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A comparative analysis of pairwise 
image stitching techniques 
for microscopy images
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Stitching of microscopic images is a technique used to combine multiple overlapping images (tiles) 
from biological samples with a limited field of view and high resolution to create a whole slide 
image. Image stitching involves two main steps: pairwise registration and global alignment. Most 
of the computational load and the accuracy of the stitching algorithm depend on the pairwise 
registration method. Therefore, choosing an efficient, accurate, robust, and fast pairwise registration 
method is crucial in the whole slide imaging technique. This paper presents a detailed comparative 
analysis of different pairwise registration techniques in terms of execution time and quality. These 
techniques included feature-based methods such as Harris, Shi-Thomasi, FAST, ORB, BRISK, SURF, 
SIFT, KAZE, MSER, and deep learning-based SuperPoint features. Additionally, region-based methods 
were analyzed, which were based on the normalized cross-correlation (NCC) and the combination of 
phase correlation and NCC. Investigations have been conducted on microscopy images from different 
modalities such as bright-field, phase-contrast, and fluorescence. The feature-based methods were 
highly robust to uneven illumination in tiles. Moreover, some features were found to be more accurate 
and faster than region-based methods, with the SURF features identified as the most effective 
technique. This study provides valuable insights into the selection of the most efficient and accurate 
pairwise registration method for creating whole slide images, which is essential for the advancement 
of computational pathology and biology.

Keywords  Microscopic images, Image stitching, Pairwise registration, Feature-based registration, Region-
based registration

Whole slide imaging (WSI) is a technique that scans a whole biological sample at high resolution and com-
bines acquired overlapping images (tiles) with the limited field of view using a stitching algorithm to generate a 
digital microscopic image with a wide view and high resolution. When microscopic images are stitched together, 
various obstacles need to be overcome. Firstly, the tiles may have a repetitive structure making mismatches in the 
result. Secondly, there might be empty regions in certain background tiles lacking textures, therefore providing 
little or no information about the overlapping regions. This makes finding a solution for these areas ill-posed. 
Finally, the large number of tiles involved can propagate errors in the final mosaic image and also increase the 
stitching time. Typical image stitching algorithms consist of two main steps: (1) pairwise registration which 
computes transformation between adjacent tiles, and (2) global alignment which reduces the error propagation 
in the mosaic image. The computational load of the image stitching is mainly allocated to the pairwise registra-
tion step. Therefore, the efficiency of the pairwise registration approach significantly affects stitching algorithm 
performance. Stitching algorithms can be classified into two categories based on pairwise registration: region-
based and feature-based algorithms. Region-based methods calculate the similarity of pixel intensities to register 
tiles, while feature-based methods use salient features to compute transformation between tiles. All methods 
have some advantages and disadvantages. Several papers are available on comparing pairwise stitching methods 
in computer vision. Karami et al. compared SIFT, SURF, and ORB robustness against different transformations 
and deformations such as scaling, rotation, noise, fish-eye distortion, and shearing1. Tareen et al. also evaluated 
SIFT, SURF, KAZE, AKAZE, ORB, and BRISK features invariance to scale, rotation, and viewpoint2. Bonny et al. 
investigated the performance of SURF, FAST, Harris, and MSER against translation, rotation, and scaling image 
transformations3. In another work by Bonny et al.4, they compare correlation-based and feature-based methods 
and consider only a tile pair of bright-field microscopy in addition to computer vision applications. Megha et al.5 
compare cross-correlation, phase correlation, Harris, SIFT, SURF, FAST, and ORB. Sharma et al.6 compare the 

