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Application of optimized Kalman 
filtering in target tracking based 
on improved Gray Wolf algorithm
Zheming Pang , Yajun Wang * & Fang Yang 

High precision is a very important index in target tracking. In order to improve the prediction accuracy 
of target tracking, an optimized Kalman filter approach based on improved Gray Wolf algorithm 
(IGWO-OKF) is proposed in this paper. Since the convergence speed of traditional Gray Wolf algorithm 
is slow, meanwhile, the number of gray wolves and the choice of the maximum number of iterations 
has a great influence on the algorithm, a nonlinear control parameter combination adjustment 
strategy is proposed. An improved Grey Wolf Optimization algorithm (IGWO) is formed by determining 
the best combination of adjustment parameters through the fastest iteration speed of the algorithm. 
The improved Grey Wolf Optimization algorithm (IGWO) is formed, and the process noise covariance 
matrix and observation noise covariance matrix in Kalman filter are optimized by IGWO. The proposed 
approach is applied into. The experiment results show that the proposed IGWO-OKF approach has low 
error, high accuracy and good prediction effect.

Keywords  Improved Gray Wolf algorithm, Optomized Kalman filter, Nonlinear control parameters, Target 
tracking

Currently, trajectory prediction methods have made significant progress in the fields of computer vision and 
machine learning1. These methods include techniques based on physical models2–5, statistical models, machine 
learning6 and deep learning7. Physical and statistical models can utilize the physical properties of the target and 
historical trajectory data to make predictions, while machine learning and deep learning methods make predic-
tions by learning the modal and temporal dependencies of large amounts of trajectory data. In addition, some 
studies have fused multimodal information into trajectory prediction to improve accuracy8–12. Although some 
results have been achieved, they still face challenges such as complex scenarios, multi-target interactions, and 
uncertainty, which require further research and improvement.

Trajectory prediction research in China started earlier, and the traditional methods mainly focus on the 
trajectory prediction methods based on techniques such as rules, statistics and machine learning. For exam-
ple, trajectory prediction methods based on mathematical models such as Kalman filter and particle filter are 
widely used in the fields of target tracking and traffic management13–15. In recent years, domestic scholars began 
to adopt deep learning methods for trajectory prediction research. By using techniques such as convolutional 
neural network (CNN), recurrent neural network (RNN) and attention mechanism, the accuracy and robust-
ness of trajectory prediction have been improved. Meanwhile, some trajectory prediction models for specific 
scenarios have also achieved good results, such as traffic flow prediction and pedestrian behavior prediction16–18. 
Foreign trajectory prediction research emphasizes the mining and analysis of large-scale real data. By collecting 
and utilizing a large amount of data such as mobile devices and traffic monitoring systems, researchers apply 
machine learning and deep learning methods for trajectory prediction. In addition, fusing other data sources 
such as geographic information and social networks has become a trend. They build relevant models based on 
factors such as historical behavioral patterns, environmental characteristics and social interactions of the target 
individuals and use them to predict future movement trajectories. These include modeling methods based on 
Markov Decision Process (MDP) and Markov Random Field (MRF), etc.

Kalman filtering algorithm is a classical method for trajectory prediction. Kalman filtering algorithm is 
characterized by recursive computation, which can efficiently handle real-time data streams and is suitable for 
application scenarios that require real-time updating of state estimates.It can effectively suppress the influence of 
measurement noise and improve the accuracy and precision of landslide monitoring. In addition, Kalman filter 
can also detect the possible occurrence of landslide in advance by predicting the future state change trend19–21. Lu 
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put forward application of Kalman filter model in the landslide deformation forecast22. Li put forward research 
on prediction of metro surface deformation based on ensemble Kalman filter23. However, it suffers from defi-
ciencies such as fixed filtering parameters, so it is proposed to optimize Kalman filtering with an improved Gray 
Wolf algorithm.

