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Development of sensor system 
and data analytic framework 
for non‑invasive blood glucose 
prediction
S. V. K. R. Rajeswari  & P. Vijayakumar *

Periodic quantification of blood glucose levels is performed using painful, invasive methods. The 
proposed work presents the development of a noninvasive glucose‑monitoring device with two 
sensors, i.e., finger and wrist bands. The sensor system was designed with a near‑infrared (NIR) 
wavelength of 940 nm emitter and a 900–1700 nm detector. This study included 101 diabetic and 
non‑diabetic volunteers. The obtained dataset was subjected to pre‑processing, exploratory data 
analysis (EDA), data visualization, and integration methods. Ambiguities such as the effects of skin 
color, ambient light, and finger pressure on the sensor were overcome in the proposed ‘niGLUC‑2.0v’. 
niGLUC‑2.0v was validated with performance metrics where accuracy of 99.02%, mean absolute error 
(MAE) of 0.15, mean square error (MSE) of 0.22 for finger, and accuracy of 99.96%, MAE of 0.06, MSE 
of 0.006 for wrist prototype with ridge regression (RR) were achieved. Bland–Altman analysis was 
performed, where 98% of the data points were within ± 1.96 standard deviation (SD), 100% were under 
zone A of the Clarke Error Grid (CEG), and statistical analysis showed p < 0.05 on evaluated accuracy. 
Thus, niGLUC‑2.0v is suitable in the medical and personal care fields for continuous real‑time blood 
glucose monitoring.

Invasive methods for measuring blood glucose include pricking the skin, which causes pain, anxiety, and panic. 
Pathology laboratory reports and additional supplies for home monitoring kits are never-ending expenses for 
monitoring blood glucose. Therefore, invasive methods cannot be used for continuous monitoring of blood 
glucose levels. Few studies have explored minimally invasive techniques for the continuous monitoring of blood 
glucose, where sensors are implanted in the epidermal layer of the skin to monitor blood glucose  levels1,2. 
Minimally invasive techniques have not been successful because of mild irritation, discomfort, bleeding, and 
withdrawal from the  test3–6.

Proof-of-concept studies were conducted using microwave sensors. In one study, a resonant sensor with an 
operating frequency of 9 GHz and a quality factor (Qu) of 240 was proposed to measure the dielectric constant 
that changes with glucose concentration, which was validated on four volunteers by comparing noninvasive and 
invasive blood  samples7. Similarly, a label-free meandered sensor was implemented on an RO4003 substrate 
with an operating frequency of 6.21 GHz and a Qu factor of 506 to measure glucose from a glucose aqueous 
solution, where a sensitivity of 0.64% was  obtained8. An inverted microstrip sensor with two metalized solutions 
i.e., copper and silver is proposed with operating frequencies 4.50 and 4.62 GHz with Qu factor of 16.36 and 
22.0 where 93.11% data points of copper tape sensor fell in zone A and Zone B whereas 6.89% data points fall 
in zone D of CEG which is clinically unacceptable whereas for the silver tape sensor, 85.19% fall in zones A & 
B and 3.70% in zone C and 11.11% in zone D which is clinically unacceptable and thus cannot be implemented 
in real  time9. An adjustable resonant frequency  (Fr)-based multiparallel complementary split-ring resonator 
(MP-CSRR) sensor was proposed in a recent study. After loading the glucose solution,  Fr of 2.5–3.5 GHz is 
achieved, where the experimental results prove that as the glucose concentration increases,  Fr also increases with 
a sensitivity of 9.59 ×  10–2 MHz/(mg/dL), and |S21| sensitivity of 7.47 ×  10–3 dB/(mg/dL)67. Upper band  Fr between 
5.42–5.87 GHz for measuring glucose concentration and lower band  Fr between 2.40–2.48 GHz is designed for 
wireless communication applications where the glucose concentration was measured on a diabetic patient before 
and after 30 min of having food. Linear regression analysis showed that as the glucose concentration increased, 
 Fr also  increased10. In a similar work, a  Fr with two frequencies i.e., at 5.5 GHz and 8.5 GHz with a Qu factor of 
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180 and 106 is proposed where the sensor is tested on 11 volunteers. An error rate of 13% was obtained between 
invasive and non-invasive blood glucose measurements, which is clinically  unacceptable11. In a parallel study, 
a compact branch line coupler and split ring resonator with a sensor size of 3.5 × 3.5 × 0.16  cm3 was calibrated 
with five different aqueous glucose concentrations. Sensitivity of 0.72 MHz/mg/dL−1 and a relative error ranging 
from 1 to 6.6% was  achieved12. In a relative work, an electromagnetic coupling-based tag sensor and the reader 
were designed, where frequency and amplitude shifts were measured by changes in glucose concentrations of 
0 and 200 mM/l solutions. An accuracy of ~ 1 mM/l and 38 kHz of resonant frequency shift was  achieved13. A 
sensor with coupling between the underlying split ring resonator and loading patch with resonant frequency of 
5.65 GHz and 4.34 GHz is proposed which is tested on four volunteers for 3 h per day in a total of 8 days. An  R2 
value of 0.913 between the invasive and noninvasive measurements was achieved using linear regression. Long 
Short-Term Memory (LSTM) was applied to predict the threshold of glucose levels after 30 min with a lookahead 
of 360, which is high for clinical  applications14.

However, the studies discussed are not executed in real  time11,15, and a few of them are executed on blood 
 samples8,10,12,13,15, which is a major limitation. Executing studies on real-time blood samples and comparing 
them with non-invasive sensors will allow us to understand whether any interference from biological differences 
in blood, susceptibility to interference from fats and proteins, and physiological conditions such as breathing, 
sweating, cardiac activity, and dehydration can alter the measurements due to changes in the permittivity and 
affect the sensitivity of the  sensor13,16,17. Studies carried out on real-time blood samples lacked sample  sizes7,10,11, 
which limits the observation of different volunteer demographics/selection criteria, standard error  analysis10,11,14 
for performance, validation of sensors, and clinically unacceptable ranges of  CEG9, and require a 15 min resting 
time, normal temperature, and blood pressure before  measurement7. However, the results with good sensitivity 
from the above studies open the door for miniaturized sensors for wearables and are trusted options for diabetes 
management.

Excellent research has been conducted in the areas of thermal, electric/electromagnetic, and optical meth-
ods for noninvasive glucose monitoring, as discussed in I1, Supplementary Material 1. Among all the existing 
methodologies, notably microwave and NIR devices, NIR is chosen in the proposed work because of its strong 
penetration; non-interference of biological differences in blood, fats, and proteins; non-destructive technique; 
no risk of infection; safety on human skin; low cost; sample can be analyzed on the spot time without time-
consuming laboratory analysis; does not induce auto-fluorescence in cells; and requires no sample preparation 
or manipulation with hazardous chemicals, solvents, or  reagents17,18.

Revolutionizing medical diagnoses and NIR-based commercial glucometers are available on the market. A 
hybrid glucometer was released using CNOGA, with an accuracy of 95%. The device’s total dimensions, i.e., 
43.2 mm × 47.65 mm × 74 mm, weighing 99.9 gms, make it non-portable. The cost of the device is $420. The 
device is minimally invasive and requires frequent changes in strips, thereby adding additional costs to the 
 device19. Another drawback is the accuracy, where the Mean Absolute Relative Difference (MARD) was 18.1%, 
91.1% of data points fell in zone A, and 7.8% in zone B of the Clarke error grid (CEG)  analysis20. Similarly, the 
glucometer by Helo Extense World Global Network takes into account external factors such as temperature 
variability, and the effect of pressure and sweat to measure blood glucose and has not been approved by the 
 FDA21,22. Likewise, the glucometer by Wizmi, WEAR2B Ltd is under clinical trial, where a study obtained 93% 
in zone A and 7% in zone B in  CEG22,23. A discussion of commercial devices in areas other than optical methods 
is presented in I2, Supplementary Material 1.

Considering the challenges of pricking the finger, allergies, inaccuracies, high errors, unreliability, frequent 
changing of sensors, non-portability, and cost of the existing market solutions, there is a need to implement 
potent NIR technology with the integration of cutting-edge technologies i.e., Artificial Intelligence (AI) and 
Data Science for accurate predictions, lesser error, reliability and low cost for more sophisticated and efficient 
non-invasive diabetic management solutions.