OPEN

Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran. *email: ha_shabani@sbu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-59626-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9215  | https://doi.org/10.1038/s41598-024-59626-y

www.nature.com/scientificreports/

combination of different detectors and descriptors including AGAST, AKAZE, BRISK, FAST, GFTT, KAZE, 
MSD, MSER, SIFT, Star, and SURF detectors, along with AKAZE, BRIEF, BRISK, DAISY, FREAK KAZE, ORB, 
SIFT, and SURF descriptors. However, there is no investigation on comparing pairwise stitching methods in the 
field of microscopic images based on our knowledge, which is very crucial in the microscopic examination of 
tissues and biological samples. In this paper, we compared the performance of different feature-based and region-
based pairwise registration methods on microscopic images from various modalities such as bright-field, phase-
contrast, and fluorescence. The feature-based methods such as Harris7, Shi-Thomas8, FAST9, ORB10, BRISK11, 
SURF12, SIFT13, KAZE14, MSER15, and deep learning-based SuperPoint features16 in addition to region-based 
methods, based on the normalized cross-correlation (NCC) and combination of phase correlation and NCC has 
been investigated in terms of execution time and accuracy.

Materials and method
Materials
We utilized various experimental microscopy datasets that differed in modality, number of tiles, and overlaps 
to evaluate the pairwise stitching algorithms: (1) the collection of bright-field images prepared by Tak et al.17 
consisting of ten samples of different cells with different densities. Each sample contains 100 tiles in the form of 
a 10 × 10 grid. This collection contains two sets of tiles for each sample: the set of tiles that was the direct output 
of the light microscope with no pre-processing having shading and fixed-pattern noise, and the set of tiles that 
were corrected using a golden standard uneven-illumination correction method, Empty-Zero algorithm18, which 
is one of the most important steps in creating whole-slide images, though not the purpose of this study. In this 
study, both sets were used to evaluate different approaches. (2) An image collection of a human normal colon 
sample19 from fluorescence modality, featuring small overlapping areas between tiles. (3) The collection of stem 
cell colony dataset images20 from the phase-contrast and fluorescence modalities. Table 1 provides a summary 
of the image datasets used in this study, and Fig. 1 illustrates example tile pairs from the experimental datasets.

We sorted the image collection of each dataset based on their scanning pattern to perform different pairwise 
registration methods on each tile with its adjacent north and west neighbors. For image collection in the form 
of a M × N grid, the number of transformations computed in the pairwise registration is 2MN-(M + N), which 
is summarized in Table 1 for each dataset. To assess the performance of each method, we selected tile pairs that 
contain texture rather than background in their overlapping region. For example, for the Tak dataset which 
includes 1800 tile pairs, 1603 tile pairs meet this criterion. Similarly, 852 out of 1168 tile pairs for the human 
colon dataset, 351 out of 1067 tile pairs, 61 out of 180 tile pairs, and 21 out of 40 tile pairs for the stem cell colony 
dataset with fluorescence modality, and all tiles for the stem cell colony dataset with the phase-contrast modality 
meet the criterion.

Method
In the WSI technique, the scanning pattern reveals the order of connection between tiles, which is used to sort 
the tiles in a specific and predetermined pattern. Therefore, we focused on computing the transformation of 
each tile based on its adjacent north and west tiles in the pairwise registration step. The transformation model 
used in this study was assumed transitional. The model ignored scaling and rotation parameters and only esti-
mated displacement parameters in the horizontal and vertical directions. This is because in the WSI technique, 
the sample was placed under the objective lens at a fixed angle with negligible changes, and it was imaged at 
a constant magnification by moving the microscope motors in horizontal and vertical directions. Robust and 

Table 1.   Detailed overview of the microscopic image datasets used in this study.

Dataset Modality Samples Tiles (grid)
Total tile pairs used in 
pairwise registration Overlap Magnification Size of tile

Tak17 Bright-field 10 100 (10 × 10) 1800 25% 40 ×  2304 × 1719

Human colon19 Fluorescence 1 609 (29 × 21) 1168 2–3% 20 ×  1280 × 1080

Stem Cell colony20
Fluorescence 3

552 (23 × 24),
100 (10 × 10),
25 (5 × 5)

1057,
180,
40

10%,
10%,
19% 10 ×  1392 × 1040

Phase-contrast 2,
1

100 (10 × 10),
25 (5 × 5)

360,
40

10%,
19%

Figure 1.   Examples of a pair of tiles in the west direction from (a) corrected 49–01 bright-field image set from 
the Tak dataset, (b) fluorescence image set from the human colon dataset, (c) fluorescence image set from the 
stem cell colony dataset, and (d) phase-contrast image set from stem cell colony dataset.
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efficient pairwise registration makes the stitching algorithm perform fast with high accuracy. Pairwise registra-
tion approaches can be categorized into two groups: feature-based and region-based. Figure 2 shows different 
types of pairwise registration methods.