Improving the Gray Wolf optimization algorithm
Grey Wolf Optimization (GWO) is an optimization algorithm inspired by the social behavior of grey wolves. 
The algorithm has some significant advantages and some potential disadvantages. First, one of the advantages of 
Grey Wolf Optimization algorithm is its simplicity and ease of implementation. The principles of the algorithm 
are relatively simple and easy to understand and implement. Second, the Gray Wolf Optimization algorithm 
has a strong global search capability. Inspired by the prey-seeking behavior of grey wolf packs, the algorithm 
is able to effectively explore potential optimal solutions in the entire search space. This makes it perform well 
in unconstrained continuous optimization problems and is able to find globally optimal solutions. In addition, 
the Gray Wolf Optimization algorithm typically has a fast convergence rate. By simulating the collaborative 
and competitive behavior of wolves to update the solution vector, the algorithm is able to quickly converge to a 
better solution, thus speeding up the optimization process. Finally, the Gray Wolf Optimization algorithm has 
some parameter adaptivity. It can automatically adjust the parameter values in the search process to improve 
the robustness and performance of the algorithm. This adaptability can adapt to the characteristics of different 
problems and reduce the difficulty of parameter adjustment. However, the Gray Wolf Optimization algorithm 
also has some potential drawbacks. First, it is more sensitive to the constraints of the problem. When dealing 
with constrained optimization problems, additional processing is required to ensure the feasibility of the results. 
Second, although the Gray Wolf Optimization algorithm has good global search capability, it may still fall into 
local optimal solutions in some complex problems. Finally, parameter tuning in the algorithm is relatively dif-
ficult; different problems may require different parameter settings, and experimentation and debugging are 
needed to obtain better performance.

Taking α as the optimal solution (individual’s fitness is optimal), the second best solution β , the best solution 
δ , and the remaining candidate solution named ω . The hunting process is guided by αβδ and ω follows these 
three wolves. That is, we always go to the three best solutions and then search around the region with the aim of 
finding better solutions and then updating αβδ.

During the hunting process, the behavior of the gray wolves rounding up their prey is defined as follows:
Formula for the distance between an individual and a hunt:

Gray Wolf location update formula:

coefficient vector:

where t is the number of iterations, D is a vector of distances between individuals and hunts, ’ · ’ is not a dot 
product, it is a multiplication, XP is a vector of hunts’ locations, X is a vector of Gray Wolf locations, a is a control 
parameter (decreasing linearly from 2 to 0 with the number of iterations), and r1 and r2 are random vectors, 
modulo a random number between (0 and 1).

From the formula, it can be seen that after moving the Gray Wolf pack to α , the direction of movement is 
determined by its own position and the random vector C, and the movement step length is determined by the 
isolation distance from the Gray Wolf distance and the coefficient vector A, i.e., α linear decrease implies the 
randomness and the magnitude of the movement step length, and the step length decreases with the number of 
iterations getting closer and closer to the optimal solution.

The mathematical model of individual Gray Wolf tracking prey location is described as follows:

where Dα , Dβ and Dδ denote the distances between α and β , δ and other individuals, respectively; XαXβXδ rep-
resents the current positions of α and β,δ , respectively; C1C2C3 is a random vector, and X is the current position 
of the Gray Wolf.

(1)D = |C · XP(t)− X(t)|

(2)X(t + 1) = XP(t)− A · D

(3)A = 2a · r1 − a

(4)C = 2 · r2

(5)

{

Dα = |C1 · Xα − X|
Dβ = |C2 · Xβ − X|
Dδ = |C3 · Xδ − X|

(6)







X1 = Xα − A1 · (Dα)

X2 = Xβ − A2 ·
�

Dβ

�

X3 = Xδ − A3 · (Dδ)

(7)Xt+1 =
X1 + X2 + X3

3
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Equation (6) defines the step length and direction of individual ω in the wolf pack toward α and β , δ , respec-
tively, and Eq. (7) defines the final position of ω.dierji.

The improved Gray Wolf algorithm is formulated as follows:

where afirst and afinal are the initial and final values of the control parameters, respectively; µ and � are the regu-
lation parameters, and Tmax is the maximum number of iterations. By adjusting the regulation parameters, the 
convergence speed of the local and global search of the Gray Wolf algorithm is thereby improved.

Gray Wolf optimization algorithm for improved Kalman filtering
Kalman filtering has a wide range of applications in state estimation and optimization problems, but it also has 
some shortcomings. Meanwhile, combining the Gray Wolf algorithm with Kalman filtering can make up for 
these shortcomings and bring the following benefits: firstly, Kalman filtering performs poorly in dealing with 
nonlinear and non-Gaussian problems, and it is easy to fall into local optimal solutions. And the Gray Wolf 
algorithm, as a global optimization algorithm, can provide stronger global search capability. By combining the 
two, the global search ability of the Gray Wolf algorithm can be used to solve the limitations of Kalman filtering 
in nonlinear problems, making the optimization process more comprehensive and accurate. Second, Kalman 
filtering is highly sensitive to measurement noise and system modeling errors. These errors may cause Kalman 
filtering to fail to accurately estimate the system state, thus affecting the accuracy of the optimization results. The 
Gray Wolf algorithm, on the other hand, can reduce the dependence on a single objective through the diversity 
search strategy, thus improving the robustness and stability of the algorithm. Therefore, introducing the Gray 
Wolf algorithm into Kalman filtering can enhance the tolerance of the algorithm to measurement noise and 
model error, and improve the accuracy and reliability of the optimization results.

