates masks and extracts morphometric 
features on a per object basis. The features are combined through Linear Discriminant Analysis, with weighting 
determined by user-defined truth populations manually tagged. Subsequently, the module identifies images 
within the broader dataset resembling the designated truth populations and assigns a classifier-specific value to 
each image, which can be visualized trough histograms and bivariate plots, making these ML classifiers versatile 
across different datasets. To utilize the ML module, a single file containing a minimum of 25 hand-tagged images 
is required for operation. Given the low frequency of BNEs and doublets within individual MDS patients and 
controls, we combined multiple files to ensure an adequate number of truth events for generating a robust 
classifier. A total of seven data files from MDS patients were combined. A BNE mask in combination with a 
Spot Count feature was used to detect candidate erythroblasts with two nuclei (2N). Finally, FBML models were 
applied to the 2N population and used to differentiate BNEs from doublets and erythroblasts with irregular 
nuclear shape in all patients and healthy control30.

CNN model development using Amnis® AI (AAI)
To ensure a similar starting point in this work the 2N population from the combined data file was loaded into 
the AAI software (v2.0.7; Cytek Biosciences, Seattle, WA) that uses the Keras Application Programming interface 
v2.1.5 with Tensorflow v1.7.0 library and the VGG16 network to train a CNN and subsequently classify objects 
from relevant data files. Users interact with the AAI software through a straightforward graphical user interface 
(GUI), negating advanced coding requirements. A CNN model was trained to classify erythroblast nuclei into 
one of three model classes—BNE, doublet, or irregular nuclear morphology—using only the BF, CD235, and 
DRAQ5 images (Fig. 1). A total of 758 candidate BNE objects, identified by the “BNE spot count” feature in the 
IDEAS® gating strategy30, were imported as the base population. To assign each object to the most appropriate 
model class prior to training, we used the Cluster and Predict algorithms (Fig. 2). The Cluster algorithm examines 
an automatically created segment of 1500 random objects from the base population, and groups similar objects 
together based on the likeness of their morphologies. The Predict algorithm attempts to predict the most 
appropriate model class for unclassified objects within a segment. These tools aid the user to improve the speed 
of model class population. All images were ultimately assigned to the respective ground truth model classes 
after visually examining the suggestions provided by the cluster and predict algorithms. Using these tools, all 
758 base population objects were assigned to the three model classes—147 BNEs, 350 doublets, and 261 cells 
with irregular nuclear morphology. The AAI software then randomly split these objects into training, validation, 
and test sets using an 80/10/10 ratio, with the validation and test sets remaining unseen by the CNN during 
training14,38. Model training was completed when accuracy on the validation and training datasets converged, 
requiring 46 epochs. As described in our previous work30 objects classified as double nucleated (2N) images 
based on the spot count feature appeared to contain BNEs, doublets, and cells with irregular nuclear morphology. 
To analyze all remaining patient and healthy control data using the model, the 2N population in all remaining 
data files were loaded into the AAI software. The trained model was used to classify cellular images in the ProE, 
BasoE, and PolyOrthoE subpopulations into either BNEs, doublets, or cells with irregular nuclear morphology. 
Finally, all data files from patients and controls were updated to incorporate the classified objects from the AI 
model, enabling subsequent evaluation, including visual confirmation, to validate the classification outcomes.

Manual verification of FBML and AAI classified BNEs
Individual images of FBML and AAI classified ProE, BasoE, and PolyOrthoE BNEs were manually inspected 
to visually evaluate accuracy of both techniques (Supplemental Fig. S5). To accomplish this, BF, CD235a, and 