The current state of the art in noninvasive blood glucose measurements in IR and NIR regions is thoroughly 
discussed. Prototypes from the literature are presented in T1 Supplementary Material 2.

A recent study proposed an Internet of Medical Things (IoMT) based wearable device. It integrates a photo-
plethysmography (PPG) device with 950 nm and 650 nm. A light-weight 1-dimensional input-reinforced deep 
neural network is employed, where an MAE of 23 mg/dL and Mean Absolute Percentage Error (MAPE) of 17.8% 
with 100% predictions falling under A and B of the CEG at the testing phase is  achieved24. The model was not 
trained above 200 mg/dL which may lead to bias during real-time measurements and has a high MAE for clinical 
acceptance which is a limitation of the study.

In a parallel study, an LED of 940 nm was employed where the systolic and diastolic peaks were acquired from 
the PPG signal. A Standard Percentage Error (SEP) of 2.1835 was  achieved25. There is a need to remove the first 
five seconds of the signal to avoid motion artifacts, which implies a limitation, along with an absence of analyti-
cal standards and evaluations that can validate the proposed sensor for real-world deployment of the device.

In a similar study, the Perfusion Index (PI) was obtained from PPG signals. The sensor was developed by 
combining an LED with a wavelength 940 nm with an ultrasonic sensor with an operating frequency of 40kHz. 
The finger was tied with a band to the sensor to avoid motion artifacts. Pearson’s coefficient of r =  − 0.90, p < 0.001, 
and MAE of p < 0.0051 were achieved between the predicted and reference blood glucose  levels26. The major 
limitation of the study is that approximately 77.78% of participants were aged between 18 and 25 years, which 
may generalize the results. Unusual PI is uncommon at this age limit, which may alter the result if 25-and above-
aged participants are tested with the model. The model can be trained using ML algorithms by integrating data 
science to handle participant demographics and PI.

A low-cost infrared (IR)-based 940 nm emitter was employed. The number of components involved in design-
ing the working model was $18.A fuzzy logic algorithm was employed which achieved an error of prediction 
between ±5% and ±10%, which is clinically high, which is a  limitation27. A wide range of patient demographics 
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were not considered in this study, which may led to bias. The model is trained on blood glucose levels between 
103 and 175 mg/dL, whereas it is recommended that the model must be trained with higher glucose levels for 
calibration and sensitivity. Various standards and evaluations were performed to validate the device.

A multisensory system was developed by employing an NIR wavelength of 1370 nm and 1640 nm and radi-
ofrequency sensor between 36.50 and 41.50 GHz. A random forest (RF) algorithm was employed to achieve a 
Root Mean Square Error (RMSE) of 21.06 mg/dL, Mean Absolute Relative Difference (MARD) of 7.31%, and 
96% under clinically acceptable zones A and B in the  CEG28. The performance of the device is a limitation of 
this study, which can be improved in terms of accuracy and reduction in error for real-world deployment of 
the sensor. The model can be trained by considering fasting, postprandial, and random blood glucose samples 
collected from diabetic and non-diabetic volunteers to observe the performance of the model.

A multiple photonic-band near-infrared (mbNIR) sensor with a Shallow Dense Neural Network (SDNN) 
was proposed. A sensor with six 850 nm emitters and detectors was employed, which achieved an accuracy of 
97.8% with a precision of 96.0%, sensitivity of 94.8%, and specificity of 98.7%. The detection limit of the proposed 
device was 60–400 mg/dL with a prediction error of ±  1529. Although the error is limited by the International 
Standard ISO, it can still be reduced and the accuracy can be improved for precise prediction during the practi-
cal deployment of the sensor.

In a similar study on detecting hemoglobin (Hb), blood glucose, and Creatinine (Cr), a PPG signal was 
acquired from a fingertip video. A source and detector at 850 nm for Hb, 950 nm for blood glucose, and 1150 
nm for Cr were employed. A Deep Neural Network (DNN) is applied, which achieved an accuracy of 90.2% 
for blood glucose, 92.2% for hemoglobin, and 96.9% for  creatinine30. The process of detecting blood glucose is 
a major limitation as it is non-portable, and deploying the application on different mobile phones can lead to 
errors in readings owing to different camera resolutions.

In an experimental trial, reflection spectroscopy between 1100 nm and 1825 nm was employed, where an SEP 
of 36.6 mg/dL and MARD of 23% were achieved, which is a limitation of the study for practical  deployment31. 
Moreover, noninvasive measurements are taken from the lip, which can lead to infection if not sterilized properly 
and cannot be made as a portable device.

A parallel study employed two 940 nm LED sources, one 940 nm LED detector, and two 1300 nm detectors. 
Multiple polynomial regression (MPR) was applied with an Average Error and MARD of 6.09 % for capillary 
and 4.88 % and 4.86 % for serum glucose,  respectively32. The size of the prototype can be reduced, which is a 
limitation of this study, along with a reduction in error for accurate prediction.

A sensor size of 15 × 15  mm2 wearable band-type system was developed by employing four emitter LEDs with 
wavelengths of 950 nm, 850 nm, 660 nm, and 530 nm and a transmitter of 400–1100 nm. Pulsatile signals were 
recorded to avoid a high SNR and baseline wander, in the resting position. The average correlation coefficient Rp 
of 0.86, and SPE of 6.16 mg/dL were obtained, which is a limitation of the study for practical deployment of the 
sensor. The reliability of the device was tested by comparing the heartbeat between PPG and Electrocardiography 
(ECG) signals, and by investigating changes in blood glucose levels in a  day33.

The research gaps identified in the literature are addressed as follows.

• Non-portable25–32 and wearable  devices24,33 did not focus on ambiguities such as skin color variation, ambi-
ent light, pressure of the finger on the sensor, and reliability, making the device unsuitable for continuous 
monitoring of blood glucose accurately.

• The proposed methodologies have a high MAE/MARD/prediction error, which makes the device non-rep-
licable using invasive or minimally invasive methods.

• The devices have been tested on normal  patients25,28,30,33, non-diabetic patients with chronic health 
 disorders24,29, and a few diabetic  patients26,27,31,32.

• The cost of the developed prototypes in the existing literature is estimated from a minimum of $100 to $300, 
which is not suitable for continuous monitoring of blood glucose, is non-portable, and is non-reliable with 
a higher error in predictions.

An accurate, portable, and low-cost sensor system is needed to handle ambiguities such as skin color variation, 
ambient light, and pressure on the sensor for predicting blood glucose levels. Extending the existing literature 
and overcoming the challenges of commercial devices, our proposed work expands the existing methods and 
commercially available devices by developing a reliable prototype integrating Artificial Intelligence (AI) and 
Data Science to develop a data analytic framework. The proposed work was designed to handle skin color vari-
ation, the presence of ambient light, and pressure on the sensor. Machine Learning (ML) models are applied to 
validate the developed framework that achieved maximum accuracy compared to the existing literature. A high 
degree of accuracy implies its application in better diabetic management at a low cost. The ease of use of this 
prototype is an additional advantage.

The contributions of this proposed study are as follows.

• Development of a low-cost ($87.37) NIR spectroscopy-based noninvasive portable finger and wrist sensor 
prototype to detect blood glucose levels continuously.

• A novel data analytic framework was designed to improve the accuracy from 71% for niGLUC 1.0v (first 
version) to 99.96% for the proposed device, niGLUC 2.0v.

• The accuracy of the developed sensor system was tested for its reliability and stability in the presence of skin 
color variations, ambient light, and finger pressure.
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The rest of the paper is presented in the following consequential manner: Sect. 2 presents the methods for 
selecting measurement sites, the principle of blood glucose measurement, the hardware architecture of niGLUC-
2.0v, cost comparison of niGLUC-2.0v with commercial devices, development of a data analytic framework for 
niGLUC-2.0v, overcoming the challenge of skin pigmentation, predictive analysis, experimental design, data 
collection, testing the accuracy of niGLUC-2.0v for variation in ambient light, and handling other ambigui-
ties. The results and discussion are presented in Sect. 3, where predictive analysis, validation of niGLUC-2.0v, 
Bland–Altman plot, CEG analysis, statistical analysis, and comparison with recent research works are covered. 
The paper ends with Sect. 4, an exposition of the conclusion.

