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Non‑parametric quantile 
regression‑based modelling 
of additive effects to solar 
irradiation in Southern Africa
Amon Masache 1, Daniel Maposa 2,4*, Precious Mdlongwa 1,4 & Caston Sigauke 3,4

Modelling of solar irradiation is paramount to renewable energy management. This warrants 
the inclusion of additive effects to predict solar irradiation. Modelling of additive effects to solar 
irradiation can improve the forecasting accuracy of prediction frameworks. To help develop the 
frameworks, this current study modelled the additive effects using non‑parametric quantile regression 
(QR). The approach applies quantile splines to approximate non‑parametric components when finding 
the best relationships between covariates and the response variable. However, some additive effects 
are perceived as linear. Thus, the study included the partial linearly additive quantile regression model 
(PLAQR) in the quest to find how best the additive effects can be modelled. As a result, a comparative 
investigation on the forecasting performances of the PLAQR, an additive quantile regression (AQR) 
model and the new quantile generalised additive model (QGAM) using out‑of‑sample and probabilistic 
forecasting metric evaluations was done. Forecasted density plots, Murphy diagrams and results 
from the Diebold–Mariano (DM) hypothesis test were also analysed. The density plot, the curves on 
the Murphy diagram and most metric scores computed for the QGAM were slightly better than for 
the PLAQR and AQR models. That is, even though the DM test indicates that the PLAQR and AQR 
models are less accurate than the QGAM, we could not conclude an outright greater forecasting 
performance of the QGAM than the PLAQR or AQR models. However, in situations of probabilistic 
forecasting metric preferences, each model can be prioritised to be applied to the metric where it 
performed slightly the best. The three models performed differently in different locations, but the 
location was not a significant factor in their performances. In contrast, forecasting horizon and 
sample size influenced model performance differently in the three additive models. The performance 
variations also depended on the metric being evaluated. Therefore, the study has established the 
best forecasting horizons and sample sizes for the different metrics. It was finally concluded that a 
20% forecasting horizon and a minimum sample size of 10000 data points are ideal when modelling 
additive effects of solar irradiation using non‑parametric QR.

Keywords Additive effects, Additive models, Non-parametric quantile regression, Pinball loss, Quantile 
splines, Solar irradiation

Literature reviews show that solar irradiation (SI) data in Southern Africa does not follow a normal distribution 
and sometimes contain  outliers1–4. It is heavy-tailed to the right and platykurtic. These statistical characteris-
tics can be attributed to the significant effects of heterogeneous meteorological features such as temperature 
and sunshine hours, which are characterised by rapidly fluctuating uncertainties and error distributions with 
infinite limits. Assuming linear effects only is an over-generalisation of SI behaviour. However, some covariates 
may have linear effects or even correlated, but deducing from their nature, they also have non-linear effects on 
SI without reasonable doubt. Thus, the structure of the relationship between SI and suspected covariates is not 
known. Consequently, modelling such data using parametric assumptions would not be significant and can lead 
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to meaningless results. One of the most proper modelling approaches is non-parametric regression because here 
assumptions on parametric regression do not hold. Non-parametric regression is flexible, and robust and can 
be applied to qualitative data. Very few assumptions need to be valid and the response variable can be agnostic. 
After relaxing linearity assumptions, covariate effects are restricted to smooth and continuous functions. There-
fore, non-parametric regression aims to have the best regression fitted function according to how the response 
is  distributed5 i.e. constructing a smooth curve as a geometric representation of the effects of the covariates on 
the response. A wide range of non-parametric approaches have been proposed to describe SI data. Still, the 
application of quantile regression (QR) has been found to outperform other methods in Southern Africa. Non-
parametric estimation of families of conditional quantile functions models the full distribution of the response 
through conditional quantiles.  Koenker6 stipulated that quantile functional families expose systematic differences 
in dispersion, tail behaviour and other features concerning the covariates. QR generates the whole conditional 
distribution of all predicted values. Thus, a complete picture of how covariates affect the response at different 
quantile levels can be described. That is, QR is more generalised than conditional mean  modelling7. Potentially 
different solutions at distinct quantiles can be interpreted as differences in the response to changes in covariates 
at various points in the conditional distribution. QR allows a more realistic interpretation of the sparsity of the 
covariates effects and it is naturally robust to outlier contamination associated with heavy-tailed  errors8. However, 
in multivariate cases, QR lacks a description of the additive effects of the covariates. Instead, non-parametric 
QR additive models have been found to handle the curse of dimensionality quite well while retaining great 
 flexibility9. Such additive models are flexible regression tools that manipulate linear as well as non-linear effects 
at the same  time10.  Reference11 claimed that additive models provide programmatic approaches for nonpara-
metric regression by restricting nonlinear covariate effects to be composed of low-dimensional additive pieces. 
The additive terms can be fixed, random or smooth effects. The modelling framework can be an application of 
non-parametric QR on additive effects or applying additive terms to non-parametric QR. The already existing 
modelling of SI lacks the application of non-parametric QR on additive effects to SI. Non-parametric quantile 
regression-based regression provides an attractive framework for parametric as well as nonparametric model-
ling of additive effects to the response characteristics beyond the conditional mean. The modelling of additive 
effects to SI using non-parametric QR may be better than the already existing additive modelling frameworks. 
Therefore, this current study explored non-parametric QR modelling frameworks when investigating additive 
effects on SI in Southern Africa.

Review of related literature
The earliest study according to the best of our knowledge to apply QR when modelling SI data from Southern 
Africa was done  by12. They proposed a partial linearly additive quantile regression (PLAQR) to model data 
from the Tellerie radiometric station in South Africa. The modelling framework consists of a parametric linear 
component and a non-parametric additive component. This modelling structure may work effectively because 
some covariates are perceived to have linear effects on SI. The PLAQR model with pairwise hierarchical interac-
tions outperformed both support vector regression (SVR) and stochastic gradient boosting models. We concur 
with the authors on the idea of including pairwise interaction effects because, in our yet-to-be-published paper, 
we discovered that a significant number of SI data sets from Southern Africa had covariates with significant 
multicollinearity.  Although2 did not apply QR in their study, their results also confirm that modelling SI with 
pairwise interactions included significantly improved forecasting model performances. Forecasts were further 
improved by extending the application of QR to combine forecasts through quantile regression averaging. Ran-
ganai and  Sigauke13 modelled SI data from Cape Town, Pretoria and Ritchersveld used an additive quantile 
regression (AQR) model as a benchmark against three other SARIMA models. AQR modelling framework is an 
application of the additive modelling concept on QR introduced  by14. Though SARIMA models are known to 
capture seasonal variations in any data more than any modelling framework, they were often outperformed by 
AQR on the metrics considered. The study demonstrated that whenever covariates to SI can be accessed then 
QR modelling is recommended because residual modelling is inferior. However, the authors recommended the 
application of the SARIMA models in cases of non-existent or scanty covariates. A separate  study15 demonstrated 
that AQR is also superior to extreme models in estimating extreme quantiles of SI data from Venda in South 
Africa except on the τ = 0.9999 quantile level. This shows that additive non-parametric QR is a very powerful 
modelling framework when forecasting the whole response distribution, and cyclical and seasonal variations in 
SI. A quantile generalised additive model (QGAM) is a new approach that was introduced  by16 where smooth 
effects estimated by a generalised additive model (GAM) are taken as inputs to a QR model. That is, performing 
QR on smooth function outputs from a GAM. The modelling framework is still very new in such a way that 
its literature is very limited. Among studies in Africa, we can only  cite17 who modelled the additive effects of 
fertility rate and birth rate on human live births. The QGAM was found to be a robust alternative to a GAM on 
most quantile levels although they had the same adjusted R-sqaure at the 50th quantile level. Recently,18 studied 
spatially compounding climate extremes using QGAMs and they could predict the extremes more accurately than 
the conventional peak-over-threshold models. However, the outperformance was discovered in some regions, 
while it was inferior in other regions. This means that we can perceive that among other forecasting frameworks, 
QGAMs likewise perform differently in different geographical locations. QGAMs have not been used to forecast 
SI anywhere else except as a means of combining forecasts done  by1, according to the best of our knowledge. 
However, the approach was inferior to other forecasts combining frameworks. As a result, it is not a good forecast 
combination method. We argue that the QGAM framework is better applied as a forecast-generating model rather 
than a forecast combination. It is a novel additive effect modelling in climate science applications and presents 
key advantages over residual modelling. QGAMs remove the need for direct identification and parameterisa-
tion since they model all quantiles of the distribution of interest. Thus, making use of all information available 
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does not require any prior information about the relationships between the response variable and its covariates. 
Therefore, we propose to compare the predictive performance of QGAM against PLAQR and AQR using SI data 
from Southern Africa.