Class name BF Composite Truth count

BNE 147

Doublets 350

Irregular nuclear 
morphology 261

Figure 1.   Data overview. Representative IFC imagery of the truth populations and key events that must be 
distinguished for correct BNE quantification. The key events include BNEs (n = 147), doublets (n = 350), and 
erythroblasts with irregular nuclear morphology (n = 261). Representative BF and nuclear imagery are shown, 
the latter as composite with CD235a PE staining overlaid onto the images.
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DNA imagery of each individual cell were carefully reviewed to categorize true and false positive BNEs from 
both methods across the full data set. A total of 1910 BNEs were examined (FBML: n = 773; AAI n = 1137). To 
further evaluate the performance of the two algorithms, the number of false negative (FN) BNEs was quantified 
by summing the number of visually verified BNEs found within the doublets and cells with irregular nuclear 
morphology in ProE, BasoE, and PolyOrthoE populations. For FBML analysis Boolean algebra (Double nucleated 
AND NOT Doublets AND NOT BNEs) was used to define ProE, BasoE, and PolyOrthoE subset with irregular 
nuclei. A total of 1166 doublets (FBML: n = 547; AAI n = 619) and 4044 erythroblasts with irregular nuclei (FBML: 
n = 2245; AAI n = 1799) were validated. Moreover, all 2N populations (n = 3533) were assessed separately to 
establish manually classified BNE populations for all patients and healthy controls. Visually verified BNEs were 
identified and hand-tagged, resulting in the creation of manual ProE BNE, manual BasoE BNE, and manual 
PolyOrthoE BNE subpopulations. Individual object numbers from manually identified BNEs were then cross-
referenced with object numbers for FBML and AAI identified BNEs. Venn diagrams were constructed to 
represent the relationship among the three sets of BNE object numbers identified by AAI, FBML, and manual 
classification in ProE, BasoE, and PolyOrthoE subsets form healthy volunteers (normal BM (NBM)), MDS 
patients, ICUS/CCUS, and non-MDS patients. These diagrams were generated using data derived from the 
summation of BNE counts identified by AAI, FBML, and manual classification. All cells were scored by the 
same observer to exclude inter-observer variability. While conducting manual scoring the observer was blinded 
against the FBML and AAI scoring results.

Statistical analyses
The statistical analysis involved comparison of continuous variables between NBM and patients with MDS using 
the Mann–Whitney U non-parametric test. A significance level of p < 0.05 was used to determine statistical 
significance. All statistical calculations were performed using GraphPad Prism version 10 software (GraphPad 
Software, La Jolla, California). All BNE fractions are given with one decimal.

Specify base population (all 2N cells) and
specify hand-tagged ground truth populations (BNE, doublet, irregular nuclear morphology)

Load data into Amnis AI 
software

Enhance ground truth populations using 
Cluster and Predict algorithms

Review and verify 
model accuracy

Use CNN model to classify data files 
from MDS patients and controls 

Train CNN 
model

Update and refine truth populations

Assign appropriate image 
channels (BF, CD235a, DNA)

Cluster Predict

BNEs

Irregular 
morphology

Doublets
BNE Doublet

Irregular 
nuclear
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BNE 115 1 31