Methods
The current section elaborates on the selection of measurement sites, the principle behind light absorption, and 
the hardware architecture. An adjustment factor was proposed to handle skin color variation. The adjustment 
factor was evaluated for different intervals and multiplied by the voltages generated from niGLUC-2.0v. The 
dataset was fed into the data analytic framework, where EDA was applied and achieved the highest accuracy. The 
proposed data analytic framework improves the accuracy of the developed device in the presence of ambiguities. 
A cost comparison of niGLUC-2.0v was performed using commercially available devices. ML algorithms and 
metrics evaluation are presented to validate the developed device. The experimental procedure and data collec-
tion are elaborated with the hardware setup.

Selection of measurement sites
Noninvasive blood glucose measurements from the lips, cheeks, tongue, eyes, earlobe, fingertip, and wrist have 
been reported in the  literature34–40. The fingertip and wrist have thin skin folds and are a source of blood ves-
sels i.e., capillaries where blood glucose can be easily found, which lie much above the fat layer of the skin. NIR 
requires thin skin folds and has the property of transilluminance i.e., when NIR light passes through skin and tis-
sues, it penetrates the underlying structures such as blood vessels where absorption takes place. Information-rich 
spectral intervals are found in the first overtone and combination-band  vibrations31,41,42. Based on the biophysical 
properties, better absorption properties of NIR, and to avoid the risk of infection, measurement alterations and, 
ease of handling the device, fingertip, and wrist were chosen in the proposed work.

Principle of blood glucose measurement‑Absorption physics at Near‑Infrared region
The absorption of light by the blood glucose molecules  (C6H12O6) is due to the overtone and combination bands, 
which cause photons to absorb and induce molecular vibrations. These vibrations are due to covalent bonds, 
which behave like springs through bending and stretching. Stretching of the CH and OH bonds was observed 
in this region. Molecules vibrate and absorb when the frequency of light matches the vibrating  frequency43–45. 
This absorption is described by the Beer-Lambert law, as illustrated in Fig. 1.

According to the Beer-Lambert law, the absorbance of any solution is proportional to its concentration and 
the path length traveled by light  rays46. When the blood glucose concentration is high, the absorbance of photons 
by blood glucose molecules is high with decreased scattering and a shorter optical  path47. The principle of blood 
glucose measurement is written as,

where R = is the reflected light intensity,  R0 = is the incident light intensity, l = is the length of the optical path 
inside the tissue, and ( µeff) = is the effective attenuation coefficient with respect to the absorption and reduced 
scattering coefficients. The effective attenuation coefficient is written as,

(1)R = R0e
−µeff l

(2)
(

µeffl
)

=
√

3γ a(γ a+ γ s′)

(3)γ a = 2.303εC

(4)γ s′ = γ s(1− a)

Figure 1.  Absorption and reflection of light by glucose molecule by Beer Lambert’s law.
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where ε = molar extinction coefficient, C = tissue chromophore concentration, μs
′ = reduced scattering coefficient, 

a = average of the cosine of the scattering angles.
From Eq. 1, it can be inferred that the glucose molecules absorb the light produced by the NIR emitter, and 

the reflected light is measured at the detector as voltage. The absorption, scattering, and transmission of light 
through the sample depended on glucose concentration.

Rationale behind selection of sensor
The sensor was selected on the basis of the wavelength and penetration depth of the skin. Capillary loops 
consisting of blood glucose molecules are present in the dermal layer of the skin at a 2.0 mm depth, which is 
easily penetrated by NIR  sensors48. From the literature, glucose absorption peaks are found at 660 nm, 940 nm, 
1550 nm, and 1650 nm, where the penetration depth of light is highest at 940  nm28,32,49,50. Below 700 nm and 
above 950 nm, the penetration of light is challenging owing to the strong absorption from hemoglobin and water 
molecules. The penetration depth increases to 900–1000 nm and then  decreases48–51. At 940 nm, attenuation by 
other constituents of the blood, such as water, hemoglobin, and melanin, is  minimum52–54. Therefore, 940 nm 
was selected for this study.

Hardware architecture of niGLUC‑2.0v
The hardware design was conceptualized using SW-NIR between 700 and 1300 nm. NIR sensor with an emit-
ter of wavelength 940 nm and a 900–1700 nm detector were chosen to detect the blood glucose molecule. The 
sensitivity of the sensor is 0.9–0.95 amperes/watt. The specificity of the sensor was 0.5 amperes/watt. The range 
of sensor to detect blood glucose levels is in between 0 to 0.3 mm. Two sites were selected for the detection of 
blood glucose levels: the finger and the wrist. A block diagram of the prototype is shown in Fig. 2. Aluminum 
gallium arsenide (GaAlAs) LEDs were chosen because the p-surface was coated with silicon nitrate  (SiN4O12), 
which helped to reduce the interference of ambient light and provided better stability at the output. Half angle of 
the LED was 40°. The LEDs were placed on the same side so that the reflected light was captured at the detector, 
and thus, a 180° phase shift occurs between them. The distance between the emitter and the detector was 5.5 mm. 
The niGLUC-2.0v operates with a 5 V power supply and 2 A current. The operating power of the finger sensor is 
0.5 W and 0.7 W for the wrist sensor. The current consumed by the finger and wrist sensor was 100 mA. When 
light from the NIR emitter passes through the blood, the detector detects the reflected light from the blood in the 
form of a  signal55. The amplitude of the signal depends on the blood glucose concentration. If the blood glucose 
concentration is high, the reflected signal is low and vice versa.

A block diagram of the circuit protection and its components is presented in Fig. 3.Various circuit protection 
mechanisms have been  implemented56,57. However, in the proposed work, as the circuit works on a 5 V power 
supply (small voltage application), a voltage regulator is implemented to protect the circuit from overvoltage 

Figure 2.  Block diagram of the proposed sensor system.
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conditions, voltage spike suppression, and thermal protection. The internal circuitry was protected by resistors 
and the ground to protect the components. The sensor consists of an emitter and a detector circuit. The reflected 
signal at the detector was passed through a low-pass filter and then amplified using a power amplifier. The output 
consists of an amplified analog signal fed to the DAQ. Radiation safety is considered based on the Incoherent 
Visible and Infrared radiation on Non-Ionizing Radiation Protection (ICNIRP) guidelines that state thermal 
injury of the cornea in case of direct eye exposure > 1000  s58.Nevertheless, in the proposed study, there was no 
direct eye contact with the sensor, and the exposure to radiation was < 60 s.The components were secured in a 
Printed Circuit Board (PCB) covered with a black body and a transparent window underneath that allow light 
to pass from the emitter into the skin. Data acquisition (DAQ) is employed to convert the analog signal into 
a digital signal, where the voltage values can be viewed using LabVIEW software. The output voltages were 
received serially in frames.100 frames were collected as one corresponding sample. Data analysis is carried out 
in the sequence of pre-processing of the data and applying a data analytic framework, i.e., employing EDA, data 
visualization, data integration, and predictive analysis. Predictive analysis was performed by applying ML models 
in which the blood glucose levels were predicted.

Cost comparison of niGLUC‑2.0v with commercial devices
The cost of the proposed niGLUC 2.0v device is listed in Table 1. Cost comparisons were performed between 
invasive, minimally invasive, implantable, and niGLUC-2.0v. It can be inferred from the table that the total cost 
of pathology lab reports, including Fasting Plasma Glucose (FPG), postprandial (PP), and Glycated Hemoglobin 
(HbA1C) profiles calculated four times a year at Apollo Hospital, is estimated to be $3559. An Accu-check glu-
cometer costs $430, including additional supplies (glucometer, lancet, and strip of 50 counts) purchased four 
times a  year60. The total cost of a minimally invasive device for one Dexcom G6 transmitter and three sensors 
was $1060. The sensor and transmitter must be changed for 10 and 90  days61. Eversense E3 is an implantable 
device available with insurance, which costs $675.3 for one-time insertion and sensor  removal62. In the proposed 
study, LabVIEW was implemented for the convenience of data collection. Arduino-based open software will be 
used at final product. niGLUC-2.0v costs $85.6 as a one-time purchase, a non-invasive and portable device that 
does not change the sensors or transmitters.