Contributions and research highlights
SI data is known to be skewed and plakurtic, and assumptions on parametric modelling do not hold well. As a 
result, non-parametric quantile regression, where normality assumptions are ignored can best model SI. There-
fore, to the already existing work on QR modelling of SI data in Southern Africa, the main contribution of this 
study is to introduce the idea of predicting SI using a QGAM. In this modelling framework, a QR approach 
was applied to a generalised additive model. That is, hybridising a GAM with a QR model. This non-parametric 
modelling framework is new to SI data. Non-parametric QR-based models namely PLAQR and AQR have 
been used before to model SI in independent separate studies. However, they have not been compared in their 
forecasting performances. Although PLAQR and AQR were best in those separate studies, they have their weak-
nesses. As a result, the other contribution of this study is the comparison of predictive performances of the 
three non-parametric quantile regression-based models on different geographical locations. We perceive that 
probabilistic forecasting can be affected by the spatial distribution of data sources. Grid differences, location 
elevation, climatic conditions and their combinations may affect forecasting models. The last contribution of this 
study is to investigate separately how forecasting horizon and sample size affect the performance of the additive 
models. This helps identify the forecasting horizon up to which the QR-based models retain their predictive 
performances. It is generally perceived that the more data points we have the more a training model is effective. 
This is because more data points give more information to train. As a result, a supervised machine learning model 
like non-parametric QR-based can learn more about the data given. However, the question is, if the sample size 
is increased continuously then do QR-based models also continuously increase their performances? That is, we 
also established the smallest sample size that can be considered when training a non-parametric QR-based model.

In this research study, we applied Lasso via hierarchical interactions to select significant covariates and 
interaction effects from each location. We considered covariates recommended from our study that is still under 
review. PLAQR, AQR and QGAM models were trained on each set of locational selected covariates at all quan-
tile levels. The residual mean square error (RMSE) validation metric was used to find the best quantile level 
for the three models. The best quantile level was then used for comparison investigations on the three models. 
Breusch–Godfrey and Box–Ljung tests were used to check on the assumption of residual serial autocorrelation. 
We also validated the models using the R-square as well as cross-validation correlations to check whether the 
models were overfitting the data or not. The accuracy of the additive models was compared using the mean 
absolute scaled error (MASE). MASE is one of the most appropriate accuracy metrics when the response has 
zero or near zero values. Since the main objective of QR is to minimise the pinball loss, then it became the 
priority performance evaluation metric in this study. Other probabilistic forecasting performance evaluation 
metrics namely the Winkler score, Coverage Probability (CP) and Continuous Rank Probability Score (CRPS) 
were used to compare the predictive performances of the models. The QGAM outperformed both the PLAQR 
and AQR models in most scenarios of forecasting performance evaluations. However, it was not superior at all 
when using the Winkler score. The performance evaluations were also done in different locations, increasing 
forecasting horizons and increasing sample sizes.

The study helps develop SI modelling frameworks that can be used to accurately forecast solar power. Accurate 
forecasts of solar power improve the stability of solar power generation and effective management of renewable 
resources. Exploration of multisite modelling captures variations in weather conditions in the region and allows 
the evaluation of data management systems at different ground-based radiometric stations. Evaluation of forecast-
ing horizons and sample sizes helps inform the body of knowledge and the solar power generation industry of the 
forecasting horizons thresholds and minimum sample sizes to be considered when predicting solar irradiation.

Methodology
Non‑parametric quantile regression concept
The τ th quantile is the minimiser of the expected loss ρτ with respect to QYi (τ |xi) , where by definition

and F is the conditional cumulative distribution function (CDF) of Y. When approximating the quantile loss 
function (where y is the observation used for forecast evaluation and τq is the qth quantile for q = 1, 2, ..., 99 ) 
we obtain the quantile estimator

where g = inf
{
y : F (y|x) ≥ τ

}
,

Fi should be continuous with continuous density fi(τ ) = g(xi ,β(τ)) uniformly bounded away from 0 and ∞ 
at some points as a first regularity condition to the minimisation problem in Eq. (3). To ensure that the objec-
tive function of the problem has a unique minimum at β and is sufficiently smooth we consider the following 
assumptions  from11.

(1)QYi (τ |xi) = F−1
Yi

(τ |xi) ≡ fi(xi , τ),

(2)Q̂Yi (τ |xi) = xT β̂ = g(xi , β̂(τ )),

(3)β̂(τ ) = argmin
︸ ︷︷ ︸

b∈β

n∑

i=1

ρτ (yi − g(xi ,β)) and τ ∈ T , T = [ε, 1− ε] for some 0 < ε < 1.
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• there exist positive constants a0 and a1 such that, 

• and there also exist positive definite matrices M0 and M1(τ ) such that: 

1. lim
︸︷︷︸
n→∞

1
n

∑n
i=1 ġi ġ

T
i = M0,

2. lim
︸︷︷︸
n→∞

1
n

∑n
i=1 fi ġi ġ

T
i = M1(τ ) , and

3. max
︸ ︷︷ ︸

i=1,2,...,n

||ġi ||√
n

→ 0,

   where ġ = ∂g(xi ,β)
∂β

|β=β0 .

A provision of uniform linear representation and convergence of the minimisation process is given by the fol-
lowing theorem.

Theorem 1 Under the above assumptions6

The minimiser of the problem in Eq. (3) by choice of a tuning parameter (or a penalty) satisfies the following: 

 i. The number of terms, n− , with yi < g(xi ,β) is bounded above by τn.
 ii. The number of terms, n+ , with yi > g(xi ,β) is bounded above by (1− τ)n.
 iii. For n → ∞ , the fraction n−n  converges to τ if Pr(y|x) is completely continuous.

But Pr(y|x) is not known, so it has been suggested  by19 to resort to minimising the regularised empirical risk

where R(f ) = E Pr (y|x)[ρτ (y − f (x))] is the empirical risk and ||.||H is the reproducing Kernel Hilbert space (RKHS) 
norm.

Lemma 1 The minimiser of Eq. (6) when assuming that f  contains an unregularised scalar term satisfies: 

 i. The number of terms, n− , with yi < f (xi) is bounded above by τn.
 ii. The number of terms, n+ , with yi > f (xi) is bounded above by (1− τ)n.
 iii. If (x, y) is drawn iid from a continuous distribution Pr(y|x) and the expectation of the modulus of absolute 

continuity of its density satisfying the limit of E[ǫ(δ)] as δ → 0 is equal to zero with probability one, then 
n−
n  converges to τ asymptotically.