Feature‑based
Feature-based registration methods compute the pairwise transformation using sparse feature points 
which consist of four main steps: feature detection and description, feature matching, outlier rejection, and 
transformation computation. The first step involves detecting and describing features in the overlapping region 
of the two tiles that identify key points such as corners, blobs, or deep features. It is important to note that 
the orientation of feature vector descriptors was not estimated. We evaluated multiple approaches for feature 
detection, including analytical methods7–15 and Self-Supervised Interest Point (SuperPoint)16, which is based on 
deep learning for feature detection and description.

Analytical feature detection methods are classified into two categories: corner detectors and blob detectors. 
Corners arise from the intersection of two lines where there is a sharp difference in brightness. The Harris corner 
detector introduced by Harris and Stephen in 19887, detects corners by shifting the Gaussian window in all 
directions and measuring differences in the intensity. Later in 1994, Shi and Tomasi improved the corner selection 
criteria of the Harris corner detector to achieve better performance8. In 2006, Rosten and Drummond proposed 
the Features from Accelerated Segment Test (FAST) corner detector9. This algorithm is computationally efficient 
and suitable for real-time applications but does not compute the orientation. In 2011, Rublee et al. presented 
the Oriented FAST and Rotated BRIEF (ORB) algorithm, which is a fusion of a modified FAST feature detector 
and BRIEF (Binary Robust Independent Elementary Features) descriptor10. This algorithm makes the feature 
points invariant to rotation. Also, in 2011, Leutenegger et al. introduced the Binary Robust Invariant Scalable 
Keypoints (BRISK) corner detector which is invariant to scale and rotation11.

Blob detectors, on the other hand, identify regions in the image that differ in properties such as brightness, 
color, or texture from surrounding regions. One of the popular blob detectors is the Scale Invariant Feature 
Transform (SIFT) introduced by Lowe in 200413. The SIFT algorithm detects feature points by selecting scale-
space extrema of the difference of Gaussians. Although SIFT is scale and rotation-invariant, it is computationally 
expensive. To overcome this issue, the Speeded-Up Robust Features (SURF) was introduced in 200612 which is a 
faster version of SIFT. The SURF detector works based on the determinant of the Hessian matrix and can be used 
in real-time applications with a lower computational cost than SIFT. In 2012, KAZE features were proposed by 
Alcantarilla et al.14. These features are invariant to rotation and scale and have more distinctiveness at varying 
scales with the cost of a moderate increase in computational time. Another algorithm, Maximally Stable Extremal 
Regions (MSER), was proposed by Metas et al. in 200215. The MSER algorithm detects blob-like structures by 
identifying regions that remain stable over various thresholds.

Moreover, we investigated a self-supervised method known as SuperPoint16. This method employs a fully 
convolutional neural network to detect and describe interest points. In this study, a pre-trained model available 
on the SuperPoint Github repository is used to extract features and descriptors.

After the feature detection-description, the next is the feature matching step to find corresponding features 
between the two images using the nearest neighbor distance ratio. We utilized the Brute-force matching algorithm. 
The feature distance is computed using the sum of squared differences for general features or Hamming distance 
for binary features. However, the feature-matching process can often result in incorrect matches. The third step 
is outlier rejection to filter out incorrect matched points. This step is important as the transformation parameters 
are computed based on inlier features and significantly affect the performance. To accomplish this, we applied the 
probabilistic M-estimator Sample Consensus (MSAC) algorithm21 with 2000 iterations and 99.99% confidence. 
This algorithm removes the outliers and fits the transformation model (Homography Matrix) parameters based 
on inlier features. However, for SuperPoint features, we utilized the Random Sample Consensus (RANSAC) 
algorithm22 to remove the outliers and estimate the translation parameters between two tiles, as the code is 
executed in Python.