Doublet 0 349 1
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Figure 2.   Diagrammatic view of the Amnis AI software workflow. Images from IFC data files were loaded into 
the AAI software using the available step-by-step wizard. Next, appropriate channels were assigned (i.e., BF, 
CD235a, and DNA), the base population (i.e., 2N cells, n = 758) was specified. Then ground truth populations 
were defined using the Cluster and Predict algorithms. The CNN model was trained, accuracy was reviewed, 
truth populations were updated and refined by assigning misclassified images to the appropriate model class, 
and the model was retrained. Finally, the CNN model was used to classify data files from MDS patients and 
controls.
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Results
Development of a deep‑learning model utilizing Amnis® AI (AAI)
To achieve accurate identification and quantification of dysplastic BNEs within BM samples from patients 
with MDS, it is pivotal to effectively differentiate them from both doublets and single nucleated erythroblasts 
exhibiting irregular nuclear morphological characteristics (Fig. 1). By employing the workflow illustrated in 
Fig. 2, we conducted training of an CNN algorithm that categorized candidate BNE erythroblasts into three 
classes: (i) BNEs, (ii) doublets, and (iii) erythroblasts with irregular nuclear morphology. After the training 
process, the AAI software provided common accuracy metrics used in artificial intelligence algorithms including 
precision, recall, and F1 score. Across model classes, the statistics ranged from 60 to 100% with overall weighted 
average model F1 scores of 94.8%, 90.6%, and 85.0% for the training, validation, and testing datasets, respectively 
(Table 1). The true and predicted class values from the experiment were recorded in confusion matrices (Fig. 3). 
The model demonstrated an accuracy of 94.3%, calculated as the sum of true positives (TPs) and true negatives 
(TNs) divided by the total count, signifying its overall effectiveness in predicting BNEs within the experimental 
dataset. Furthermore, it exhibited a specificity, or true negative rate (TN/TN + FP), of 98.2%, highlighting the 
model’s precision in accurately classifying objects as non-BNEs in 98.2% of the cases when they are not BNEs. 
In other words, misclassification of non-BNEs as BNEs was infrequent, occurring at a rate of only 1.8% and only 
erythroblasts with irregular nuclear morphology were mislabeled as BNEs (Fig. 3). The model demonstrated a 
sensitivity of 78.2%, underscoring the frequency with which the model correctly recalled true BNEs from the 
dataset. The reduced sensitivity was linked to misclassification of BNEs as erythroblasts exhibiting irregular 
nuclear morphology, implying that 21.1% of genuine BNEs in the dataset were incorrectly labeled as having 
a single irregular nucleus. Regarding the reliable identification of positive cases, the model exhibited strong 
precision (TP BNEs/predicted BNEs), accurately classifying BNEs as such in 91.3% of instances. Translated into a 
clinical context, designating an event as a BNE signifies a high level of confidence in its correctness. Nevertheless, 
a portion of actual BNEs may be incorrectly categorized as erythroblasts with irregular nuclear morphology, 
potentially leading to an underestimation of the BNE count.

Performance of FBML and AAI for BNE quantification
The BNE frequencies in BM samples of healthy controls, patients with MDS, patients with ICUS/CCUS, and 
non-MDS patients were determined using AAI (Fig. 4). We have previously demonstrated that FBML could be 
used for enumeration of BNEs and found a significantly higher frequency in BM samples from MDS patients 
compared to healthy BM30. Here, we demonstrate that the AAI approach showed good agreement with the FBML 
approach in scoring BNE frequencies. Notably, significant increases in the number of BNEs were observed in 
MDS BM samples compared to healthy BM controls at all maturation stages (ProE: p < 0.0001; BasoE: p = 0.0223; 
PolyOrthoE: p = 0.0094) (Fig. 4). Despite the overall agreement between the two methods, we observed that the 

Table 1.   Accuracy statistics for the training, validation, and testing datasets used in the AAI BNE model.

Model class

Training data Validation data Testing data

Objects Precision (%) Recall (%) F1 (%) Objects Precision (%) Recall (%) F1 (%) Objects Precision (%) Recall (%) F1 (%)

BNE 117 94.1 81.2 87.2 15 84.6 73.3 78.6 15 75.0 60.0 66.7

Doublets 234 100.0 99.6 99.8 35 97.2 100.0 98.6 35 92.1 100.0 95.9

Irregular nuclear 
morphology 209 89.8 97.1 93.3 26 85.2 88.5 86.8 26 80.8 80.8 80.8

Overall weighted 
average 560 95.0 94.8 94.8 76 90.6 90.8 90.6 76 84.9 85.5 85.0

Figure 3.   Confusion matrices and evaluation metrics. Three-class single-cell CNN classification using BF, 
CD235a, and DNA channels. Confusion matrices were generated for three categories using a dataset of 758 base 
population cells pooled from 7 MDS patients. (a) Class count numbers presenting the relationship between true 
and predicted class label, (b) row-wise normalization of class percentages emphasizing the sensitivity/recall (i.e., 
TPR: (TP/(TP + FN)) metrics for each individual class, and (c) column-wise normalization of class percentages 
emphasizing the precision (i.e., TP/TP + FP) of the model for each class. Created with BioRender.com.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9349  | https://doi.org/10.1038/s41598-024-59875-x