Quantile splines
Now, the quantile function in Eq. (1) can be more generalised as

where m is much smaller than the covariate space dimension. The minimisation problem in Eq. (3) may involve 
additive models of the form

where µτ is an unknown constant and gi is an additive term which is a function of a smooth function. We assume 
the quantile error term, eτ to be uncorrelated to include linear effects in all of the models when estimating the 
generalised quantile function. The additive form has easy interpretability and visualisation. Quite several local 
polynomial methods have been developed for estimating the additive models, but do not work well for QR 
applications. Instead, quantile smoothing has been traditionally done competitively between kernel and spline 
functions to model the non- linear effects. However, multicultural tendencies have weakened the competition 
with consideration of the two through penalty methods. Penalised quantile smoothing splines have been found to 
avoid the arbitrary choice of the number and positions of knots. That is, the non-parametric conditional quantile 
functions can now be estimated by solving the following problem:

(4)a0||β1 − β2|| ≤
(

1

n

n∑

i=1

(g(xi ,β1)− g(xi ,β2))
2

) 1
2

≤ a1||β1 − β2||, for β1,β2 ∈ β ,

(5)
√
n
(

β̂n(τ )− β(τ)

)

∼ N
(

0, τ(1− τ)M−1
1 M0 M

−1
1

)

.

(6)Rreg (f ) :=
1

n

n∑

i=1

ρτ (yi − f (xi))+
�

2
||h||2H , for f = h+ a, a ∈ R and regularised ,

(7)QY (τ |X) = g(XT
1 β1,X

T
2 β2, . . . ,X

T
mβm),

(8)QY (τ |X) = µτ +
n∑

i=1

gi(x
T
i ,βi)+ eτ ,
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where S is a Sobolev space of real-valued functions, xi = (xi1, xi2, . . . , xid , ) is an element of d dimensional space 
of real numbers and P is the penalty term designed to control the roughness of the fitted function, ĝ.

Now, any solution ĝ must interpolate itself at the observed {xi} i.e. we have to find the smoothest interpolant 
of the points 

{
(xi , yi), i = 1, 2, . . . , n

}
 in the sense of solving

and the functions for which the infima are attained.
Let z1, z2, . . . , zN (zi  = zi+1, i = 1, 2, . . . ,N − 1) be given real fixed data, then for each t ∈ TN set

where TN = {t : t = (t1, t2, . . . , tN ), 0 ≤ t1 ≤ t2 ≤ . . . ≤ tN } and p ∈ (1,∞) . Thus solving

S
d
p is the Sobolev space of real-valued functions with d − 1 absolutely continuous derivatives of which the dth 

derivative exist as a function in Lp[0, 1] which means that

where ai = g(d)(0)
i! , i = 0, 1, . . . , d − 1 and h ≡ g (d) ∈ Lp . If we assume the following facts;

• (zi − zi−1)(zi+1 − zi) < 0, i = 1, 2, . . . ,N ,
• N > d and
• t1 = 0 and tN = 1,

then there exists a solution to the problem (11) g ∈ S
d
p which must be of a particular form and oscillate strictly 

between (zi)N1  . This solution is a unique necessary and sufficient solution to problem (9).
Now, it means that solving the problem (10) is equivalent to solving

which can be shown that

is the unique solution to the problem, where Bi,d is a positive multiple of a B-spline of degree d − 1 with 
knots ti , ti+1, . . . , ti+d . Ei = g[ti , ti+1, . . . , ti+d] is obtained by applying the dth divided difference at the points 
ti , ti+1, . . . , ti+d to g ∈ S

d
p(t, z) . This follows that

is a unique solution to the problem (10) when (ai)d−1
0  is uniquely determined so that gp(ti) = zi , i = 1, 2, . . . , d . 

Therefore,

Now,20 expanded the original space of real functions to

and replaced the L1 penalty on the smooth effects with a total variation penalty on g ′ defined as 
V(g ′) =

∫
|g ′′(x)|dx to have the following theorem.

Theorem 2 The function g ∈ W2 minimising

(9)ming∈S

n∑

i=1

ρτ (yi − gi(x
T
i ,βi))+ �P(g),

(10)inf
{

||g (d)||p : g ∈ S
d
p , g(xi) = yi , i = 1, 2, . . . , n

}

S
d
p(t, z) =

{

g : g ∈ S
d
p , g(ti) = zi , i = 1, 2, . . . ,N

}

,

(11)inf
︸︷︷︸

t∈TN

inf
{

||g (d)||p : g ∈ S
d
p(t, z), g(xi) = yi , i = 1, 2, . . . , n

}

.

(12)S
d
p =

{

g : g(x) =
d−1∑

i=0

aixi +
1

(d − 1)!

∫ 1

0
(x − y)h−1

+ h(y)dy, h ∈ Lp, a ∈ R

}

,

(13)inf

{

||h||p :
∫ 1

0
Bi,d(y)h(y)dy = Ei , i = 1, 2, . . . ,N − d

}

,

(14)h(y) =
∣
∣
∣
∣
∣

N−d∑

i=1

βiBi,d(y)

∣
∣
∣
∣
∣

q−1

sign

(
N−d∑

i=1

βiBi,d(y)

)

,

(15)gp(x) =
d−1∑

i=0

aixi +
1

(d − 1)!

∫ 1

0
(x − y)h−1

+ h(y)dy

(16)gp ∈ S
d
p(t, z).

(17)W2 =
{

g : g(x) = a0 + a1x +
∫ 1

0
(x − y)+du(y), ai ∈ R, i = 0, 1

}
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is a linear spline with knots at the points xi , i = 1, 2, . . . , d.

Therefore, we can deduce that g(x) =
∑n

j=1 sj(x) and the s′js are the additive smooth effects. The smooth effects are 
defined in terms of spline basis as follows;

Remark The first derivative of g (g ′ : R → R) is continuous and if we denote ∇2g(x) as a Hessian matrix of g and 
||.|| as a Hilbert Schmidt norm for matrices then

That is, �V(∇g) becomes the L1 form of the roughness penalty and is a linear spline.

Regression coefficients estimation
The estimation of regression coefficients heavily depends on how the additive effects are being modelled. When 
considering linear effects as well as additive effects a PLAQR model can be fitted while an AQR is fitted when 
considering a complete additive model. In our study, we propose fitting a QGAM which can be more efficient 
and accurate than an AQR.

Partial linearly additive quantile regression model
Notwithstanding that some of the covariates may have linear effects on SI then it is prudent to consider a non-
parametric QR model that includes the linear effects. It may not be practical to assume that all covariates are 
non-linear. Such a model was introduced  by9, which has a non-parametric component and an additive linear 
parametric component.

i.e.

where µτ (t) is an unknown constant, xit ∈ Xm1×1 are continuous variables for i = 1, 2, . . . ,m1 , sit,τ ∈ S are the 
smooth functions, zjt ∈ Z

m2×1
 are the linear covariates for j = 1, 2, . . . ,m2 and eτ is the quantile error term 

such that

If we assume that X takes values in χ ≡ [−1, 1]m1 and letting

then we can write the PLAQR model in matrix notation as follows.

where X = (x1t , (x2t , . . . , xm1t , ) ∈ χ . If we also let �i be a non-negative penalty then the quantile estimates of 
the PLAQR model can be found by minimising

where the ρτ (u) = u(τ − I(u < 0)) is the pinball loss function.

Additive quantile regression model
The AQR model proposed  by14 and algorithm further developed  by16 gives flexibility when modelling non-
linear effects beyond the conditional mean. The non-parametric components are composed of low-dimensional 
additive quantile pieces. Thus, an application of additive modelling on QR. As a result, the Laplacean quantile 
fidelity replaces the Gaussian likelihood in conditional mean regression. L1-norms replace L2-norms as measures 
of roughness on fitted functions. A generic AQR model for non-linear and varying regression coefficient terms 
can be written as an extension of a linear predictor with a sum of nonlinear functions of continuous  covariates14 
as follows:

(18)
∑

ρτ
{
yi − g(xi)

}
+ �V(g ′)

(19)sj(x) =
K∑

k=1

βjkBjk(xj).