Development of data analytic framework for niGLUC‑2.0v
The flowchart of the proposed work is shown in Fig. 4. The finger and wrist sensors were switched on, and the 
values were recorded from the sensors. One hundred samples from the sensor were recorded and saved in an 
Excel file along with physiological details of the patient. A normalization and data analytic framework was applied 
to the datasets on which ML algorithms were used to accurately predict blood glucose levels.

Overcoming the challenge of skin pigmentation
Three healthy volunteers age group-33–35 with dark, wheatish, and fair skin tones were selected as shown in 
Fig. 5a–c. Volunteers were asked to fast the previous night. The same quantity of breakfast and lunch were con-
sumed. Fasting and postprandial blood glucose values were recorded invasively using a home monitoring kit and 
non-invasively using niGLUC-2.0v, as illustrated in Table 2. A total of 44 readings were collected over five days. 
For comparison, blood glucose levels can be divided into a range of 5, i.e., between 91–95 mg/dL, 121–125 mg/
dL, 126–130 mg/dL, and 131–135 mg/dL. It can be observed from Table 6 that the postprandial values (after 
breakfast) obtained invasively for volunteers 1 and 3 were the same, i.e., 128 mg/dL. In contrast, a difference can 

Figure 3.  Block diagram of circuit protection and components.

Table 1.  Cost comparison of invasive, minimally invasive, implantable, and niGLUC-2.0v.

Method of testing Device/source Price ($)

Invasive
Apollo 37.57

Accu-chek glucometer 428.60

Minimally invasive Dexcom G6 1056.89

Implantable Eversense E3 673.18

Proposed device (ni-GLUC-2.0v) Finger & wrist prototype 87.35
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be noted in the corresponding voltages, i.e., 0.15548 V for volunteer 1 and 0.164059 V for volunteer 2. A variance 
of 0.008579 V was observed for the wrist. A significant difference can be observed between volunteer 2 with 
0.055806 V at 126 mg/dL when compared with volunteers 1 and volunteer 3, with the blood glucose level falling 
within the same interval, i.e., 128 mg/dL. A difference of 0.099674 V was observed. Although the differences 
among the three healthy volunteers were negligible skin color was a significant factor of interference when a large 
dataset was considered with different age groups, sex, BMI, and other physiological factors. There is a need for 
NIR sensors that consider skin color interference for accurate blood glucose predictions.

The current work proposes a novel interval-based adjustment factor, as detailed in Algorithm 1 in Table 3, for 
handling skin color pigmentation. The dataset was arranged in ascending order of the reference blood glucose 
values. The dataset was divided into dark, wheat, and fair skin colors. The invasive blood glucose values from all 
skin colors and their respective niGLUC-2.0v values were grouped at an interval of 5. The variance of the three 
skin tones falling within the same interval was calculated using Eq. (2). The variance was evaluated to be 0.000375 
for G3 (T). The correction factor with respect to variance was evaluated at each interval, as mentioned in Eq. (3). 
A correction factor of 0.019366 was obtained for G3(T). The adjustment factor was calculated from the invasive 
blood glucose level and correction factor mentioned in Eq. (4). It was calculated for all voltages falling within 
the interval. Similarly, the adjustment factor was calculated for all intervals. An adjustment model was created 
and fed into the data analytic framework to predict blood glucose levels.

(5)Xvar =
∑

(Ci − µ)

(n− 1)

Figure 4.  Flow chart of the proposed work.
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where Ci = reference values, µ = mean of 3 skin tones, n = total number of measurements.

Exploratory data analysis for niGLUC‑2.0 V
EDA is implemented to understand the pattern in data visualization to rectify errors, anomalies, and outliers 
that may take place during data collection.

It is used to obtain the desired level of prediction by estimating the parameters and margins of error from 
existing  data63. A data integration method was employed to preprocess the dataset. The output of Algorithm 1 is 
the adjustment factor at different intervals multiplied by the blood glucose levels. The dataset with a multiplied 
adjustment factor of voltages from niGLUC-2.0v was fed into the data analytic framework for accurate blood 
glucose prediction.

The step-by-step flow of the data integration method is presented in Algorithm 2 in Table 4. The dataset 
was arranged in ascending order of the reference blood glucose levels obtained invasively. The reference blood 
glucose levels were divided into intervals of 5, i.e., from 81–85 mg/dL to 486–500 mg/dL. For ease of calculation, 
the reference blood glucose values in (mg/dL) were converted into millimoles (mmol). The EDA was applied to 
the dataset. At this step, the reference blood glucose values within an interval of five were averaged. The dataset 
was updated by assigning the averaged reference values to the respective hardware values in the interval. For 
example, for a blood glucose interval of (4.22–4.44) mmol, the average value is 4.33 mmol, as illustrated in 
Table 4. The average blood glucose value was assigned to the hardware values of the blood glucose level. Every 
hardware-generated value was assigned to the averaged reference value within that particular range. The pro-
cess was repeated at five intervals for invasively obtained blood glucose levels. A new dataset was created with a 
column of average blood glucose values, where predictive analysis was applied, as discussed in the next section.

(6)Fcorrect =
1

√
Xvar

(7)Afactor = Xvar × Fcorrect

Figure 5.  Three skin color variations: (a) Dark skin tone; (b) Wheatish skin tone;(c)Fair skin tone.

Table 2.  Blood glucose levels and corresponding voltages in different skin tones. Vol: volunteer; BF: breakfast; 
V: voltage;

Vol BF/L Invasive (mg/dL) Wrist (V) Skin color

1
BF 128 0.164059 Dark

L 122 0.051148 Dark

2
BF 133 0.142742 Wheatish

L 126 0.055806 Wheatish

3
BF 128 0.15548 Fair

L 95 0.002872 Fair
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Predictive analysis
This section presents an exploration of different ML algorithms and evaluation metrics to analyze the perfor-
mance of the sensor system.

Choosing the algorithms
The proposed work consists of a dataset with continuous variables for prediction implying a regression problem. 
Predictive models are selected by comparing and analyzing various regression algorithms from the literature. 
From the profound literature that discussed on the rationale behind the selection of regression algorithms, it 
was reported that the performance of predictive models depends on the methodologies implemented, the data-
set  created50,64–69, the size and heterogeneity of the  dataset70. Regression algorithms differ in their principles of 
operation, advantages, and limitations. In LR, the algorithm determines the best-fitting line to minimize the 
difference between the independent and dependent variables. Although its simplicity is advantageous, outliers, 
and nonlinear patterns cannot be captured which is a  limitation71,72. PR, which is an extension to LR, models 
the variables as an nth-degree polynomial function to handle complex patterns; however, its major limitation is 
its susceptibility to overfitting at higher polynomial  degrees71,72. However, Lasso CV which is a technique of LR 
was chosen because it minimizes the residual sum of squares (RSS) and adds regularization. The regularization 
parameter can discard important features when coefficients shrink to zero. The advantage of Lasso CV over LR 
and PR is its ability to automatically select features, leading to a sparse model and handling multicollinearity in 
the  dataset71–73. RF works on the principle of aggregating the predictions from multiple decision trees and has 
the advantage of handling high-dimensional data and overfitting. The limitation is that hyperparameter tun-
ing is required because it is less interpretable than the individual decision  trees71,73. RR works on the principle 

Table 3.  Interval-based adjustment algorithm.

Algorithm 1: Interval-based adjustment algorithm
Inputs: S=three column sensor data of the table, =reference values, =skin color,

= grouped dark data, = grouped wheatish data, =grouped fair data,
(D)=interval of 5 in dark, (W)=interval of 5 in dark, (F)=interval of 5 in dark,

(T) =group of different skin colors from the same interval, =calculated 
variance group, = Correction factor
Output: =Adjustment factor

Step 1: Sort the column S with respect to reference values,  in ascending order.