www.nature.com/scientificreports/

AAI method displayed a tendency towards identification of higher BNE numbers for individual MDS patients 
and controls—most visible for MDS patients and non-MDS patients (Supplemental Fig. S1) and leading to 
statistically significant increase in MDS BNE frequency at the BasoE maturation stage (p = 0.0223) (Fig. 4). We 
conducted a meticulous manual review of the BNE populations classified by both FBML and AAI. This involved 
visual examination and comparison of BF, CD235a, and DNA images of each individual cell (FBML: n = 773; AAI 
n = 1137). Upon this evaluation, the confirmed counts of TP BNEs revealed a decrease in the number of valid 
BNEs. Despite lower actual metric values, we consistently observed an increase in BNE frequencies (Fig. 5) and 
counts (Supplemental Fig. S2) in BM samples obtained from patients with MDS across all stages of maturation 
for both classification strategies. Moreover, when assessing MDS patients with BNE frequencies above the median 
value, both methods identified the same set of patients (data not shown). The nuclei of false positive (FP) BNEs 
displayed irregular shape and/or elongation (Supplemental Fig. S3a) and a notably increased number of FP 
BNEs was evident in BM samples obtained from patients with MDS, ICUS/CCUS, and non-MDS patients 
compared to healthy controls (Supplemental Fig. S3b–d). The healthy control group exhibited consistently low 
FP (Supplemental Fig. S3b–d) and false negative (FN) counts (Supplemental Fig. S4), establishing a reliable 
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Figure 4.   Frequency of BNEs in dyserythropoietic and control BM. Violin plot representation of BNE 
percentages among ProE, BasoE, and PolyOrthoE quantified by AAI. Groups of MDS patients (n = 14), ICUS/
CCUS patients (n = 6), non-MDS patients (n = 6), and healthy controls (n = 11) are indicated by color, medians 
are highlighted by a solid line, and interquartile ranges are visualized by broken lines. Mann–Whitney U 
non-parametric test was used for comparison of healthy controls and MDS patients. ProE: p < 0.0001; BasoE: 
p = 0.0223; PolyOrthoE: p = 0.0094.

Figure 5.   Frequency of true positive BNEs in dyserythropoietic and control BM following manual verification 
of individual BNE populations. Violin plot representation of BNE percentages among ProE, BasoE, and 
PolyOrthoE quantified by (a) FBML and (b) AAI. All BNE populations were manually inspected for visual 
verification and identification of true positive and false positive BNEs, respectively. Groups of MDS patients 
(n = 14), ICUS/CCUS patients (n = 6), non-MDS patients (n = 6), and healthy controls (n = 11) are indicated 
by color, medians are highlighted by a solid line, and interquartile ranges are visualized by broken lines. 
Mann–Whitney U non-parametric test was used for comparison of healthy controls and MDS patients. FBML 
ProE: p = 0.0010; FBML BasoE: p = 0.0074; FBML PolyOrthoE: p = 0.0005. AAI ProE: p = 0.0006; AAI BasoE: 
p = 0.0186; AAI PolyOrthoE: p = 0.0026.
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baseline for the implementation of an approach emphasizing deviations from the normal state. Specifically, 
when employing the FBML approach, only two out of 33 erythroblast subsets exhibited FP BNEs, with a median 
FP number of 1.5 (range 1–2). In contrast, the AAI method detected FP BNEs in eight subsets, with a median 
FP number of 2.0 (range 1–12) (Supplemental Fig. S3b–d). On the contrary, AAI showed a reduced incidence 
of FN BNEs (Supplemental Fig. S4), detecting them in eight out of 33 erythroblast subsets (median count: 1; 
range: 1–4) whereas FBML revealed FN BNEs in 11 out of 33 subsets, again with a median count of 1 (range: 
1–5). Accordingly, despite not representing genuine BNEs, the abnormal nuclear shape and staining pattern of 
the FP BNEs in MDS, ICUS/CCUS, and non-MDS BM appeared different-from-normal, potentially reflecting 
a pathological condition within the BM.