(20)V(∇g) =
∫

||∇2g(x)||dx.

(21)yt = µτ (t)+
m1∑

i=1

sit,τ (xit)+
m2∑

j=1

βjt,τ zjt + eτ (t),

0 < Pr (e ≤ Y |XZ) = τ( a.s.) < 1.

Sτ (X) = µτ (t)+
m1∑

i=1

sit,τ (xit),

(22)Y = Sτ (X)+ Z
Tβτ + eτ ,

(23)
n∑

i=1

ρτ

(

Yi − ZT
i β − sτ (Xi)

)

+
n∑

i=1

�i

∫

(s′′(t))2dt,
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Now, the following form of problem (9) is solved to estimate the continuous functions g and regression 
coefficients;

where the pinball loss function is defined as in PLAQR model fitting. Though the model can be estimated by 
linear programming algorithms as in linear QR, penalty methods are applied because the known selected basis 
functions can be included in the design  matrices14. As a result, sparse algebra is the supplant basis expansion 
through either performance-oriented iteration for large data sets (PIRLS) or the Newton algorithm.

Quantile generalised additive model
Additive effects of the covariates are modelled by considering the smooth effects estimated by a GAM as 
inputs to a linear QR. That is, a conditional quantile is modelled as a sum of unknown smooth  functions18. 
 Fasiolo21developed a regression coefficient estimation process by introducing a learning rate 1

σ
> 0 and positive 

semidefinite matrices M to a penalised pinball loss as follows:

where �j are positive smoothing parameters. The learning rate determines the relative weight of the loss and 
penalty while the matrices penalise the wiggliness of the corresponding smoothing effect. The pinball loss func-
tion is replaced by a scaled pinball loss called the extended log-f (ELF) loss function;

The ordinary pinball loss function is piecewise linear and has discontinuous derivatives while the ELF loss 
leads to more accurate quantiles because it is an optimally smoothed version. Thus, it enables efficient model 
fitting through the use of smooth optimisation methods. Now, the regression coefficients being the solution to 
problem (26) are obtained as a vector of maximum a posteriori (MAP) estimator, β̂τ . A stable estimation can be 
done by exploiting orthogonal methods for solving least squares problems.

Performance evaluations
The main model forecasting performance evaluation metrics considered in this study are the pinball loss func-
tion, Winkler score, CP and CRPS. The pinball loss measures the sharpness of a QR model. It is a special case of 
an asymmetric piecewise linear loss function defined as follows:

where Q̂yt (q) is the predicted SI at the qth quantile level and yt is the actual SI.
CP runs numerous samples in which a wide range of possible outcomes is generated for each sample. Then, 

this range of possible outcomes can be compared to the actual value to see if they properly account for it in its 
range. That is, if, for example, a 95% prediction interval covers at least 95% of the observed then the model is 
reliable, well-calibrated or unbiased.

The Winkler score then becomes a trade-off between coverage and the prediction interval width (PIW). It 
is the length of the prediction interval plus a penalty if the observation is outside the interval. It is defined as,

where [lα,t , uα,t ] is the (100− α)% prediction interval at time t.
We evaluated how the models predicted the whole forecast distribution (rather than particular quantiles) by 

obtaining a CRPS by averaging quantile scores over all values of p. That is,

where F̂p is the predictive cumulative density function and 1 is an indicator.

(24)Qyi (τ ) = xTi β0 +
J∑

j=1

gj(xij)+ eτ .

(25)arg min
� �� �
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+ �0||β0||1 +
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�jV(∇gj),

(26)β̂τ ∈ arg min
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1

σ
ρτ

{
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T
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}
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2
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�jβ
T Mjβ ,

(27)ρ∗
τ (y − g) = (τ − 1)

y − g

σ
+ � log (1+ e

y−g
σ ), � > 0.

(28)Pinball (Q̂yt (q), yt , q) =







(1− q)(Q̂yt (q)− yt), for yt < Q̂yt (q)

q(yt − Q̂yt (q)), for yt ≥ Q̂yt (q),







(29)Wα,t =







(uα,t − lα,t)+ 2
α
(lα,t − yt), for yt < lα,t

(uα,t − lα,t), for lα,t ≤ yt ≤ uα,t
(uα,t − lα,t)+ 2

α
(yt − lα,t), for yt < uα,t ,







(30)CRPS (F̂p, p) =
∫ ∞

−∞

(

F̂p(y)− 1p≤y
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Data analysis and results
Data sources
Five among several other radiometric stations considered in this study are geographically located as shown in 
Fig. 1 and Table 1. The stations were Namibia University of Science and Technology (NUST), University of Fort 
Hare (UFH), University of Kwazulu-Natal (UKZN) Howard College, University of Pretoria (UPR) and University 
of Venda (UNV). Data is uploaded from the stations by the Southern Africa Universities Radiometric Association 
Network (SAURAN) into their database and can be accessed through their website. The five stations shown in 
the map were the only ones that had consistent hourly data and manageable missing observations for the same 
period of March 2017 up to June 2019.

Data exploration
SI distribution
In this study, solar irradiation was measured as global horizontal irradiance (GHI). Distributions of GHI from 
the five locations had similar densities and Q–Q plots as those shown in Fig. 2. The distribution exhibited in 
Fig. 2 shows the general curve of the density plots and pattern followed by the Q–Q plots. The two plots show 
that GHI does not follow a normal distribution. The data exhibited asymmetric distributions in all locations as 
shown by box plots in Fig. 3. The box plots also show that GHI is skewed to the right-hand side and heavily tailed. 
A Jarque–Bera (JB) test was done on all locations to confirm the non-normality in the data. It is a goodness-of-fit 
test of whether sample data have the skewness and kurtosis matching a normal distribution. Among the most 

Figure 1.  Map showing the geographic positions of the radiometric stations considered from Southern Africa: 
Source,1 Edited.

Table 1.  Geographic locational description of ground radiometric stations considered.

Station Lattitude Longitude Elevation Location

NUST − 22.56500053 17.07500076 1683 m Windhoek

UFH − 32.78461075 26.84519958 540 m Alice

UKZN − 29.87097931 30.97694969 150 m Durban

UPR − 25.75308037 28.22859001 1410 m Pretoria

UNV − 23.13100052 30.42399979 628 m Venda
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effective normality tests, the JB test is the most suitable test for large sample sizes. The parametric test presumes 
that the data originates from a particular distribution. Distributions of GHI from different locations were fitted 
in one of our  studies22. Since all p-values were less than 0.05 (shown in Table 2) then the results confirmed that 
solar irradiation does not follow a normal distribution. The descriptive statistics in Table 2 also indicate that SI 
is positively skewed and platykurtic. These results are consistent with results  from22 and several other studies.

Variable selection
The following covariates; hour, temperature (Temp), relative humidity (RH), barometric pressure (BP), wind 
speed (WS) and wind direction (WD) were considered in this study. The descriptive statistics of the covariates are 
shown in Appendix A. One of the assumptions to hold valid when applying additive models to predict a response 
variable is that the covariates are stationary. As a result, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test was 
done to check on the stationarity of the covariates. Among the most effective stationarity tests available the KPSS 
test is the most appropriate one for large samples. The KPSS test results in Table 3 indicate that all covariates were 
stationary except WD from Alice and WS from Durban (It does not matter to consider the stationarity of time, 
in this study time is measured in hours). On stationary covariates, the p-values were less than 0.05. That is, the 
null hypothesis that ‘The variable is not stationary’ was rejected and we conclude that there is enough evidence 
to support the assumption that the covariate is stationary. Non-stationary covariates were differenced to achieve 
stationarity. Lasso hierarchical pairwise interaction selections (using the ‘hierNet’ R package  by23) with Lag1 and 
Lag2 of GHI included to model trend in SI time  series12. Hour, Temperature, RH, Lag1 and Lag2 had significant 
effects on GHI in all locations. However, BP had a significant effect on solar irradiance in Alice only while WD 
had a significant effect in Alice and Durban. WS was not significant in Alice and Venda.