In summary, combining the Gray Wolf algorithm with Kalman filtering can give full play to the advantages 
of both and make up for their respective shortcomings. Through the global search capability and robustness of 
the Gray Wolf algorithm, combined with the state estimation and correction process of Kalman filtering, more 
accurate, stable and globally optimized results can be achieved, which is suitable for state estimation and opti-
mization tasks in complex problems and real-time systems.

In the measurement update proposed to be solved iteratively thus optimizing the calculation of the filter 
gain, the efficiency of the filter estimation is affected due to the presence of ambient noise effects. Therefore, an 
adaptive forgetting factor is introduced to correct the one-step prediction covariance matrix in real time in order 
to correct the filter gain matrix and improve the algorithm’s target tracking efficiency. Calculate the corrected 
one-step prediction covariance matrix:

where �k is the forgetting factor introduced at moment k . The measurement covariance matrix is:

The measurement covariance matrix will increase when there is uncertainty in the tracking target.

where ηk = Yk − Ŷk|k−1 is the measurement residual, 0 ≤ ρ ≤ 1 is the weight coefficient determined as a result 
of the system data, and the relationship between �k′ and �k is:

where �k′τk = max{1, 1
mtr(�k′�

−1
k )} is a scalar.

The update step of the algorithm improved by the introduction of the adaptive forgetting factor is:

Covariance matrix after introduction of forgetting factor:

(8)a1(t) = afirst −
(

afirst − afinal
)

· sin

(

1

µ

(

t
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· π

)
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(16)χ i
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Covariance matrix:

Calculate the forgetting factor:

Kalman gain:

Target status update:

State covariance matrix:

The process noise covariance matrix Q and the measurement noise covariance matrix R in Kalman filtering 
are optimized by adjusting the parameters, which in turn update the time update and the measurement update 
of Kalman filtering.

Case study
The algorithm is applied to an open pit iron mine for monitoring. Two monitoring points are selected in the 
mine, and optimized Kalman filter approach based on improved Gray Wolf algorithm (IGWO-OKF) and vari-
ance compensation adaptive Kalman filter are used to process the monitoring data of open pit deformation.

Optimizing the Gray Wolf algorithm
The machine used in this design contains Intel Core i7 processor and the GPU is RTX 3060. in terms of software, 
matlab is used for simulation.

From Eq. (3), it can be known that the control parameter a is an important influence on the search parameter 
A, which directly affects the algorithm’s local and global search ability. The four curves in Fig. 1 correspond to 
different parameter control strategies, which have different degrees of influence on the convergence speed of 
the algorithm and the solution results. From the analysis, the optimal regulation parameter, i.e., µ = 2, � = 5 , 
is selected.

The optimal value of the objective function found by PGWO is 13.1649, and the optimal value of the objective 
function found by IGWO is 7.5488e-11. Therefore, the performance and effect of IWGO are better than that of 
PGWO. It can be seen from Fig. 2 that the number of iterations in the parameter space, IGWO and PWGO will 

(17)PY ,k|k−1 =
1

m

2n
∑

i=1

Yi
k|k−1

(

Yi
k|k−1

)T
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(
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(18)PXY ,k|k−1 =
1

m

2n
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(

χ i
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)−1
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(
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)

(22)Pk = Pk|k−1 − KkPY ,k|k−1K
T
k

Figure 1.   Variation curve of dynamic factors with different weights as a function of the number of iterations.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8955  | https://doi.org/10.1038/s41598-024-59610-6

www.nature.com/scientificreports/

gradually converge to a better solution with the increase of iterations, and IGWO will use fewer iterations, with 
faster convergence speed and better effect.