S=ascending ( )

Divide ‘ ’ with respect to an interval of 5.

for =1; = +5 to len(S)

Step 2: Group three skin colors in different columns as  5(D), 5(W), 5(F).

If =Dark

current _group[x]=D( ) as 5(D)

If =Wheatish

current _group[x]=W(Ci) as 5(W)

If =Fair

current _group[x]=F(Ci) as 5(F)

Step 3: Group different skin colors of the same interval in a single column as 3(T)

for =1; = +5 to len(S)

current _group[x]= 3(T)

Step 4: Calculate Variance for  of 3(T) as mentioned in Eq (2).

=var[current _group(x)]

Step 5: Calculate Correction Factor   of 3(T) as mentioned in Eq (3).

= correct{ var(current_group)}

Step 6: Calculate the Adjustment factor  for 3(T) as mentioned in Eq (4).

= ×

Step 7: Multiply all values of the interval with 

Step 8: Repeat for other intervals
End
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of penalizing the squared values of regression coefficients by not shrinking the parameters exactly to zero and 
handling multicollinearity, which is an advantage. The limitation of this method is the inability to perform auto-
matic feature selection and handle sparse  data72,73. In k-NN, the dependent variable is predicted by averaging the 
values of the nearest neighbors to k. Although it has the advantage of simplicity and ability to handle complex 
patterns, it requires scaling of features, which is a limitation, thus increasing the computational  overload71. 
DT operates on the principle of partitioning the tree into branches based on feature values corresponding to 
a decision rule. It is simple and automatically performs feature selection which is  advantageous71,73. However, 
overfitting is a disadvantage. Ensemble learning models, that is bagging and boosting on k-NN and DT, have 
been explored in the literature. Bagging works on the principle of model learning independently of each other 
in parallel and aggregating to determine the model average. Boosting works on the principle of sequential and 
adaptive learning to improve the model prediction of the learning algorithm. The main advantage of applying 
the bagging algorithm to k-NN and DT is its ability to reduce variance and overfitting, but computational com-
plexity poses a limitation. However, applying a boosting algorithm to k-NN and DT limits the bias and variance, 
but is prone to overfitting because of weak learners, which is a  limitation74. In contrast, the NN model works on 
the principle of learning complex patterns and relationships from interconnected neurons with the advantage 
of high scalability and flexibility posing an advantage. The disadvantage of the NN model is the requirement of 
a large amount of data for training and the computational  overload71,72. In the proposed work, LR is applied to 
determine the nature of the dataset, and based on its complexity of nonlinearity, PR is applied to determine the 
relationship between the variables. Lasso CV and RF were chosen to avoid overfitting for generalization and 
regularization and to improve the model performance. As the dataset was multicollinear, the RR was selected. 
Because the dataset was nonlinear and complex, k-NN and DT were selected. Bagging and boosting algorithms 
were selected to analyze the performance of the models. Therefore, in this proposed work, LR, PR, Lasso CV, RF, 
RR, k-NN, k-NN Bagging and k-NN Boosting, DT, DT-Bagging, DT-Boosting, and NN were applied to analyze 
the best algorithm for real-time collected datasets.

Evaluation metrics for validating niGLUC‑2.0v
Evaluation metrics are required to measure and build a generalized model. In the proposed study, the MAE, MSE, 
and r2score were evaluated for the optimized prediction of the glucose concentration, as detailed in Eqs. (8)–(10):

(8)MAE =
1

N

N
∑

I=1

∣

∣BGpred − BGref

∣

∣

(9)MSE =
1

N

N
∑

I=1

∣

∣BGref − BGpred

∣

∣

2

Table 4.  Exploratory data analysis on the dataset by setting a threshold for distribution.

Inputs: x=two column sensor data, c= collected ref data in mmol, C=sorted data in 
ascending order, min_glucose=80, C =average of 5 in the interval,

Output:X=EDA applied dataset

Step 1: Sort the table x in ascending order with respect to c

C=ascending ( c )

for i=1; i=i+5 to len( C)

Step 2: Divide ‘C( i)’ with respect to an interval of 5 and convert to mmol.

If C( i) ≤min_glucose+5

current _group[i]=C (i)

convert mg/dL to mmol

Step 3: Applying EDA to C(i)

C =avg(current_group)

Replace all values in  C in the range [min_glucose,min_glucose+5] by C  

min_glucose=min_glucose+5

Replace the ref column in X by C

End 

Algorithm 2: Maximum 5 error average algorithm
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Experimental design and data collection
This section presents the experimental design and data collection procedure.

Healthcare data standards and data characteristics
Standard healthcare precautions are taken to reduce the risk of bloodborne or pathogen transmission from 
recognized and unrecognized sources. Hand hygiene, respiration, and cough etiquette were strictly followed. 
The selection criteria of the volunteers are presented in Table 5.

The existing  literature24,29,32 considered > 100 patients. However, the sensor was not tested above 200 mg/
dL24, and on a similar number of  volunteers32, whereas  in29, the inclusion criteria were anyone > 18 years who 
had volunteers with chronic kidney disease, which limits the analysis to the possibility of variance and leads 
to bias. Studies where < 100 patients were considered included only healthy  participants28,31, diabetic, and non-
diabetic26,27 and few did not provide any information regarding the  volunteers25,30,33. Volunteer demographics play 
a significant role in the validation and sensitivity of the sensors. It helps augment the quality of care by detecting 
variances in treatment and ensuring that competent care is  provided75. A total of 101 patients were considered 
in the proposed study, with an age range of 25 to 78 years, with 57 male and 44 female volunteers. Volunteers 
with proper mental health and cognition were recruited as the inclusion criteria, whereas volunteers who had 
hypoglycemic episodes with unconsciousness, and seizure disorders were excluded from the study due to the 
possibility of measurement errors. The sensor was validated in all volunteers, where the blood glucose values 
ranged from 80 to 488 mg/dL, thus validating the robustness of the sensor.

The following steps taken to maintain the standard health protocol and a description of the collected data 
characteristics are as follows:

• Ethical clearance was obtained from SRM Medical College Hospital & Research Centre (ethical clearance 
number 8274/IEC/2022).

• Relevant guidelines and regulations were implemented for all methods.
• All experimental protocols were approved by the SRM Medical College Hospital and Research Center.
• A doctor from the SRM Medical College Hospital and Research Centre was involved in the current study.
• Informed Consent was obtained from each volunteer.
• Particulars of volunteers, such as, name, age, sex, details of the meal taken, the time between reading and 

meal were recorded, if an individual had diabetes, if the volunteer was on any medications, physical activity 
in daily life, height, weight, sleep status, stress, SP02, hair on the wrist and any other health complications 
were recorded.

• The finger of the volunteer was cleaned with isopropyl alcohol before reading the invasive sample.
• A new set of lancets and strips were used for each sample.

(10)r2_score = 1−
SSres

SStotal

(11)SSres =
∑

I

(

BGref − BGpred

)2

(12)SStotal =
∑

I

(

BGref − BGpred

)2

(13)BGpred =
1

N

N
∑

I=1

BGref

Table 5.  Selection criteria of volunteers (n = 101). SD: standard deviation; F: female; M: male.

Mean age 57

SD 11

Age in range 25–78 years

Age in group

(20–35):4

(35–50):22

(50–65):61

(65–90):14

Gender M = 57, F = 44

Diabetes duration Atleast 1 year of clinical diagnosis with diabetes

Inclusion criteria Volunteers with proper mental health and cognition

Exclusion criteria Volunteers who have hypoglycemic episodes with unconsciousness, seizure disorder are excluded from the study
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• The finger of the volunteer is pricked from the lancet. The drop of blood was placed on the strip, which was 
then inserted into the glucometer of the invasive device. The blood glucose values of the device were noted. 
The skin surface was cleaned again with an isopropyl alcohol solution and cotton.

• A volunteer is explained about the noninvasive method of obtaining blood glucose values from the hardware. 
The volunteer was asked to insert their fingers into the wearable prototype for the measurement of blood 
glucose values. Wrist wearables were tied to the wrist of the volunteer to obtain blood glucose values from 
the wrist.