Figure 2.   Different types of pairwise registration methods.
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Region‑based
The region-based method computes the transformation between two pairs with shifting windows of the reference 
template relative to the target image and compares the similarity of pixels using different criteria. In this study, 
we have used two approaches, NCC and a combination of phase correlation and NCC. To implement NCC, 
the window of the overlapping region of the source tile is shifted over the search region in the target tile, and 
displacement with the maximum NCC is determined. The search region is defined as the overlapping region 
of the target tile + 10% of the width/height of tiles to account for imprecise scans and provide an error margin 
according to23. The phase correlation method employs the Fourier transform to compute phase correlation 
in the frequency domain. The resulting phase correlation peaks are used to select four translations, and the 
transformation with maximum NCC is ultimately chosen. To implement pairwise registration using phase 
correlation and NCC we utilized the pairwise registration part of the Microscopy Image Stitching Tool (MIST) 
source code24.

Evaluation metrics
To assess the effectiveness of various pairwise registration techniques, we analyzed the time required for pairwise 
registration and the root mean square error (RMSE) of the pixel intensity within the overlapping regions of 
adjacent tiles. We provide additional metrics such as the number of extracted feature points, the number of 
matched feature points, and the number of inlier feature points for feature-based methods. Furthermore, the 
number of failed attempts to compute the translation parameters referred to as “not-found translations”, and 
invalid translations which is out of the valid range. The valid translation range is obtained by overlapping region 
of tiles ± 2% of the width/height of tiles, accounting for uncertainty due to the imperfections of the automated 
microscope stages. This comprehensive evaluation allows us to make informed decisions regarding the most 
appropriate pairwise registration method for a given application.

Results
The experiments were performed using MATLAB 2023a software on an Intel® Core™ i7-1165G7 CPU @ 2.80 
GHz operating system with 16 GB of memory. Due to the high computational demand of the SuperPoint codes, 
execution on the same operating system that was used for other approaches was very time-consuming. Therefore, 
the SuperPoint codes were also executed on Google Colab, a cloud-based platform that provides free access to 
GPU resources with 2 Intel Xeon CPUs @ 2.20 GHz, 13 GB of RAM, and a NVIDIA T4 GPU with 12 GB of 
VRAM.

It is worth mentioning that all hyperparameters for analytical feature-based approaches are set to the default 
values based on MATLAB implementation. To determine the best hyperparameters for the deep learning-based 
SuperPoint features, we performed a greedy search using the 234–01-67 corrected image collection of the Tak 
dataset and chose the best value of different hyperparameters that resulted in the lowest execution time and 
RMSE. The optimal configuration for the SuperPoint model was set to a threshold of 0.001, patch size of 512, 
batch size of 8, and overlap of 0.8.

The first investigation is done using the Tak dataset which is less challenging compared to the other two 
datasets (Table 1), because the bright-field modality provides rich structures of tissues and biological samples 
in comparison with the fluorescence and the phase-contrast modalities. Moreover, the amount of overlap of the 
Tak dataset (25%) is not as critical as the Human colon dataset (2–3%). Furthermore, the Tak dataset provided 
the original tiles (with shading pattern) and corrected tiles (without shading pattern) of samples which we can 
use them to check the robustness of different methods to illumination variations.