As a quality control measure, the cells identified as BNEs by AAI were also assessed for their identification 
by FBML and manual classification (Fig. 6). Venn diagrams were constructed to represent the relationship 
among these three sets of BNE object numbers and determine shared subsets and intersections between the 
three methods. At the general level, we observed agreement among the three methods. Specifically, in 7 out of 12 
subsets (ProE and BasoE in NBM; ProE, BasoE, and PolyOrthoE in MDS; ProE and BasoE in ICUS/CCUS), the 
majority of classified objects were identified by all three methods. In the case of the remaining five subsets, the 
imagery of the BNEs exclusively recognized by AAI displayed irregular and elongated nuclear shapes, signifying 
the presence of FP BNE identifications. Moreover, in relation to the FP BNEs, it’s worth highlighting that among 
the MDS patients, a substantial fraction (37 out of 99) of the FP ProE BNEs were linked to a single MDS patient. 
In the non-MDS group, the majority of FPs ProE BNEs (71 out of 93) were concentrated in just two patients (50 
and 21 FP BNEs), while the remaining 22 FPs were distributed among the other four patients. A similar pattern 
emerged in the case of NBM at the PolyOrthoE stage, with 12 FPs identified in one donor and the remaining five 
FPs spread among three other donors. The Venn diagrams reveal that the majority of the cells identified through 
manual scoring were also correctly scored by either AAI or FBML. Notably, in MDS patients the subsets identified 
through both AAI and manual classification consistently contained a larger number of BNEs compared to the 
subsets identified through FBML and manual classification. In the context of NBM, ICUS/CCUS, and non-MDS 
patients, manual identification, when combined with either AAI or FBML, displayed a comparable agreement in 
terms of cell counts, albeit with some variability in the specific cells recognized by AAI and FBML.

Discussion
The diagnosis of MDS is inherently challenging when relying on manual examination of BM slides, primarily 
due to the potential errors caused by smear quality and staining, inter-scorer variability, limited cell counts, and 
complexities associated with assessing subtle dysplastic changes8,40,41. As seen in other fields, AI has emerged as 
a valuable supplementary diagnostic tool42–47, holding the potential to benefit MDS diagnostics as well. While 
AI may offer significant assistance in streamlining laboratory workflows and serve as an effective screening 
tool, interpretation should be performed with care and individual model should be validated according to 
best practice within the field to ensure accuracy and reliability. Indeed, in our recent work, we demonstrated 
the capability of FBML in assisting the identification of dysplastic BNEs30. Nevertheless, while FBML proved 
effective in discriminating subtle morphologies, its implementation presented challenges owing to the inherent 

Figure 6.   Venn diagrams. Graphic illustration of shared subsets and intersections between three sets of BNE 
object numbers identified manually, by AAI, and by FBML in ProE, BasoE, and PolyOrthoE subsets from NBM 
(n = 11), MDS patients (n = 14), ICUS/CCUS patients (n = 6), and non-MDS patients (n = 6). $12 FP PolyOrthoE 
BNEs were identified in one healthy donor. *A total of 37 out of 99 FP ProE BNEs were associated with a 
single MDS patient. §Altogether 71 out of 93 FP ProE BNEs were concentrated in only two patients (50 and 21, 
respectively). Created with BioRender.com.
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rigidity of mathematical features and the demand for specialized software expertise required for advanced IFC 
image analysis. Building upon this, we have now investigated the potential of employing a CNN algorithm 
for BNE quantification. The use of CNNs departs from the rigidity of feature-based analysis that relies on the 
combination of masks and mathematical features to differentiate populations. Rather, CNNs harness the abundant 
morphological and spatial information in individual images to emphasize specific, nuanced characteristics within 
an image set. Using an input of only 758 total objects, the CNN within the AAI software was able to generate 
a model for classification of BNEs, doublets, and irregularly shaped nuclei with high accuracy (94.3%). This 
strength has been demonstrated previously in other work where rare event characterization and quantification 
are at a premium14,38 and is realized here because CNNs can identify subtle morphologies in the imagery that 
are difficult to exploit using feature-based methods (e.g., bright CD235a expression at the boundary of a doublet 
image and the lack of nuclear circularity in an image with irregular morphology). Moreover, the time savings of 
an AI-based workflow compared to traditional feature-driven strategies are substantial. In IDEAS® significant 
time was required to individually hand-tag the few hundred ground truth images and then determine an optimal 
gating strategy to identify true BNEs. However, with assistance from the Cluster and Predict algorithms in the 
AAI software, all loaded images were rapidly assigned to the appropriate ground truth model classes with ease 
using the GUI. All that is required from the user is to confirm that images are being assigned to the correct 
model class. Furthermore, once a model has been trained, multiple files can be analyzed by the CNN in just a 
few minutes as these algorithms can be rapidly applied to classify new data. Conversely, batch processing data 
in IDEAS® can take several hours due to feature computation requirements. We employed seven out of the 37 
available data files from our cohort for CNN model training. This constitutes 18.9% of the dataset, and given the 
rarity of BNEs, it was essential to ensure an adequate number of TP events to achieve high accuracy in the AAI 
software. The model demonstrated challenges in distinguishing between BNEs and erythroblasts with irregular 
nuclear morphology, as indicated by its modest recall rate (78.2%), implying that it couldn’t accurately identify 
all BNEs. This might result from subtle morphological differences between BNEs with closely positioned nuclei 
and erythroblast with irregularly shaped nuclei, which posed challenges in effectively distinguishing these two 
populations. Nonetheless, the CNN model displayed a high precision rate, signifying that when the model 
classified a cell as a BNE, there was a probability exceeding 90% that it indeed was a genuine BNE.