The finger and wrist sensors of niGLUC-2.0v are shown in Fig. 6a. The finger of the volunteer was placed on 
the hardware, as shown in Fig. 6b. Blood glucose levels were measured invasively using the finger prick method 
as a reference value. Fasting, postprandial, and random blood tests were performed using a finger prick to deter-
mine real-time blood glucose values. Similarly, the wrist sensor was worn by a volunteer, as shown in Fig. 6c. 
The collected data were visualized using LabVIEW software. A total of 100 data points were recorded in an Excel 
sheet for a single sample. To validate the proposed hardware, blood glucose measurements from the designed 
noninvasive hardware were compared with the blood glucose values of the invasive method blood glucose values, 
i.e., reference values. The finger and wrist prototype of niGLUC-2.0v was tested in 101 diabetic and prediabetic 
individuals. Fasting, postprandial, and random blood glucose levels were collected from males and females aged 
20–90 years. The baseline data collection with samples and sex distribution of the volunteers are listed in Table 6.

Normalization
Normalization was applied to remove the effect of the dark current. This is detailed in Eq. (8).

• Bare LED values -LV and niGLUC-2.0v values—HV are noted.
• The dark current value DC of the photodiode was noted by switching off niGLUC-2.0v.
• Normalization is given as,

where N = Normalized value, HV = niGLUC-2.0v value, DC = dark current, LV = LED value.

Testing the accuracy of niGLUC‑2.0v for variation in the ambiance light
Light sources may interfere with sensor  accuracy76. niGLUC-2.0v was tested in volunteers with and without dia-
betes. Random glucose levels in both volunteers were measured invasively and non-invasively at regular intervals. 
As shown in Table 7, in the presence and absence of ambient light, the noninvasive blood glucose values were 
close to the reference blood glucose levels obtained invasively.

Handling other ambiguities
The measurements with the finger sensor and wrist sensor prototype were performed in a stable state in the 
sitting position of the volunteer to minimize the effect of motion artifacts. The measurements were performed 
with and without pressure on the finger and wrist sensor prototypes. Two datasets were created in this study. 
The data analytic framework was applied to the dataset, where no difference was observed between the refer-
ence and predicted glucose levels, as illustrated in Table 8. It was observed that the pressure did not influence 
the device because the surface of the skin had no direct contact with the sensor, was covered with a transparent 
surface, and was firmly packed. The reliability of the device was tested at regular intervals in different patients.

(14)N =
(

HV − DC

LV − DC

)

100

Figure 6.  The hardware setup of the niGLUC-2.0v: (a) Finger and wrist sensor; (b) Measurements from finger 
sensor; (c) Measurements from wrist sensor.
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Results and discussion
The current section discusses the results and discussion of the predictive analysis, Bland Altman analysis, Clarke 
error grid analysis, statistical analysis and a comparison of the current work with the present literature. Regres-
sion models discussed in the Methods section were applied to niGLUC-2.0v. Ten input features, i.e., non-invasive 
blood glucose value, age, sex, body mass index (BMI), details of the meal taken, if an individual is diabetic, sleep 
status, stress, SP02, and hair on the wrist, were considered as inputs of the model.

Table 6.  Baseline data collection with samples and gender distribution. M: Male; F: Female.

niGLUC-2.0v

Sample group Sample data from finger Sample data from wrist

Diabetic samples Male (M): 54 Male (M): 54

Age in groups (years) Female (F): 43 Female (F):43

(20–35) M:3, F:0 M: 3, F: 0

(35–50) M:11, F:8 M:11, F:8

(50–65) M:34, F:27 M:34, F:27

(65–90) M:6, F:8 M:6, F:8

Prediabetic samples Male (M): 3 Male (M): 3

Age in groups (years) Female (F): 1 Female (F): 1

(20–35) M: 1, F: 0 M: 1, F: 0

(35–50) M:2, F:1 M:2, F:1

(50–65) M:0, F:0 M:0, F:0

(65–90) M:0, F:0 M:0, F:0

Repeated samples Male(M): 3 Male(M): 3

Female (F): 1 Female(F): 1

(50–65) M: 1, F: 1 M: 1, F: 1

(65–90) M:2, F:0 M:2, F:0

Total samples Male(M): 57 Male(M): 57

Age in groups(years) Female(F): 44 Female(F): 44

Total samples 101 101

Table 7.  Validation in the presence of ambient light ON and OFF condition. Vol: Volunteer; mmol: 
millimollecule.

Vol

Invasive (mmol) Ambient light ON (predicted) Ambient light OFF (predicted)

Reference Finger (mmol) Wrist (mmol) Finger (mmol) Wrist (mmol)

1

21.5 21.4 22.1 21.3 22.1

20.7 20.5 20.7 20.5 20.7

20.6 20.4 20.7 20.5 20.7

2

5.4 5.2 5.4 5.2 5.5

5.6 5.4 5.4 5.4 5.5

7.3 7.2 7.1 7.1 7.3

Table 8.  Validation in the presence of pressure on the sensor. Vol: Volunteer; mmol: millimollecule;

Vol

Invasive (mmol) With pressure (predicted) Without pressure (predicted)

Reference Finger (mmol) Wrist (mmol) Finger (mmol) Wrist (mmol)

1

11.5 11.4 11.7 11.3 11.6

25 25 25.2 24.8 25.2

24 23.7 23.9 24 24.2

2

15.7 15.4 15.4 15.2 15.5

9.7 9.8 9.4 9.6 9.5

18 17.8 17.9 18.1 18.1
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Predictive analysis on niGLUC‑2.0v
In this section, predictive analysis is applied to niGLUC-2.0v. LR, PR, RF, Lasso CV, RR, k-NN, k-NN bagging, 
k-NN boosting, DT, DT-bagging, DT-boosting, and NN are applied to the computational model to obtain 
optimized regression method for precise measurement of predicting blood glucose. The datasets on which the 
ML algorithms were applied were the finger and wrist obtained dataset, normalization applied dataset, and data 
analytic framework applied dataset. The calibration and comparative results of all ML models are presented in 
Table 9. The shaded row in the table represents the performance of the respective ML models among all ML 
algorithms. The datasets of the finger sensor performed well with the RR. The data analytic framework applied 
the dataset performed with the best accuracy, achieving an MAE of 0.15, MSE of 0.2287, and r2_score of 0.9902. 
Similarly, the wrist sensor prototype performed well with RR, whereas on the normalization applied, the wrist 
sensor performed best with the Lasso CV regression model. The wrist sensor performed best on the data analytic 
framework applied dataset, with an MAE of 0.66, MSE of 0.006, and r2_score of 0.9996.

The comparison analysis of ML algorithms and the niGLUC-2.0v sensors determines the reliability of the 
prototype based on the following findings: (i)The data analytic framework applied dataset performed best when 
compared with the non-data analytic framework applied dataset for LR, PR, Lasso-CV, k-NN, k-NN bagging, 
DT, DT-bagging and DT-boosting ML models. (ii) It can be inferred from the comparison of sensor and ML 
models that the finger and wrist sensor of the niGLUC-2.0v prototype performed best with the data analytic 
framework. (iii) The attempt to remove the dark current through normalization was overcome by the proposed 
data analytic framework, which provided the best accuracy compared with the normalization-applied dataset. 
Therefore, the proposed data analytic framework performed best with RR regression in the presence of skin color 
variation, finger pressure, and ambient light.

Ridge regression for blood glucose prediction in ni‑GLUC‑2.0v
RR performed best, with the highest accuracy for the developed model, as reported in Table 9. RR is a model-
tuning method that is implemented to analyze multiple multicollinear regression data. Multicollinearity occurs 
when a high correlation exists between independent variables, thereby raising the issue of high variance. Large 
variances deviate from the predicted value to the reference value, thus increasing loss. RR, which is a regulariza-
tion technique, was applied by adding a penalty term to the loss function. The penalty is equal to the square of the 
magnitude of the coefficients. The RR minimizes the error by adding a degree of bias to the regression estimates. 
The challenge thrown by multicollinearity is reduced by adding a shrinkage parameter � .

where RR = Ridge regression, yi = dependent variable. x = independent variable, β = coefficient, � = shrinkage 
parameter.