The results of feature-based pairwise registration using 1603 textured tile pairs (described in the Materials 
section) of the corrected collection of the Tak dataset, considering the overlapping region for feature extraction, 
have been summarized in Fig. 3 and Table 2. Figure 3 includes the distribution of the required time to compute 
the translation parameters between the adjacent tiles, the RMSE, the number of extracted feature points, the 
number of matched feature points, the number of inlier feature points, and the percentage of not-found transla-
tions. It is obvious that there is no relation between the number of feature points and the execution time. The 
results indicate that the SURF, SIFT, Harris, Shi-Thomasi, and KAZE methods successfully computed translations 
for all pair tiles including texture. In contrast, the FAST method had the highest percentage of failed attempts to 
compute translations at 19.28% which means it could not compute translations for 309 of 1603 pair tiles. After 
FAST, it has been followed by MSER at 0.44%, BRISK at 0.37%, ORB at 0.31%, and SuperPoint at 0.19%. The 
processing time of the FAST method was found to be shorter than other methods and the SURF, MSER, BRISK, 
Harris, SIFT, ORB, Shi-Thomasi, KAZE, and SuperPoint are ordered in an increasing manner. Despite using 
Google Colab, SuperPoint’s execution time is higher than other methods except the KAZE method. It is worth 
mentioning that the ORB had a long execution time on the 53–03 image collection of the Tak dataset due to the 
dense textures present in tiles. This makes the distribution of the ORB execution time very flat. Regarding the 
RMSE values, Harris had the lowest value, followed by Shi-Thomasi, ORB, BRISK, SURF, KAZE, SIFT, MSER, 
FAST, and SuperPoint. However, the RMSE values of different approaches except the SuperPoint are very close 
together, and the statistical analysis is reported in Table 2. The number of extracted features was highest for 
KAZE, followed by Shi-Thomasi, ORB, Harris, MSER, SIFT, SURF, BRISK, SuperPoint, and FAST. In contrast, the 
number of matched features was highest for KAZE, ORB, Shi-Thomasi, SURF, SIFT, Harris, BRISK, SuperPoint, 
MSER, and FAST. Finally, the number of inlier features was highest for KAZE, ORB, Shi-Thomasi, SURF, SIFT, 
Harris, BRISK, MSER, SuperPoint, and FAST.

To determine the superior approach among region-based and feature-based methods, various evaluation 
metrics were employed using the original and corrected tiles of the Tak dataset to investigate their robustness to 
the shading artifact which is a common problem in microscopic images, particularly in the bright-field modality. 
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The evaluation metrics include the RMSE (Fig. 4a), execution time (Fig. 4b), the RMSE and the execution 
time (Fig. 5), computed translation parameters in vertical and horizontal directions, and corresponding invalid 
translations (Fig. 6).

In the evaluation of corrected tiles, our findings demonstrated that region-based methods performed slightly 
better than feature-based methods in terms of RMSE, however, the execution time of Phase-NCC and NCC is 
longer than that of FAST, SURF, MSER, BRISK, Harris, ORB, and SIFT. The same clarification can be obtained 
using the analysis of original tiles with shading except the range of the RMSE is bigger as the difference between 
pixel’s intensity is higher in the presence of shading.

We have depicted the scatter plot of the RMSE and the execution time in Fig. 5 to summarize the results. This 
plot emphasizes the wide range of execution time of MSER, ORB, and Shi-Thomasi methods which is compatible 
with the results reported in Table 2.

The RMSE metric is not sufficient to peak the most efficient method because the RMSE values are very close 
in different approaches. Additionally, the RMSE value only relies on the similarity of pixel intensities in the 
overlapping region of tiles and does not evaluate whether the tiles are transformed correctly or not. For this 
reason, we compared computed translation parameters (Tx and Ty) using different pairwise registration methods 
with valid translation ranges. In the evaluation of corrected images, results revealed that a large number of 
computed translation parameters using the Phase-NCC method (6.18%) were out of the valid range. Additionally, 
FAST, SuperPoint, and Harris methods also had multiple translations out of range. However, the translations 
computed by NCC and other feature-based methods such as BRISK, SURF, SIFT, MSER, ORB, Shi-Thomasi, 
and KAZE were all within the valid range. The results obtained using original tiles with shading indicate that 
the feature-based methods outperformed region-based ones when comparing the valid translation parameters. 
The Phase-NCC and NCC methods computed a large number of translations outside the valid range (88.02% 
and 10.48%, respectively). Similarly, FAST, SuperPoint, and Harris methods had translations out of range whose 
number is very low compared to Phase-NCC and NCC. However, translations computed by other feature-based 
methods like BRISK, SURF, SIFT, MSER, ORB, Shi-Thomasi, and KAZE were all within the valid range.