IGWO optimized Kalman filtering
Variance Compensation Adaptive Kalman Filtering (VCAKF) is an improved Kalman filtering algorithm for 
nonlinear systems or systems with uncertainties. It improves the performance of the filter by adaptively estimating 
and compensating for the variance of measurement and process noise. In conventional Kalman filtering, the vari-
ance of the measurement and process noise is usually fixed, but in practical applications these may change over 
time or in the environment. Variance-compensated adaptive Kalman filtering better adapts to system dynamic 
changes and uncertainties by estimating and updating the noise variance in real time. Therefore, in this paper, 
the proposed improved Gray Wolf algorithm optimizes Kalman filtering with variance-compensated adaptive 
Kalman filtering to process the deformation monitoring data of an open pit mine, respectively.

According to the deformation data obtained by automatic deformation monitoring, the variance compensa-
tion adaptive Kalman filtering is applied to two deformation monitoring data on the hillside of an open-pit mine, 
and the filtered values are obtained. The data of the previous 9 periods are original data, and the data of the 10th 
period is predicted. Each period lasts 10 days. The results are compared with the actual observed values. The 
observation point is shown in Fig. 3.

By comparing the actual observed values of deformation monitoring point 1 with the filtered values in 
Table 1, it can be seen that the maximum residual error of the variance-compensated adaptive Kalman filter in 
the X-direction coordinate is −0.46 mm, and the minimum value of the X-direction coordinate residual error is 
0.05 mm; in the Y-direction coordinate residual error has a maximum value of 0.49 mm, and its minimum value 
of the coordinate residual error is 0.07 mm.

As can be seen in Table 2, comparing the filtered values of the variance-compensated adaptive Kalman filter 
with the actual observed values, the maximum residuals of the coordinates in the X-direction of point 2 are 
found to be 0.49 mm; the maximum residuals of the coordinates in the Y-direction are found to be 0.46 mm; 

Figure 2.   Graph of Gray Wolf iteration curves.

Figure 3.   Layout of monitoring points.
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the maximum residuals of the filtered values are found to be no more than 0.5 mm in the variance-compensated 
adaptive Kalman filtering of point 2, and it can be seen that The stability of the variance compensated adaptive 
Kalman filter is relatively strong, and the residual values are relatively stable.

Table 3, shows that comparing the actual observed value and the filtered value of the deformation monitoring 
point 1, it can be seen that the maximum residual value of the IGWO optimized Kalman filter in the X direction 
is 0.2 mm; the maximum residual value in the Y direction is 0.24 mm, and the difference of the coordinates can 

Table 1.   Raw data and variance-compensated adaptive Kalman data for monitoring site 1.

Phase

Measured value (m)
X coordinate Y 
coordinate

Variance 
Compensation 
Adaptive Kalman (m)
X coordinate Y 
coordinate X offset/mm Y offset/mm

1 514.7998 877.4571 514.7998 877.4571 0.00 0.00

2 514.7998 877.4559 514.7998 877.4560 0.05 0.07

3 514.7984 877.4556 514.7986 877.4557 0.22 0.18

4 514.7979 877.4552 514.7975 877.4555 −0.34 0.26

5 514.7950 877.4530 514.7953 877.4535 0.30 0.49

6 514.7963 877.4521 514.7967 877.4524 0.40 0.29

7 514.7952 877.4500 514.7948 877.4496 −0.43 −0.34

8 514.7939 877.4502 514.7935 877.4504 −0.44 0.24

9 514.7928 877.4491 514.7932 877.4496 0.38 0.46

10 514.7909 877.4460 514.7904 877.4459 −0.46 −0.11

Table 2.   Raw data and variance-compensated adaptive Kalman data for monitoring site 2.

Phase

Measured value (m)
X coordinate Y 
coordinate

Variance 
Compensation 
Adaptive Kalman (m)
X coordinate Y 
coordinate X offset/mm Y offset/mm

1 512.0429 877.0389 512.0429 877.0389 0.00 0.00

2 512.0430 877.0376 512.0430 877.0377 0.06 0.07

3 512.0411 877.0377 512.0414 877.0374 0.27 −0.27

4 512.0392 877.0357 512.0391 877.0360 −0.13 0.24

5 512.0377 877.0350 512.0375 877.0351 −0.22 0.06

6 512.0406 877.0342 512.0402 877.0347 −0.42 0.46

7 512.0368 877.0333 512.0369 877.0330 0.08 −0.26

8 512.0358 877.0324 512.0358 877.0324 −0.06 0.06

9 512.0337 877.0325 512.0339 877.0322 0.24 −0.32

10 512.0330 877.0303 512.0334 877.0307 0.49 0.40

Table 3.   Monitoring site 1 raw data and IGWO optimized post-Kalman data.