Model validations
The best quantile level for each model was identified by comparing the root mean square error (RMSE) and 
τ = 0.5 as the best quantile level for all models fitted at all locations. As a result, all models were trained and fit-
ted at the 50th quantile level. The proposed QGAM was fitted using the ‘mgcViz’ package developed  by24 while 
the ‘plaqr‘ package  by25 and ‘quantreg‘  by26 were used to fit the PLAQR and AQR models respectively. All three 
models were validated by checking whether the assumption of no residual serial autocorrelation was holding 
using the Breusch–Godfrey (BG) test and the Ljung Box test. The BG test requires the assumption of predeter-
minedness. The assumption was considered valid to proceed with the BG test because all covariates used were 
stationary. The Ljung Box requires the assumption of strict exogeneity. Since all covariates considered do not 
depend on solar irradiance but rather SI depends on meteorological features and the error terms of the models 
fitted. Both the BG test and the Ljung–Box test had p-values greater than 0.05 (Table 4) indicating that the null 

Figure 2.  General pattern exhibited by the density and normal Q–Q plots constructed for GHI from Pretoria, 
Venda, Durban, Windhoek and Alice SI data sets.
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Figure 3.  Box plots showing distributions of GHI from the five locations.

Table 2.  Descriptive statistics of GHI from Pretoria, Venda, Durban, Windhoek and Alice.

Location Min 1stQu. Median Mean 3rdQu. Max. Skewness Kurtosis JB p-value

Pretoria 0.1002 111.175 404.583 420.464 675.482 1162.004 0.289 − 1.095 1.98× 10
−16

Venda 0.1002 92.150 322.355 379.684 635.695 1179.160 0.480 − 0.940 2.09× 10
−16

Durban 0.1010 59.995 260.800 333.450 552.175 1141.000 0.668 − 0.645 1.89× 10
−16

Windhoek 0.1000 157.800 501.800 490.000 772.100 1251.300 0.132 − 1.196 2.16× 10
−16

Alice 0.1010 67.537 301.680 361.852 583.160 1154.604 0.580 − 0.775 1.00× 10
−3
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hypothesis, ’there is no residual serial autocorrelation’ could not be rejected. This meant that all models fitted 
had no serial autocorrelation of the errors.

While the Ljung Box test provides a suitably robust alternative when the distribution of the response variable 
is heavily tailed, the BG test is the most appropriate residual serial autocorrelation test in the presence of a lagged 
response. Therefore, all of the models were valid to fit all data sets used for training. In addition, all coefficients 
of determination were at least 90% . That is, more than 90% of the variations in the response were explained 
by the models. The very high R-square values indicate that all models learned the data very well and are very 
efficient in predicting solar irradiation. We note that QGAM had the highest R-square R-square values in bold) 
in all locations. The model explained variations in solar irradiation better than any of the models compared. 
Cross-validations results indicated that no model overfitted nor underfitted the data because the cross-validation 
correlations on the test data were all approximately equal to those on the training data (Table 4).

Forecasting results
General model performances
All of Theil’s U statistics were less than one meaning that all models could fit the data better than corresponding 
naive models which could be fitted (Table 5). This means that all of the three non-parametric QR frameworks 
were suitable to model additive effects to SI. The QGAM model had the lowest AIC in all locations indicating 
that it fitted the data better than both the PLAQR and AQR models, though all of the AIC scores were approxi-
mately equal with regards to the locations. The RMSE values also confirm that the QGAM performed marginally 
the best in all locations because it had the lowest RMSE. However, the magnitudes of the RMSE scores were 
approximately the same.

All mean absolute scaled error (MASE) scores were less than 1 meaning that all models performed better 
than a naïve benchmark. The MASE scores also demonstrate that QGAM predicted SI the most accurately by 
close margins because though the model had the lowest MASE in all locations the MASE scores were approxi-
mately equal. The MASE metric is one of the most appropriate metrics when the response has zero or near zero 
values like solar irradiation. The above three metric evaluations indicate that the three additive models have 

Table 3.  KPSS test p-values for GHI and covariates considered from each location.

Variable Windhoek Alice Durban Pretoria Venda

GHI 0.0344 0.0100 0.0496 0.0100 0.0598

Hour 0.0214 0.0258 0.0744 0.0362 0.0100

Temp 0.0100 0.0097 0.0099 0.0100 0.0089

RH 0.0096 0.0100 0.0100 0.0095 0.0100

WS 0.0381 – 0.0530 0.0745 –

WD – 0.0860 0.0634 – –

BP 0.0098 – – – –

Lag1 0.0354 0.0089 0.0493 0.0100 0.0586

Lag2 0.0364 0.0100 0.0488 0.0088 0.0570

Table 4.  Model validation metrics on the five different trained data.

Location Model

BG test Box Ljung

R-square 80%CV 20%CVp-value p-value

Windhoek

PLAQR 0.117 0.501 0.929 0.963 0.964

AQR 0.247 0.876 0.910 0.953 0.954

QGAM 0.147 0.858 0.934 0.966 0.967

Alice

PLAQR 0.329 0.204 0.923 0.962 0.961

AQR 0.631 0.616 0.913 0.957 0.956

QGAM 0.631 0.709 0.930 0.966 0.964

Durban

PLAQR 0.998 0.664 0.920 0.957 0.959

AQR 0.889 0.436 0.911 0.952 0.955

QGAM 0.889 0.208 0.924 0.960 0.962

Pretoria

PLAQR 0.243 0.078 0.929 0.962 0.964

AQR 0.776 0.656 0.917 0.955 0.957

QGAM 0.776 0.148 0.935 0.966 0.967

Venda

PLAQR 0.939 0.994 0.914 0.960 0.956

AQR 0.806 0.921 0.907 0.955 0.952

QGAM 0.806 0.058 0.923 0.965 0.961
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approximately the same out-of-sample forecasting performances. The forecasted density using the PLAQR is 
shown in Fig. 4. The model underestimated slightly the SI density in part (a) and notable in part (c) of the density 
plot. There is also a notable overestimation of the forecasted density in part (b). On the other hand, the AQR 
model did not estimate the forecasted density accurately on four different parts of the density plot. The model 
underestimated and overestimated the forecasted density on the same parts as the PLAQR model and addition-
ally, slightly overestimated part (d) as shown in Fig. 5. Figure 6 for the QGAM exhibited the best-forecasted 
density because there are only two parts where the model did not estimate quite well the forecasted density. In 
the same part (c) as other models performed, the underestimation from QGAM was notable but slightly smaller 
than those from both the PLAQR and AQR models. However, the QGAM overestimated the forecasted density 
but on a different part (e) from the parts where the PLAQR and AQR models had overestimated. These results 
mean that the QGAM fitted the SI density a little closer to the actual density in all locations than the PLAQR 
and AQR models.

Table 5.  Model general performance metrics on the five different trained data. Significant values are in bold.