Overall results obtained with the CNN model were statistically comparable to the results obtained with FBML. 
Both methods identified a significant increase in the number of BNEs in MDS BM samples compared to healthy 
controls (Fig. 5), however the AAI method tended to identify higher BNE frequencies and numbers, particularly 
in MDS and non-MDS patients (Figs. 5, 6, and Supplemental Fig. S1), even after corrections for FP BNEs 
(Supplemental Fig. S2). Due to variations in the BNE quantification workflow (Supplemental Fig. S5), differences 
in the numbers of BNEs, FP BNEs, and FN BNEs classified by FBML and AAI could be expected. As CNN 
algorithms are more robust for identifying challenging morphology when compared to feature-based methods, 
a larger number of candidate BNE images were identified by AAI classification. Indeed, visual inspection of 
the imagery validated exclusion of genuine BNEs by the True 2N classifier, resulting in an increased number 
of FN BNEs for FBML classification (Supplemental Fig. S4). We observed that FN BNEs classified by both 
FBML, and the CNN, were classified as images with irregular nuclear morphology. This indicates that both 
methods can robustly differentiate BNEs from doublets. However, the identification of BNEs by either method 
breaks down when the regularity or irregularity of the nuclear morphology is challenging. In the context of rare 
event identification and quantification a high FN rate may underestimate disease severity, while a high FP rate 
may profoundly impact diagnosis accuracy. Essentially, the healthy control group exhibited consistently low FP 
and FN rates, establishing a robust baseline (Supplemental Figs. S3b–d and S4). This observation was pivotal 
for implementation of a different-from-normal approach centered on deviations from the normal state. The 
comprehensive identification of an increased number of genuine BNEs using the AAI method is essential to 
reduce the FN rate and prevent underestimating abnormalities in a clinical setting. Conversely, the increased 
FP rate could notably contribute to the perception that a patient has an elevated number of BNEs. However, 
FP BNEs were primarily identified in patients with known alterations or irregularities in their red blood cell 
production, or patients who were referred for evaluation due to persistent low red blood cell counts or issues 
related to red blood cell production, i.e., MDS, ICUS/CCUS, and non-MDS patients (Supplemental Fig. S3b–d). 
In other words, erythroblast maturation was disturbed in these patients, which may result in distinct changes in 
nuclear morphology, including irregularities, that might be mistakenly identified as true BNEs. These factors may 
explain the presence of a higher number of FP BNEs in MDS, ICUS/CCUS, and non-MDS patients compared 
to healthy individuals and in the context of a different-from-normal approach, everything not conforming to 
normality might be classified as abnormal. The incorrect classifications observed in certain patients and controls 
could result from various factors, including biological variations, quality and intensity of the DNA stain, crosstalk 
of the CD71 image due to suboptimal spectral compensation, and variations in nuclear morphology (e.g., size, 
shape, and staining accessibility). Effectively addressing these factors is essential, though challenging, particularly 
given the high parameter requirements for phenotypic analysis and the inherent diversity between patients.