The RR derived in Eq. (11) has two components. The former component represents the least-square term, 
whereas the latter represents the penalty term added to the least-square term to attain a low variance.

Validation of niGLUC‑2.0v
The validation of the proposed model, performance metrics, and visualizations through graphs are presented. A 
plot of the reference and predicted blood glucose levels on the proposed data analytic framework for the finger 
sensor is depicted in Fig. 7. The performance of niGLUC-2.0v is shown in Fig. 7a for the finger and Fig. 7b for 
the wrist sensor prototype. It can be inferred that the data points were nearest to the trend line, defining the 
correlation between the reference and predicted blood glucose levels. The X-axis represents the reference blood 
glucose levels, and the Y-axis represents the predicted blood glucose levels in mmol. The red line in the graph 
represents the prediction by RR. It can be inferred that the prediction and reference mmol values were closer, 
thus determining the good prediction accuracy in prediction.

The niGLUC-2.0v hardware was validated by performing error analysis. An error analysis was performed 
by evaluating the MAE. The model was tested using a new dataset, as presented in Tables 10 and 11. It can be 
inferred from Table 10 that the maximum error obtained was 1.92 mg/dL, and the minimum error obtained 
was − 2.47 mg/dL for the finger sensor. The MAE obtained from 20 finger sensor data measurements was 0.15. 
Similarly, from Table 11, the maximum error obtained was 2.63 mg/dL, and the minimum error obtained was 
− 0.02 mg/dL for the wrist sensor. The MAE obtained from the 20 wrist sensor data measurements was 0.068. It 
can be inferred that the training and testing MAE are the same for the finger and wrist sensor prototypes. The 
data analytic framework in niGLUC-2.0v has improved the performance of the model on the finger sensor with 
an accuracy of 99.02%, with MAE of 0.15 and MSE of 0.22 whereas, on the wrist sensor, the accuracy obtained 
was 99.96% with MAE of 0.06 and MSE of 0.006. The accuracy of both devices was within the clinically accept-
able range. Therefore, the device developed is suitable for medical applications.

Bland–Altman analysis
Bland–Altman analysis was used to analyze the difference between the predicted blood glucose levels and ref-
erence blood glucose levels. The limits of agreement (LOA) were at ± 1.96 Standard Deviations (SD) from the 
mean  difference77. The Bland–Altman plot is illustrated in Fig. 8. The X-axis represents the mean of the refer-
ence and predicted blood glucose levels, whereas the Y-axis represents the difference between the reference and 
predicted blood glucose levels. It can be observed from Fig. 8a for the finger sensor, the mean difference/bias of 
blood glucose level was at 0.035 and 95% confidence interval between the upper and lower limits of agreement 
between + 3.7 and − 3.6. Similarly, for the wrist sensor, as depicted in Fig. 8b, the mean difference/bias of blood 

(15)RR =
n

∑

j=1

(yi −
m
∑

k=1

xjkβk)
2 + �

m
∑

k=1

β2
k
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Study Model

Validation of different models 
for niGLUC-2.0v

MAE MSE r2_score

Finger sensor

LR 4.516 31.50 − 0.31

PR 22.81 968.64 − 39.34

RF 3.87 21.62 0.098

Lasso CV 3.92 21.62 0.098

RR 4.436 30.34 − 0.265

k-NN 3.97 22.49 0.06

k-NN bagging 3.96 22.45 0.063

k-NN boosting 4.87 31.016 − 0.29

DT 6.93 81.042 − 2.37

DT bagging 4.101 26.29 − 0.09

DT boosting 4.64 37.06 − 0.54

NN 8.6058 98.0432 − 3.08

Finger sensor-normalization

LR 4.52 29.89 − 0.11

PR 107.68 1160.4 − 3623.26

RF 4.75 30.13 − 0.12

Lasso CV 4.60 30.86 − 0.15

RR 4.52 29.92 − 0.11

k-NN 4.26 26.86 − 0.004

k-NN bagging 4.27 26.62 0.004

k-NN boosting 4.33 25.98 0.028

DT 6.20 66.34 − 1.48

DT bagging 4.51 30.56 − 0.14

DT boosting 4.84 42.23 − 0.57

NN 9.3862 114.8391 − 3.29

Finger sensor-data analytic framework applied

LR 0.1552 0.2309 0.9901

PR 2.7642 21.457 − 0.095

RF 1.5517 4.9564 0.7877

Lasso CV 0.1325 0.2054 0.1077

RR 0.1536 0.2287 0.9902

k-NN 3.6294 20.832 0.1077

k-NN bagging 3.5874 20.654 0.1153

k-NN boosting 4.2207 22.636 0.0305

DT 0.2070 0.5096 0.9781

DT bagging 0.4610 0.5413 0.9768

DT boosting 0.3069 0.3602 0.9845

NN 8.02 76.06 − 5.49

Wrist sensor

LR 3.51 18.95 0.049

PR 17.99 745.63 − 28.33

RF 3.742 18.61 0.066

Lasso CV 3.51 18.67 0.063

RR 3.53 19.08 0.042

k-NN 3.76 21.62 − 0.08

k-NN bagging 3.70 20.67 − 0.03

k-NN boosting 4.16 26.29 − 0.31

DT 3.55 19.65 0.01

DT bagging 4.16 23.32 − 0.16

DT boosting 4.27 30.89 − 0.54

NN 8.97 100.46 − 4.03

Continued
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Study Model

Validation of different models 
for niGLUC-2.0v

MAE MSE r2_score

Wrist sensor-normalization

LR 5.19 41.64 − 0.03

PR 72.218 17,046.24 − 695.12

RF 5.13 42.14 − 0.05

Lasso CV 4.87 37.82 0.021

RR 5.190 41.68 − 0.04

k-NN 5.01 39.22 0.021

k-NN bagging 4.95 38.80 0.03

k-NN boosting 5.007 36.582 0.08

DT 6.54 82.64 − 1.06

DT bagging 5.60 48.60 − 0.21

DT boosting 5.89 62.62 − 0.56

Neural Network 9.3862 114.8391 − 3.29

Wrist sensor-data analytic framework applied

LR 0.0681 0.0062 0.9996

PR 0.6087 1.4360 0.9467

RF 1.6412 3.5911 0.8092

Lasso CV 0.0643 0.0059 0.0871

RR 0.0668 0.0060 0.9996

k-NN 3.4455 17.1884 0.0871

k-NN bagging 3.5086 17.45 0.0731

k-NN boosting 4.3089 24.8238 − 0.3183

DT 0.2508 0.18355 0.9902

DT bagging 0.3102 0.2408 0.9872

DT boosting 0.1857 0.11195 0.9940

NN 10.10 126.18 − 4.236

Table 9.  Analysis of calibration and comparison of ML Models for niGLUC-2.0 V. LR: Linear regression; PR: 
polynomial regression; RF: random forest; RR: ridge regression; k-NN: k-neural network; DT: decision tree; 
NN: neural network.

Figure 7.  Validation of reference and predicted blood glucose levels niGLUC-2.0v: (a) Finger sensor; (b) Wrist 
sensor.
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glucose level was found at − 0.7 and the 95% confidence interval lying between an upper and lower LOA was 
between + 1.6 and − 3.0, indicating a strong correlation between the reference and predicted blood glucose levels.

Clarke error grid analysis
CEG is an essential tool for evaluating the clinical accuracy of glucose monitoring  devices78. Analysis was per-
formed between the reference and predicted blood glucose levels. It can be observed from Fig. 9a and b that all 
the values fall under zone A of the grid which implies a high clinical significance of the sensor for its usage in 
the medical field for effective diabetic management.

Statistical analysis
The data is subjected to statistical analysis where a paired t-test is carried out as the measurements were taken 
for the same subjects, i.e., between the reference and predicted blood glucose  levels79. IBM SPSS software was 
used in the proposed work, where a null hypothesis and alternate hypothesis are presented in Eqs. (12) and (13) 
respectively. It was observed that the data were normal and the variances of differences were equal; therefore, no 
correction was needed. Paired t-test was applied to the dataset where p < 0.05 is  set50,64. It can be observed from 
Table 12 that v0.001, and df = 100 were obtained with t-value = 0.59 for the finger and 0.56 for the wrist sensor 

Table 10.  Validation of proposed data analytic framework on finger sensor. mmol: millimolecule; mg/dL: 
milligram/decilitre; BG: blood glucose; BGpred : predicted blood glucose; BGref : reference blood glucose.