Location Model Theil’s U AIC RMSE MASE

Windhoek

PLAQR 0.185 96,991.8 94.717 0.137

AQR 0.243 99,584.7 106.575 0.161

QGAM 0.188 97,543.4 90.757 0.123

Alice

PLAQR 0.221 100,959.4 86.708 0.179

AQR 0.228 102,968.2 92.608 0.201

QGAM 0.196 99,619.2 82.723 0.162

Durban

PLAQR 0.200 100,208.6 84.241 0.181

AQR 0.207 101,755.6 88.749 0.196

QGAM 0.186 100,028.7 81.622 0.170

Pretoria

PLAQR 0.215 97,904.8 86.522 0.155

AQR 0.248 100,302.3 94.059 0.177

QGAM 0.210 97,029.7 83.0970 0.142

Venda

PLAQR 0.176 99,224.5 91.827 0.181

AQR 0.188 100,831.2 95.892 0.195

QGAM 0.182 98,107.2 86.724 0.167

Figure 4.  Forecasted density plot of GHI using the fitted PLAQR model.
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Figure 5.  Forecasted density plot of GHI using the fitted AQR model.

Figure 6.  Forecasted density plot of GHI using the fitted QGAM model.
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Sharpness and reliability analysis

(a) Metric Evaluations: From Table 6 we can deduce that QGAM was the sharpest model and the most accurate 
on all locations because it had the lowest pinball loss in all locations. However, the pinball loss values from 
the QGAM were slightly smaller than those from the PLAQR and AQR models. We note that the pinball 
loss is an important metric when evaluating QR-based models. The lowest normalised Winkler scores 
were from the AQR model. Thus, AQR was the best model for the trade-off between coverage and predic-
tion interval width but taking note of the slight differences in the normalised Winkler scores. The PLAQR 
was the most reliable except on Windhoek data because the model had the highest CP. However, results 
indicate that the CP values were slightly different and all models were reliable and unbiased because they 
had high CP values. The probabilistic metric evaluations demonstrate that the superiority in forecasting 
accuracy of the additive models depends on the metric but the models are generally of approximately the 
same forecasting accuracy.

(b) Murphy Diagrams: Murphy diagrams in Fig. 7 demonstrate that the QGAM had near best forecasts amongst 
the three quantile regression-based additive models though the curves were almost superimposed in many 
parts of the diagrams. The QGAM curve is slightly below that of PLAQR on the second Murphy diagram 
and also slightly below that of the AQR curve on the third Murphy diagram on some notable parts. In the 

Table 6.  Model sharpness, biasedness, reliability and coverage metrics on the five different trained data. 
Significant values are in bold.

Metric Model Windhoek Alice Durban Pretoria Venda

Pinball PLAQR 25.37 26.20 24.93 24.84 26.75

Loss

AQR 29.90 29.43 27.03 28.36 28.87

QGAM 22.86 23.64 23.43 22.83 24.73

PLAQR 0.491 0.423 0.399 0.485 0.361

Winkler

AQR 0.450 0.354 0.352 0.419 0.320

QGAM 0.514 0.464 0.427 0.494 0.383

PLAQR 205.50 179.60 170.07 189.23 179.47

CRPS

AQR 205.37 179.32 169.92 189.24 179.50

QGAM 205.39 179.61 170.15 189.17 179.52

PLAQR 0.944 0.946 0.945 0.940 0.949

CP
AQR 0.885 0.926 0.891 0.900 0.927

QGAM 0.952 0.935 0.934 0.935 0.940

Figure 7.  Murphy diagrams to compare the prediction accuracies of: (a) PLAQR and AQR models (b) PLAQR 
and QGAM models (c) AQR and QGAM models.
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first Murphy diagram, the curve for the AQR model is slightly above that of the PLAQR at low and high 
parametric values. From θ = 400 up to θ = 800 the PLAQR curve slightly is above that AQR. That is, the 
PLAQR model is more accurate than the AQR on 400 ≤ θ ≤ 800 . However, all of the Murphy diagrams had 
curves that were very close to each other. That is the QR-based additive models fitted had approximately 
the same accuracy at some degree of comparison.

(c) Diebold–Mariano (DM) tests: The DM tests were done on the covariate stationarity assumption which was 
validated in Section “Variable selection”. The following hypotheses: H0 : The PLAQR model has the same 
accuracy as the AQR model. H1 : PLAQR model is less accurate than the AQR model. were tested but all 
p-values in Table 7 were greater than 0.05 indicating that we could not reject the null hypothesis in all five 
locations. This means that the PLAQR and AQR models had generally the same accuracy. We also tested 
the hypotheses: H0 : PLAQR model has the same accuracy as the QGAM model. H1 : PLAQR model is less 
accurate than the QGAM model. and all p-values were less than 0.05 (Table 7) indicating that we could 
reject the null hypothesis. It then means that the accuracy of a PLAQR model is less than that of the QGAM 
model. The last pair of hypotheses tested were; H0 : AQR model has the same accuracy as the QGAM model, 
H1 : AQR model is less accurate than the QGAM model, and all of the p-values were less than 0.05 (Table 7) 
indicating that we could also reject the null hypothesis. That is, the accuracy of an AQR model is generally 
less than that of the QGAM model.

(d) Performance consistency: The forecasting performances of the models were checked separately for consist-
ency through analysis of variance. The following assumptions were presumed valid without any loss of 
generality: (1) the performance scores were from random samples (random data sets used), (2) within 
each model set the performance scores were normal and (3) the mean performance may differ from one 
model to the other but the population standard deviation of the performance is the same for all models. 
That is, we analysed how the performances generally varied from one location to another using the fol-
lowing hypotheses: H0 : Model forecasting performance does not vary in all locations. H1 : Model forecasting 
performance varies in at least one location. The p-values obtained were all greater than 0.05 as shown in 
Table 8 indicating that we could not reject the null hypothesis. These results mean that we can conclude that 
all of the three models did not have varying forecasting performances across the locations. That is, they all 
had a consistent forecasting performance on solar irradiance. We can also conclude that the models were 
stable because location as a data variation factor did not influence the general performances of the three 
models.

Forecasting horizon effect
The sharpness of all models was not affected by the increase in the forecasting horizon and the QGAM has been 
the best overall forecasting horizon as shown in Fig. 8. Similarly, the trade-off between coverage and predic-
tion interval width was not affected by the increase in forecasting horizon. However, the CP of the AQR model 
decreased with increasing forecasting horizon while that of QGAM had a turning point at 30% forecasting 
horizon. In contrast, the CP of the PLAQR model was constant from 30% throughout the increasing forecasting 
horizon. The models had approximately the same CRPS and results show that 20% is the ideal horizon when 
forecasting the distribution.

Sample sife effect
Model performances were not affected by changes in sample sizes as shown in Fig. 9 except the Winkler score. 
However, the movement from a sample size of 5000 to 10,000 influenced all models when considering the 

Table 7.  Diebold–Mariano tests p-values.

Location PLAQRvsAQR PLAQRvsQGAM AQRvsQGAM

Windhoek 1.000 5.511E-14 1.889E-16

Alice 1.000 2.175E-10 2.200E-16

Durban 0.990 5.349E-05 4.196E-12

Pretoria 0.999 1.155E-13 2.241E-16

Venda 0.836 9.859E-07 5.599E-06

Table 8.  ANOVA p-values on testing model consistency.

Model F statistic p-value

PLAQR 0.005 0.999

AQR 0.008 0.998

QGAM 0.006 1.000
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Figure 8.  Forecasting horizon effect on model performance when considering (a) the pinball loss (b) CP (c) 
Winkler score (d) CRPS.

Figure 9.  Sample size effect on model performance when considering (a) the pinball loss (b) CP (c) Winkler 
score (d) CRPS.
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pinball loss, CP and Winkler scores evaluations. There is a general Winkler score improvement as the sample 
size increases while CP becomes approximately constant as the sample size increases from 15,000. We also note 
that the three models had the same CPRSs on all of the different sample sizes considered. Models’ performance 
on CRPS declines from the smallest sample size and then improves from the sample size of 15,000. Thus, 10,000 
is a turning sample size for Pinball loss and Winkler score evaluation while 15,000 is the CRPS turning point.