In a diagnostic context, precise quantification of BNEs holds significant importance, highlighting the necessity 
for a robust classification model. In the present case, the occurrence of FP and FN observed by AAI classification 
could likely be ascribed to limitations in the training data. To enhance AI model accuracy, augmenting the 
data related to challenging classes can help the AI system in capturing the class nuances and improve future 
classifications14,38,39,48. Given the relatively small dataset comprising just 758 objects used for CNN model training, 
introducing a more extensive image dataset, potentially encompassing several thousand images per class, may 
substantially improve model performance. Emphasis should be placed on augmenting the classes of cells with 
irregular nuclear morphology and BNEs that posed classification difficulties. Moreover, expanding the range of 
classification categories to include a category for uncertain cases, in addition to BNEs, doublets, and cells with 
irregular nuclear morphology, could be beneficial. Yet, this is currently not possible with the AAI software due to 
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the requirement of providing ground truth data to introduce a new class. The AAI software package offers a user-
friendly interface, that eliminates the need for prior programming expertise, making it accessible to a broader 
community of researchers. However, the intuitive model construction comes with limitations as the software 
lacks customization options. Users have limited control over crucial training aspects, such as the number of 
layers, data partitioning, and probability threshold values, all of which are pre-determined by the software. For 
now, each classified object is assigned a classification probability, with higher values indicating the likelihood of 
its membership in a specific class. The introduction of a classification threshold could prove valuable, as it would 
necessitate that the classification probability exceeds this threshold for an object to be assigned to a specific class. 
Objects not meeting this threshold would be categorized as unknown. Furthermore, the utilization of multiple 
algorithms for data analysis may enable a more comprehensive investigation of a dataset, potentially enhancing 
the depth and precision of data analysis. An alternative approach to the AAI software package, is presented in 
the form of the open-source software DeepFlow architecture49. Studies have demonstrated its ability to notably 
enhance classification accuracy in various contexts, including phenotypic cell cycle analysis49. In this regard, it 
has superior performance compared to traditional machine learning methods that rely on feature extraction from 
cell images50. Additionally, DeepFlow has demonstrated effectiveness in classifying BM cells from patients with 
acute lymphoblastic leukemia32 and assessing morphological changes in stored red blood cells21,51. By combining 
both strategies—providing additional relevant truth data and employing alternative algorithms—classification 
errors may be reduced while the overall AI classification accuracy may be enhanced.

This study, combined with our prior publication30, highlights the advantage of using IFC for automated 
quantification of BNEs. Binucleation, a notable yet rare dysplastic feature in MDS, faces limitations in slide-
based quantification due to the analysis of only a few hundred cells, implicating statistical power. By capturing 
thousands of cellular images using IFC, the probability of detecting rarely present BNEs significantly increases. 
This approach alleviates the need for the time-consuming and labor-intensive task of manual BNE counting, 
eliminates subjectivity, and reduces inter-observer variability. Importantly, IFC captures high-quality images 
of all key populations that can be scored through either feature-based analysis or deep-learning algorithms. 
Building on our different-from-normal approach, we have extended our previous finding to illustrate that the 
combination of IFC with an AI algorithm provides a more straightforward workflow compared to feature-based 
analysis, leading to detection of a greater number of genuine BNEs in patient samples. This approach serves 
as a powerful tool for assessing subtle and infrequent morphological features in MDS, potentially improving 
diagnostic precision. Collectively, the results presented in this study contribute to the body of existing literature, 
emphasizing the potential utility of IFC for clinical phenotyping, with the possibility of its translation into a 
diagnostic tool for clinical practice21,32,34,52,53.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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