Phase

Measured value (m)
X coordinate Y 
coordinate

IGWO Optimization 
Kalman (m)
X coordinate Y 
coordinate X offset/mm Y offset/mm

1 514.7998 877.4571 514.7998 877.4571 0.00 0.00

2 514.7998 877.4559 514.7998 877.4559 0.03 0.05

3 514.7984 877.4556 514.7985 877.4553 0.10 −0.24

4 514.7979 877.4552 514.7978 877.4553 −0.05 0.12

5 514.7950 877.4530 514.7949 877.4529 −0.02 −0.11

6 514.7963 877.4521 514.7963 877.4520 −0.03 −0.06

7 514.7952 877.4500 514.7951 877.4497 −0.10 −0.20

8 514.7939 877.4502 514.7938 877.4504 −0.13 0.24

9 514.7928 877.4491 514.7930 877.4493 0.20 0.12

10 514.7909 877.4460 514.7911 877.4459 0.15 −0.11



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8955  | https://doi.org/10.1038/s41598-024-59610-6

www.nature.com/scientificreports/

be seen that the IGWO optimized Kalman filter is closer to the real measurement value, and the range of error 
is obviously smaller, and the stability is enhanced.

According to Table 4, comparing the filtered values of IGWO optimized Kalman filter with the actual observed 
values, it is found that the maximum residual value of the coordinates in the X direction of the No. 2 point is 
0.25 mm; the maximum residual value of the coordinates in the Y direction is 0.22 mm, thus it can be seen that 
the stability of the IGWO optimized Kalman filter is relatively strong, and the residual value is relatively stable 
and has a good convergence.

The following figure shows the measured and estimated data of the slope displacement trajectory. The pre-
dicted motion trajectory after simulation is shown in Fig. 4.

As shown in the figure the variance compensated adaptive Kalman filter starts to diverge in the fifth period, 
the proposed IGWO optimized Kalman filter has less filter fluctuation, more stable filter values and higher 
robustness than the variance compensated adaptive Kalman filter.

Conclusion
In order to improve the accuracy of landslide monitoring, a IGWO-optimized Kalman filter is proposed to 
optimize the covariance matrix of process noise and measurement noise in the Kalman filter using the improved 
Gray Wolf algorithm. The experimental results demonstrate that the use of the IGWO-optimized Kalman filter 
model achieves faster convergence to the actual observations and less volatility than the traditional variance-
compensated adaptive Kalman filter. This indicates that the model has stronger convergence ability, better sta-
bility, and better filtering results and deformation prediction accuracy. In contrast, the variance-compensated 
adaptive Kalman filtering algorithm is inferior to the IGWO-optimized Kalman filtering model in terms of 
filtering effect and prediction, and its accuracy, consistency, and robustness are all lacking. The proposed filter-
ing model can be applied in landslide monitoring, and in the future, it is planned to enhance the improvement 
on the measurement update and further optimize the Kalman filter.

Table 4.   Monitoring site 2 raw data and IGWO optimized post-Kalman data.

Phase

Measured value (m)
X coordinate Y 
coordinate

IGWO Optimization 
Kalman (m)
X coordinate Y 
coordinate X offset/mm Y offset/mm

1 512.0429 877.0389 512.0429 877.0389 0.00 0.00

2 512.0430 877.0376 512.0430 877.0376 0.03 0.05

3 512.0411 877.0377 512.0412 877.0376 0.13 −0.11

4 512.0392 877.0357 512.0390 877.0358 −0.18 0.09

5 512.0377 877.0350 512.0377 877.0348 0.02 −0.19

6 512.0406 877.0342 512.0405 877.0341 −0.08 −0.11

7 512.0368 877.0333 512.0371 877.0334 0.25 0.08

8 512.0358 877.0324 512.0360 877.0325 0.15 0.13

9 512.0337 877.0325 512.0339 877.0327 0.23 0.22

10 512.0330 877.0303 512.0332 877.0303 0.25 0.01

Figure 4.   Displacement prediction map.
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Data availability
The datasets generated and/or analysed during the current study are not publicly available due to privacy issues. 
If sosmeone wants to obtain data from this study, please contact Zheming Pang.
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