All evaluation metrics, besides statistical analysis for RMSE values, are summarized in Table 2.
We also inspected the SuperPoints features in more detail to investigate whether the reason for suboptimal 

performance is related to the type of the features or matching algorithm. We compared the Brute-force and the 
LightGlue25 matching algorithms. Since the SuperPoints features (available in the SuperPoint GitHub repository) 
do not provide a score for features we could not match the SuperPoint with LightGlue. There is a new implemen-
tation of the SuperPoint (available in the LightGlue GitHub repository), we named it SuperPoint* here, which is 
compatible and can be matched with the LightGlue matching algorithm. The results are provided in Table 3 in 
terms of the RMSE and time values for the SuperPoint features alongside the Brute-force matching algorithm, the 

Figure 3.   Number of detected, matched, and inlier feature points, percentage of failures in computing 
transformation, distribution of execution time, and the RMSE of 1603 textured pair tiles from corrected image 
collections of the Tak dataset using feature-based pairwise registration methods considering the overlapping 
region for feature extraction.
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Table 2.   The RMSE, execution time, number of detected, matched, and inlier feature points, number of not-
found translations, and the number of invalid translations of 1603 textured pair tiles from image collections 
of the Tak dataset using region-based and feature-based pairwise registration methods considering the 
overlapping region for feature extraction. Note that the mean ± std is reported and a ranked ANOVA test for 
RMSE of corrected images is F(11, 18,894) = 139.77, p = 0.0 < 0.001.

Dataset Method RMSE (10–2) Time (second) Feature points Matched points Inliers Not-found translations Invalid translations