Reference BG (mmol) Predicted BG (mmol) Reference BG (mg/dL) Predicted BG (mg/dL) Error (BGpred − BGref ) (mg/dL)

17.02 17.11 306.41 307.99 1.58

13.05 13.16 235.07 237.00 1.92

22.27 22.14 401.00 398.52 − 2.47

10.69 10.56 192.49 190.09 − 2.40

5.95 6.03 107.20 108.65 1.45

Table 11.  Validation of proposed data analytic framework on wrist sensor. mmol: millimolecule; mg/dL: 
milligram/decilitre; BG: blood glucose; BGpred:blood glucose predicted; BGref : blood glucose reference value.

Reference BG. (mmol) Predicted BG. (mmol) Reference BG. (mg/dL) Predicted BG. (mg/dL) Error (BGpredBGref )(mg/dL)

22.27 22.28 401.00 401.14 0.14

14.01 14.16 252.33 254.97 2.63

5.36 5.47 96.49 98.57 2.07

10.09 10.18 181.66 183.24 1.57

19.22 19.22 345.99 345.97 − 0.02

Figure 8.  Bland Altman plot between reference and predicted blood glucose levels. (a) Finger sensor (b) Wrist 
sensor.
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leading to the acceptance of H0,where it was concluded that there was no difference between the reference and 
predicted blood glucose levels.

Null hypothesis ( H0 ): There is no significant difference between reference and predicted blood glucose levels.

Alternate hypothesis ( H1 ): There is a significant difference between the reference and predicted blood glucose 
levels.

For finger  sensor78,79,

As tcalculated < tcritical , the H0 is accepted.
Similarly for the wrist  sensor79,80,

As tcalculated < tcritical , the H0 is accepted.

Comparison of niGLUC‑2.0v with existing literature
The performance of the proposed device, i.e., niGLUC-2.0v, is compared with previous non-invasive approaches 
in Table 13. The proposed device was found to have greater accuracy with an R2_SCORE of 99.02%, MAE of 
0.15, and MSE of 0.22, whereas R2_SCORE of 99.96%, MAE of 0.06, and MSE of 0.006 were obtained for the 
wrist sensor. The proposed sensor had the highest detection limit of 80–488 mg/dL compared to other studies. 
The integration of AI and Data Science with NIR technology has advanced other studies by accurately predicting 
the of blood glucose levels. The results from ridge regression, linear regression plot, Bland–Altman analysis, and 
CEG depict the high performance of both finger and wrist sensors.

The data analytic framework proposed in the current study provided the best accuracy in under the presence 
of ambiguities when compared to the current literature, with 99.02% for in the finger and 99.96% for in the wrist 
sensor. The statistical analysis with p < 0.05 strengthens the significance on the achieved accuracy which is not 
achieved in other works. The 100% data points of blood glucose values falling under zone A of CEG proved to 

(16)Hreference = Hpredicted

(17)Hreference  = Hpredicted

(18)p = 0.05

(19)tcritical = 1.660

(20)tcalculated = 0.59

(21)p = 0.05

(22)tcritical = 1.660

(23)tcalculated = 0.56

Figure 9.  Clarke error grid analysis between reference and predicted blood glucose levels. (a) Finger sensor (b) 
wrist sensor.

Table 12.  Paired t-test between reference and predicted blood glucose levels for finger and wrist sensor. df: 
degrees of freedom;

Sensor site p-value df t-value

Finger  < 0.001 100 0.59

Wrist  < 0.001 100 0.56
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be the best results when compared to the existing literature. The key feature of the proposed device is its ability 
to perform accurately in the presence of ambient light, pressure, and skin color variation, which has not been 
addressed in any of the existing literature. The measurement from the wrist sensor is accurately equal to that from 
finger sensor, which is less explored in the literature. The technological advancements explored in the proposed 
work with the integration of AI and data science prove to be efficient, stable, reliable, and smart for enhanced 
sensing accuracy when compared to the existing literature. As the proposed device is compact and portable, it is 
user-friendly compared to other studies. The high cost of the device is an additional advantage. The limitations 
of the existing methods, i.e., accuracy, cost of the device, effect of skin color variation, ambient light, pressure on 
the sensor, reliability, and testing the device on diabetic patients, are overcome by niGLUC-2.0v, which replaces 
existing non-invasive devices. The implication of a high degree of prediction accuracy in the device is essential 
for making informed medical decisions, such as treatment titrations and customized treatment plans, taking 
preventive measures, monitoring other chronic diseases along with diabetes, and avoiding suboptimal diagnosis. 
Therefore, with the accuracy of niGLUC-2.0v, it can be employed in hospitals and personal care as a one-time 
purchase gadget for monitoring blood glucose frequently and accurately with a reduced risk of complications 
and better diabetic management under convenience.

Conclusion
The NIR with a 940 nm emitter and 900–1700 nm detector has been proved to measure blood glucose levels non-
invasively. Owing to its noninvasive properties, it has potential benefits, including low cost and one-time invest-
ment in the device. The data analytic framework was developed to predict blood glucose levels non-invasively, 

Table 13.  Comparison of non-invasive approaches in NIR spectroscopy with niGLUC-2.0v. RMSE: Root 
mean square deviation; MARD: mean absolute relative difference; Rp : average correlation coefficient; SPE: 
standard percentage error; MAE: mean absolute error; MSE: mean square error; R2_SCORE: coefficient of 
determination.

References Wavelength implemented Measurement site Performance metrics

Sun et al.28 940 nm Hand

RMSE. = 21.06 mg/dL

MARD = 7.31%

Clarke-error grid = 96% in clinically acceptable zones 
of A and B

Srichan et al.29 850 nm Finger

Accuracy = 97.8%

Precision = 96.0%

Sensitivity = 94.8%

Specificity = 98.7%

Prediction error =  ± 15

Haque et al.30 850 nm,950 nm,1150 nm Finger

i. Haemoglobin

· Accuracy = 92.2%

ii. Blood glucose

· Accuracy = 90.02%

iii. Creatinine

Accuracy = 96.9%

Heise, H. M et al.31 1100 nm,1825 nm Lip
Standard prediction error = 36.6 mg/dL

MARD = 23%

Joshi, A. M et al.32

940 nm,

Finger

i. Capillary blood glucose

1300 nm

Average error = 6.09%

MARD = 6.07%

ii. Serum blood glucose

Average error = 4.88%

· MARD = 4.86%

Rachim, V. P et al.33
950 nm,850 nm, 660 nm, Wrist Rp = 0.86

530 nm SPE = 6.16 mg/dL

Proposed work (niGLUC-2.0v) 940 nm, (900–1700) nm

Fingertip

MAE = 0.15

MSE = 0.22

R2_SCORE = 99.02%

Clarke-error grid = 100% in clinically acceptable 
zones of A and B

Wrist

MAE = 0.06

MSE = 0.006

R2_SCORE = 99.96%

Clarke-error grid = 100% in clinically acceptable 
zones of A and B
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and was validated by invasively obtained blood glucose levels. These results suggest that niGLUC-2.0v has the 
potential to accurately predict blood glucose levels and may be beneficial for better diabetic management. The 
proposed work has certain strengths: (i) The model was developed by considering the effects of variations in 
skin color, ambient light, and pressure on the device. Care has been taken to avoid motion artifacts by obtaining 
the measurements in a stable state. (ii) In this study, many volunteers (101), including diabetic and non-diabetic 
volunteers of all ages (20–90 years), measured blood glucose values invasively and non-invasively. The devel-
oped sensor system was validated on diabetic and non-diabetic volunteers by random sampling, i.e., fasting, 
postprandial, and random testing. (iii) Ambiguities faced are handled in niGLUC-2.0v. The limitation of the 
proposed work is that the device can only be tested in the stable state of a volunteer. The device was portable and 
not wearable. Future work is aimed at creating a miniaturized wearable version of the proposed system, that can 
be tested in motion with good accuracy.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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