Discussions and conclusions
This study introduced the QGAM framework to forecasting SI using data from five different locations in Southern 
Africa. A comparative investigation against the PLAQR and AQR frameworks demonstrated their appropriate-
ness in modelling additive effects. All three non-parametric additive frameworks based on quantile regression 
modelling fitted the data excellently and were highly valid to model SI data from the Southern Africa region. We 
attribute the excellent modelling capabilities, especially the very high coefficients of determination and cross-
validation correlations to the models’ ability to avoid the curse of dimensionality while retaining great flexibility 
in the regression  function9. In addition,12 concurred  with27 that the use of B-splines makes additive models 
very stable and flexible for large-scale interpolation. The critical forecasting performance metric when fitting a 
QR-based model is the pinball loss. We think that the learning rate introduced  by21 together with their replace-
ment of the pinball loss with ELF loss function makes the QGAM framework very good and the best among the 
three models compared in minimising the regularised empirical risk suggested  by19. The ELF loss function was 
developed as a smooth version of the pinball loss, so it led to slightly more accurate estimated quantiles. In as 
much as we suspected that some covariates have linear additive effects, the PLAQR framework which considers 
linear relationship structures was marginally outperformed by QGAM in all locations, forecasting horizons and 
different sample sizes except when evaluating the forecasts using the normalised Winkler score and CP. The 
PLAQR was the best model when evaluating the CP metric. The model uses a linear combination of B-spline 
basis functions to approximate the unknown nonlinear  functions8. Probably that is why it had the highest cov-
erage. However, all models were compared competitively very sharp, unbiased and very reliable because they 
had very high and approximately equal CP values. The QGAM performed the worst on the trade-off between 
coverage and PIW. The QGAM over- or under-estimated the SI density in fewer parts of the density plot than 
both the PLAQR and AQR models. Density plots of forecasts and actual GHI exhibit that QGAM predicted SI 
the closest. In addition, Murphy’s diagram analysis indicated that QGAM accuracy was slightly better than that 
of the other two non-parametric QR frameworks used to model the additive effects. Furthermore, the DM test 
results indicated that the QGAM framework had greater accuracy than both the PLAQR and AQR models. On 
the other hand, the DM test results indicated that the AQR model has a greater accuracy than the PLAQR model. 
We can deduce that smooth sub-optimisation of the EFL loss function within the maximum a posteriori estima-
tion algorithm by exploiting orthogonal methods can account for the QGAM’s slightly greater accuracy than the 
other additive models. However, when prioritising reliability PLAQR is a recommended framework otherwise 
an AQR can be applied when focusing on the trade-off between coverage and PIW. The QGAM framework is 
recommended when focusing on the sharpness of the forecasts. Any of the three models can be used to predict 
the forecast distribution because they had approximately the same CRPS in all cases.

All of the models had different performances in the different locations but with no particular trend that could 
be established. That is, our results confirm the different model performances discovered  by18 in different regions. 
Change of location elevation and grid coordinates did not have any effect on model performance. However, we 
note that all models performed the worst in Venda when evaluating the pinball loss. Results also show that the 
worst performance when using CRPS was from Windhoek otherwise it cannot be deduced where the models 
had the best performances. Therefore, we conclude that the change of location does not influence the forecast-
ing performance of any modelling framework. We can attribute the change in model performance as we change 
locations to the qualities of the data sets from the different locations. By the way, data from different ground 
stations is recorded using different equipment and systems though it may be in similar formats.

This study also evaluated how the change in forecasting horizon may affect model performance. Results show 
that the pinball loss is not affected by the increase in forecasting horizon neither is the Winkler score. The CP 
and CRPS were the ones affected but differently on the three models. We can deduce that 30% is the turning 
forecasting horizon for all of the three models when measuring reliability. The performance of the models was 
approximately the same when measuring how accurately they forecasted the distribution throughout the increas-
ing forecasting horizon. However, the zig-zag pattern exhibited is quite interesting and the CRPS improvement 
can be wildly deduced. We would wish to investigate what happens after the 50% forecasting horizon but it is 
insensible to increase it beyond 50% . However, a forecasting horizon of 20% is ideal.

At last, this study investigated how the increase in sample size affects model performance. It would seem 
that generally, the increase does not affect the pinball loss and CP but results show that a sample size of 10,000 is 
ideal for measuring the pinball loss and 15,000 on CP. The best Winkler score can be obtained from the largest 
possible sample size while increasing it from 15,000 does not affect the models’ reliability. Model performance 
was also approximately the same when measuring the CRPS throughout the increasing forecasting sample size. 
Another interesting discovery is that CRPS had a maximum sample size of 15,000. In contrast, smaller sample 
sizes had better CRPS. It can be concluded that 10,000 and 15,000 sample sizes are key when modelling additive 
effects to SI using non-parametric QR frameworks.

Though, the QGAM framework was marginally superior on six out of the ten metrics considered in this 
study, the models had approximately the same metric values. The approximately equal metric values computed, 
small differences in the densities forecasted and the same consistency and stability results can be attributed 
to the same B-splines structure used by all of the models to approximate non-parametric components. Thus, 
except for the DM test results, other comparison investigations in this study do not indicate outright superiority 
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of the QGAM. It is also hihghlighted that incorporating a variety of evaluation metrics in forecasting analysis 
enhances the robustness, comprehensiveness, and relevance of performance assessment, ultimately leading to 
better-informed decisions and improvements in forecasting models. However, we recommend that a future simu-
lation study can give more conclusive information on the comparative investigation between the non-parametric 
quantile regression models when modelling additive effects to SI. That is, our results can not be generalised to 
any other locational data sets except to those extracted from the same radiometric stations of the same locali-
ties until such a simulation study is done. However, a solar power generation system may prioritise at least one 
of the metrics among the pinball loss, Winkler score, CRPS and CP. Our results suggest a guideline on which 
forecasting framework to prioritise in such situations though all of the three additive models have demonstrated 
to have the same forecasting accuracies. The excellent forecasting performances and consistency exhibited by 
all of the 3 non-parametric QR models in this study entail that the frameworks should be highly regarded when 
a solar power system is predicting solar irradiance for their power generation planning and management. The 
results suggest that including additive models compared in this study in photovoltaic power generation can help 
stabilise the system through improved accurate SI forecasts. It has to be noted that this study can be extended to 
standardising forecasts and include forecast combinations in the discussed modelling frameworks to improve 
the forecasts. While the study focused on modelling additive effects, modelling frameworks like random forests 
can be introduced to the modelling of SI in future studies.

Data availability
Most of the data used in this study are from the SAURAN website (https:// sauran. ac. za, accessed on 31 March 
2023).

Received: 30 January 2024; Accepted: 15 April 2024

References
 1. Sigauke, C., Chandiwana, E. & Bere, A. Spatio-temporal forecasting of global horizontal irradiance using Bayesian inference. Appl. 