Tak, corrected images

PhaseNCC 7.28 ± 2.77 0.49 ± 0.02 – – – 0 99

NCC 6.66 ± 1.82 0.92 ± 0.07 – – – 0 0

FAST 7.57 ± 2.17 0.07 ± 0.01 58 ± 79 12 ± 17 5 ± 7 309 3

SuperPoint 9.10 ± 2.48 5.35 ± 0.43 269 ± 49 119 ± 23 7 ± 3 3 3

BRISK 7.00 ± 2.03 0.27 ± 0.08 535 ± 460 153 ± 138 45 ± 45 6 0

SURF 7.00 ± 2.10 0.16 ± 0.05 1554 ± 1080 1092 ± 856 324 ± 273 0 0

SIFT 7.02 ± 2.10 0.59 ± 0.21 3743 ± 3077 958 ± 769 288 ± 238 0 0

MSER 7.08 ± 2.05 0.24 ± 0.08 4107 ± 6566 57 ± 54 18 ± 17 7 0

Harris 6.89 ± 2.08 0.30 ± 0.10 5251 ± 4654 752 ± 728 224 ± 224 0 1

ORB 6.91 ± 2.03 0.87 ± 1.29 10,860 ± 9234 2953 ± 2595 813 ± 774 5 0

Shi-Thomasi 6.90 ± 2.06 1.26 ± 0.79 11,663 ± 8682 2389 ± 1760 669 ± 512 0 0

KAZE 7.01 ± 2.09 3.69 ± 0.65 11,844 ± 5522 9664 ± 4793 2727 ± 1537 0 0

Tak, images with shading

PhaseNCC 20.92 ± 11.85 0.49 ± 0.02 – – – 0 1411

NCC 16.74 ± 6.54 0.94 ± 0.08 – – – 0 168

FAST 16.05 ± 6.07 0.07 ± 0.01 72 ± 100 11 ± 17 5 ± 7 363 3

SuperPoint 21.04 ± 8.88 5.04 ± 0.26 269 ± 50 119 ± 23 7 ± 3 0 3

BRISK 17.41 ± 7.46 0.27 ± 0.02 592 ± 587 118 ± 126 37 ± 39 15 0

SURF 17.47 ± 7.46 0.16 ± 0.05 1609 ± 1243 872 ± 779 272 ± 243 1 0

SIFT 17.48 ± 7.46 0.59 ± 0.24 4761 ± 3076 733 ± 676 229 ± 208 0 0

MSER 17.48 ± 7.47 0.26 ± 0.07 801 ± 711 43 ± 48 14 ± 15 12 0

Harris 17.42 ± 7.50 0.30 ± 0.10 3161 ± 2697 629 ± 642 196 ± 204 1 1

ORB 17.37 ± 7.48 0.85 ± 1.32 13,997 ± 10,848 2138 ± 2272 618 ± 645 9 0

Shi-Thomasi 17.42 ± 7.49 1.56 ± 0.80 18,549 ± 7236 1920 ± 1447 545 ± 422 0 0

KAZE 17.47 ± 7.46 3.53 ± 0.69 11,758 ± 5438 8597 ± 4490 2525 ± 1443 0 0

Figure 4.   Distribution of (a) RMSE and (b) execution time of corrected and original tiles from 1603 textured 
tiles of the Tak dataset using region-based and feature-based pairwise registration methods considering the 
overlapping region for feature extraction. Note that the mean value of the RMSE is reported for corrected 
images.
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Figure 5.   The scatter plot of the RMSE and execution time of 1603 textured tiles of the corrected Tak dataset 
using region-based and feature-based pairwise registration methods considering the overlapping region for 
feature extraction.

Figure 6.   Distribution of computed translation parameters Tx and Ty in the west and north directions for (a) 
original tiles with shading and (b) corrected tiles without shading pattern from 1603 textured tiles of the Tak 
dataset using region-based and feature-based pairwise registration methods considering the overlap region for 
feature extraction. Note that the green boxes indicate the valid translation ranges.

Table 3.   The RMSE and execution time of 1603 textured pair tiles from corrected image collections of the 
Tak dataset using two different implementations of the SuperPoint features considering the overlapping region 
for feature extraction and two different matching algorithms. Note that SuperPoints is implemented using the 
SuperPoint GitHub repository and SuperPoint* is implemented using the LightGlue GitHub repository.

Feature Extraction Matching Algorithm RMSE (10–2) (mean ± std) Time in second (mean ± std)

SuperPoint Brute-force 9.05 ± 2.35 2.62 ± 0.11

SuperPoint* Brute-force 21.28 ± 5.82 0.42 ± 0.04

SuperPoint* LightGlue 21.26 ± 5.80 0.36 ± 0.06
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SuperPoint* alongside the Brute-force and the LightGlue matching algorithms. All three of them were executed 
on a high-end PC, with an Intel Core-i7 9700k CPU, NVIDIA RTX 3050-8GB GPU with 16 GB of RAM.

The results show that the effect of the matching algorithm is not critical (rows 2–3 of Table 3): the same 
RMSE and slightly different in execution time. However, replacing the SuperPoint with SuperPoint* reduces the 
execution time significantly on one side and increases the RMSE on another side. This is because of different 
implementations and weights for the SuperPoint feature extraction technique.

Discussion
Among various methods investigated for pairwise registration of microscopy images, the FAST method is the 
fastest, although it does come with the drawback of having the highest percentage of failed attempts, standing 
at 19.28%. Additionally, its RMSE value is higher when compared to other methods, except for SuperPoint. 
On the other hand, the MSER method is capable of detecting a high number of features between tiles, but it 
is unable to match as many features, leading to a near 100-fold decrease. Our analysis reveals that the feature-
based methods outperform the region-based methods as Phase-NCC computed translation parameters out 
of valid translation range in both collections of the Tak dataset: corrected images and images with uneven 
illumination and NCC computed translation parameters out of valid translation range in original tiles with 
uneven illumination of the Tak dataset. In addition, there is no preference for using region-based pairwise 
registration based on computational time and RMSE value. Among the investigated feature-based methods, 
SURF, SIFT, Harris, Shi-Thomasi, and KAZE methods were all successful in computing translation parameters. 
However, KAZE and Shi-Thomasi methods required a higher computational time due to their high number of 
detected and matched features. One translation parameter computed using the Harris method was out of the 
valid range for the Tak dataset images with and without shading. Although the SIFT method was able to detect 
more features than SURF features, SIFT-matched features were lower. The SURF features also result in a lower 
execution time and RMSE value than SIFT. More investigations on the SuperPoint features revealed that fine-
tuning the SuperPoint network for microscopic images might improve the RMSE and reach better performance. 
Overall, the SURF features proved to be more effective in pairwise registration of microscopic images in terms 
of computational time, error, and robustness to the illumination variations.