Sci. 13, 201. https:// doi. org/ 10. 3390/ app13 010201 (2023).
 2. Chandiwana, E., Sigauke, C. & Bere, A. Twenty-four-hour ahead probabilistic global horizontal irradiation forecasting using 

Gaussian process regression. Algorithms 14, 177 (2021).
 3. Mutavhatsindi, T., Sigauke, C. & Mbuvha, R. Forecasting hourly global horizontal solar irradiance in South Africa. IEEE Access 8, 

198872–198885. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30346 90 (2020).
 4. Sivhugwana, K. S. & Ranganai, E. Intelligent techniques, harmonically coupled and sarima models in forecasting solar radiation 

data: A hybridisation approach. J. Energy South. Afr. 31(3), 14–37. https:// doi. org/ 10. 17159/ 2413- 3051/ 2020/ v31i3 a7754 (2020).
 5. Davino, C., Furno, M. & Vistocco, D. Quantile Regression: Theory and Applications 1st edn. (Wiley, 2014).
 6. Koenker, R. Quantile Regression 1st edn. (Cambridge University Press, 2005). https:// doi. org/ 10. 1017/ CBO97 80511 754098.
 7. Zhang, L., Lv, X. & Wang, R. Soil moisture estimation based on polarimetric decomposition and quantile regression forests. Remote 

Sens. 14, 4183. https:// doi. org/ 10. 3390/ rs141 74183 (2022).
 8. Ravele, T., Sigauke, C. & Jhamba, L. Partially linear additive quantile regression in ultra-high dimension. Ann. Stat. 44(1), 288–317. 

https:// doi. org/ 10. 1214/ 15- AOS13 67 (2016).
 9. Hoshino, T. Quantile regression estimation of partially linear additive models. J. Nonparametr. Stat. 26(3), 509–536. https:// doi. 

org/ 10. 1080/ 10485 252. 2014. 929675 (2014).
 10. Maposa, D., Masache, A. & Mdlongwa, P. A quantile functions-based investigation on the characteristics of southern African solar 

irradiation data. Math. Comput. Appl. 28, 86. https:// doi. org/ 10. 3390/ mca28 040086 (2023).
 11. Koenker, R. Additive models for quantile regression: Model selection and confidence bandaids. Braz. J. Probab. Stat. 25, 239–262. 

https:// doi. org/ 10. 1214/ 10- BJPS1 31 (2011).
 12. Mpfumali, P., Sigauke, C., Bere, A. & Mlaudzi, S. Day ahead hourly global horizontal irradiance forecasting-application to south 

African data. Energies 12, 1–28. https:// doi. org/ 10. 3390/ en121 83569 (2019).
 13. Ranganai, E. & Sigauke, C. Capturing long-range dependence and harmonic phenomena in 24-hour solar irradiance forecasting. 

IEEE Access 8, 172204–172218. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30246 61 (2020).
 14. Fenske, N., Kneib, T. & Hothorn, T. Identifying risk factors for severe childhood malnutrition by boosting additive quantile regres-

sion. J. Am. Stat. Assoc. 106, 494–510. https:// doi. org/ 10. 1198/ jasa. 2011. ap092 72 (2011).
 15. Ravele, T., Sigauke, C. & Jhamba, L. Estimation of extreme quantiles of global horizontal irradiance: A comparative analysis using 

an extremal mixture model and a generalised additive extreme value model. Math. Stat. 10(1), 116–133. https:// doi. org/ 10. 13189/ 
ms. 2022. 100109 (2022).

 16. Gaillard, P., Goudea, Y. & Nedellec, R. Additive models and robust aggregation for gefcom2014 probabilistic electric load and 
electricity price forecasting. Int. J. Forecast. 32, 1038–1050. https:// doi. org/ 10. 1016/j. ijfor ecast. 2015. 12. 001 (2016).

 17. Tobechukwu, N. M. Quantile generalized additive model a robust alternative to generalized additive model. Int. J. Math. Res. 10(1), 
12–18 (2006).

 18. Olivetti, L., Messori, G. & Jin, S. A quantile generalised additive approach for compound climate extremes: Pan-atlantic extremes 
as a case study. J. Adv. Model. Earth Syst. 1, 1–10 (2023).

 19. Takeuchi, I., Le, Q. V., Sears, T. D. & Smola, A. J. Nonparametric quantile estimation. J. Mach. Learn. Res. 7, 1231–1264 (2006).
 20. Koenker, R., Ng, P. & Portnoy, S. Quantile smoothing splines. Biometrika 81(4), 673–680 (1994).
 21. Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R. & Goude, Y. Fast calibrated additive quantile regression. J. Am. Stat. Assoc. 116, 

1402–1412. https:// doi. org/ 10. 1080/ 01621 459. 2020. 17255 21 (2021).
 22. Yirga, A. A., Melesse, S. F., Mwambi, H. G. & Ayele, D. G. Additive quantile mixed-effects modelling with application to longitudinal 

cd4 count data. Sci. Rep. 11, 11945. https:// doi. org/ 10. 1038/ s41598- 021- 7114-9 (2021).
 23. Bien, J. & Tibshirani, R. Package “hiernet”; version 1.9: A lasso for hierarchical interactions. CRAN (2022).
 24. Fasiolo, M., Nedellec, R., Goude, Y., Capezza, C. & Wood, S. N. Package “mgcviz”; version 0.1.9: Visualisations for generalized 

additive models. CRAN (2022).
 25. Maidman, A. Package “plaqr”; version 2.0: Partially linear additive quantile regression. CRAN (2022).
 26. Koenker, R. et al. Package “quantreg”; version 5.95: Quantile regression. CRAN (2023).
 27. Wood, S. N. Generalized Additive Models: An Introduction with r 2nd edn. (Chapman and Hall/CRC, 2017). https:// doi. org/ 10. 

1201/ 97813 15370 279.

https://sauran.ac.za
https://doi.org/10.3390/app13010201
https://doi.org/10.1109/ACCESS.2020.3034690
https://doi.org/10.17159/2413-3051/2020/v31i3a7754
https://doi.org/10.1017/CBO9780511754098
https://doi.org/10.3390/rs14174183
https://doi.org/10.1214/15-AOS1367
https://doi.org/10.1080/10485252.2014.929675
https://doi.org/10.1080/10485252.2014.929675
https://doi.org/10.3390/mca28040086
https://doi.org/10.1214/10-BJPS131
https://doi.org/10.3390/en12183569
https://doi.org/10.1109/ACCESS.2020.3024661
https://doi.org/10.1198/jasa.2011.ap09272
https://doi.org/10.13189/ms.2022.100109
https://doi.org/10.13189/ms.2022.100109
https://doi.org/10.1016/j.ijforecast.2015.12.001
https://doi.org/10.1080/01621459.2020.1725521
https://doi.org/10.1038/s41598-021-7114-9
https://doi.org/10.1201/9781315370279
https://doi.org/10.1201/9781315370279


19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9244  | https://doi.org/10.1038/s41598-024-59751-8

www.nature.com/scientificreports/

Author contributions
Conceptualisation, A.M. and C.S; methodology, A.M. and C.S.; software, A.M.; validation, A.M., D.M., P.M. 
and C.S.; formal analysis, A.M.; investigation, A.M.; resources, A.M.; data curation, A.M.; writing-original draft 
preparation, A.M.; writing-review and editing, A.M., D.M., P.M, and C.S.; visualisation, A.M., D.M., P.M. and 
C.S; supervision, D.M., P.M. and C.S.; project administration, A.M.All authors have reviewed and agreed to the 
published version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 024- 59751-8.

Correspondence and requests for materials should be addressed to D.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-024-59751-8
https://doi.org/10.1038/s41598-024-59751-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Non-parametric quantile regression-based modelling of additive effects to solar irradiation in Southern Africa
	Review of related literature
	Contributions and research highlights
	Methodology
	Non-parametric quantile regression concept
	Quantile splines
	Regression coefficients estimation
	Partial linearly additive quantile regression model
	Additive quantile regression model
	Quantile generalised additive model

	Performance evaluations

	Data analysis and results
	Data sources
	Data exploration
	SI distribution
	Variable selection

	Model validations
	Forecasting results
	General model performances
	Sharpness and reliability analysis
	Forecasting horizon effect
	Sample sife effect


	Discussions and conclusions
	References