We also analyzed the SURF features in pairwise registration of microscopic images when the location and 
the amount of the overlapped region are not provided and the method involves detecting and extracting features 
from the entire image. Our analysis based on RMSE, execution time, and translation parameters indicates that 
the RMSE values and translation parameters remained consistent while extending feature extraction to the whole 
region resulted in significantly higher execution time. One example of tile pairs from different experimental 

Figure 7.   Detected feature points and inlier feature points in the overlap region and entire image of tile pairs in 
the west direction using the SURF feature extraction method from (a) corrected 49–01 bright-field image set of 
the Tak dataset, (b) fluorescence image set of the human colon dataset, (c) fluorescence image set of the stem cell 
colony dataset, and (d) phase-contrast image set of stem cell colony dataset.
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datasets is shown in Fig. 7. The figure shows the detected features and inlier feature points using the overlap 
region and the entire image, providing a clearer visual representation of how efficiently the SURF features work 
regardless of prior knowledge about the overlapping region. Our results indicate that extending the feature 
extraction region does not compromise the computed transformation’s accuracy, as inlier points are almost the 
same. On the other hand, it considerably reduces the computational load, as most of the extracted feature points 
from the whole image were not useful in computing the translation parameters.

In addition, the SURF features are examined considering other modalities of microscopic images such as 
phase-contrast and fluorescence as shown in Fig. 7b-d. It should be mentioned that the SURF feature extraction 
method calculates the determinants of the Hessian matrix in both space and scale and eliminates points that 
have response values below a specific threshold. The threshold value depends on the image and the intended 
application. We used 1000, the default threshold value for the Tak and the human colon datasets which are rich 
in texture. However, we encountered a challenge in detecting SURF features in the stem cell colony dataset. 
When using the default threshold value of 1000, we were able to extract only a small number of features or none 
at all, making it impossible to compute the transformation between two tiles unless textures were present in the 
overlap region. To overcome this challenge, we closely examined randomly selected images to determine the 
number of features and Hessian determinant values and eventually determined that an optimal threshold value 
of 0.1 for fluorescence and 1 for phase-contrast allowed us to extract sufficient features and successfully compute 
tile transformations for our experiments.

We summarized the result of the SURF features for all datasets in Table 4 considering one more evaluation 
metric: the structured similarity matrix (SSIM). Evaluating the results of different datasets is crucial as we can 
see the RMSE and SSIM are better for the Stem cell colony dataset rather than the Tak and human colon dataset. 
This is because the texture of the Tak and human colon datasets are very dense and any difference would cause to 
higher RMSE and lower SSIM. We also reported invalid translations to show the robustness of the SURF features 
in pairwise registration, regardless of datasets.

Conclusion
This study presents a comparison of region-based pairwise registration methods, namely NCC and Phase-
NCC, with feature-based methods such as Harris, Shi-Thomasi, FAST, ORB, BRISK, SURF, SIFT, KAZE, MSER, 
and deep learning-based SuperPoint features. The investigation results on the experimental microscopy images 
reveal that feature-based methods outperformed region-based methods in terms of accuracy and processing 
speed. Moreover, feature-based methods were found to be highly robust to uneven illumination of tiles. Among 
feature-based methods, the SURF features were found to be the most effective, surpassing all other techniques on 
different image modalities, including bright-field, phase-contrast, and fluorescence. This study provides valuable 
insights into the strengths and weaknesses of different registration methods, which can be useful for researchers 
working in the field of microscopic image stitching.

Data availability
The Tak dataset which was included in the published article17, can be accessed at https://​github.​com/​pair-​kopti/​
Shadi​ng-​corre​ction. Similarly, the human colon dataset is available through Sage Synapse at https://​doi.​org/​
10.​7303/​syn25​826362 (a free account is required to access the data). Additionally, the images of the stem cell 
colony dataset can be downloaded from https://​isg.​nist.​gov/​BII_​2015/​webPa​ges/​pages/​stitc​hing/​Stitc​hing.​html.

Code availability
https://​github.​com/​labCOI/​micro​scopy_​pairw​ise_​regis​ter.​git.
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