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Protein characteristics substantially 
influence the propensity of activity 
cliffs among kinase inhibitors
Safa Daoud 1* & Mutasem Taha 2*

Activity cliffs (ACs) are pairs of structurally similar molecules with significantly different affinities for 
a biotarget, posing a challenge in computer-assisted drug discovery. This study focuses on protein 
kinases, significant therapeutic targets, with some exhibiting ACs while others do not despite 
numerous inhibitors. The hypothesis that the presence of ACs is dependent on the target protein and 
its complete structural context is explored. Machine learning models were developed to link protein 
properties to ACs, revealing specific tripeptide sequences and overall protein properties as critical 
factors in ACs occurrence. The study highlights the importance of considering the entire protein matrix 
rather than just the binding site in understanding ACs. This research provides valuable insights for drug 
discovery and design, paving the way for addressing ACs-related challenges in modern computational 
approaches.

Activity cliffs (ACs) are pairs of closely similar molecules that have significantly dissimilar affinities towards cer-
tain biotarget1. The prevalence of ACs in SAR data2 necessitates that modern computer-assisted drug discovery 
and design effectively address this issue3–9. Moreover, ACs pose substantial challenge for bioactivity-supervised 
discovery approaches that rely on smooth and continuous structure–activity correlations10.

A number of machine learning computational approaches have been evaluated to forecast ACs pairs using 
ligand patterns2,11–13 or target-based pharmacophores14. ACs are conventionally described to be caused by subtle 
local differences in the 3D enthalpic contacts of cliff-forming ligands within the binding site15. In this direction, 
molecular dynamics and free energy perturbation were utilized to explain ACs16–20, nonetheless with affinity 
prediction errors21 (Tables 1, 2).

Protein kinases have long been acknowledged as significant therapeutic targets. A number of small molecule 
kinase inhibitors are in development or have already received approval for the treatment of a number of human 
ailments, including cancer, cardiovascular problems, and inflammation22. However, after careful examining of 
this group of enzymes, we noticed that while some of these enzymes exhibit several ACs, others appear to be 
immune to this phenomenon despite having hundreds, or even thousands, of reported inhibitors. Moreover, in 
many instances closely homologous molecules (matched molecular pairs, MMPs) emerge as ACs upon interacting 
with some protein kinases while they maintain similar affinities with others, see Table 3 in “Results”.

Such observations led us to postulate that the existence of ACs is reliant on the target protein. Moreover, 
we propose that the propensity to have ACs is related to the complete protein matrix, not just the binding 
site, because all protein kinases have somehow similar ATP catalytic sites that are often targeted by tailored 
inhibitors23.

This supposition is in line with our recently presented theory, which states that the binding of potent AC 
members results in large, entropically driven conformational alterations in the target protein, which in turn 
reveal hidden attractive features within the binding site. These "new" interaction sites offer extra enthalpic bind-
ing contributions24,25.

To pursue our proposition, we focused on protein kinases of numerous reported inhibitors in ChEMBL 
database. We then systematically identified ACs within inhibitors population of each protein. We defined ACs as 
structural analogs with at least 100-fold difference in potency based on well-defined bioactivity measurements26. 
We then generated numerous protein descriptors (ca. 9900) for the studied proteins based on their amino acid 
sequences. Additional descriptors were also extracted from the 3D-crysallographic structures of these proteins. 
Following that, we ran several machine learning (ML) models to see if we could link protein properties to the 
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presence or absence of ACs in the corresponding ligands population. Moreover, we applied genetic algorithm27 
to identify the most probable protein descriptors that control the ACs phenomenon.

Experimental
Machine learning (ML) details, including: training, deployment of different learners, genetic algorithm (GA) 
selection of descriptors, as well as model assessment using accuracy and Cohen’s kappa values against training 
and testing sets were performed using KNIME analytics platform (version 4.3.3). All implemented workflows 
are provided in the Supporting Folder 1. Protein descriptors were calculated using ProtrWeb (http://​protr.​org/). 
Three-dimensional protein descriptors were calculated within Discovery Studio (version 4.5, Biovia).

Collection of protein kinases and generation of protein descriptors
Eighty protein kinases, wild type only, were selected (see Table 2). The amino acid sequences of designated 
proteins were downloaded from UniProt (https://​www.​unipr​ot.​org/). Subsequently, numerous structural and 
physicochemical descriptors were calculated for each protein employing ProtrWeb (http://​protr.​org/)28. ProtrWeb 
offers twelve groups of protein descriptors including: Amino acid composition, dipeptide composition, tripeptide 
composition, normalized Moreau-Broto autocorrelation, Moran autocorrelation, Geary autocorrelation, CTD 
(composition, transition, distribution) descriptors, conjoint triad, sequence-order-coupling number, quasi-
sequence-order descriptors, pseudo-amino acid composition and amphiphilic pseudo-amino acid composition28. 
Totally, 9920 descriptors were generated for each protein (see Supporting Excel file SM1).

Furthermore, the Protein Data Bank was searched for crystallographic structures of corresponding kinase 
domains of collected protein kinases. Only wild type, mutations-free proteins were included. Crystallographic 
structures corresponding to apo proteins were excluded. Moreover, we scrutinized the collected structures against 
KLIFS database29 such that crystallographic complexes involving type II protein kinase inhibitors bound to 
kinases of DFG-out conformations were also excluded. In case a certain protein is represented by numerous 
entries in the protein databank, we opted to include a maximum of 20 structures of best possible resolution in 
the analysis; however, if a particular protein kinase is represented by fewer than 20 entries, all structures were 
included. Consequently, 771 crystallographic structures were collected (see Supporting Excel file SM1). Co-
crystallized ligands and hydration water molecules were removed. Hydrogen atoms were added utilizing the 
Discovery Studio 4.5 template for hydrogen atoms. The following descriptors were determined for each crystal-
lographic structure using Discovery Studio 4.5: Count of intramolecular hydrogen bonds; count of intramolecular 
bumps (pair of atoms at close proximity such that they violate each other VDW spheres by at least 30% without 
being covalently bonded); count of intramolecular electrostatic interactions, and count of hydrophobic interac-
tions. Needless to say that the 3D structure of a protein is controlled by these interactions such that any change in 
the 3D structures of the protein should be accompanied by the changes in the individual counts of these interac-
tions. Normalized versions of these descriptors were also included. The normalized descriptors were calculated 
by dividing each descriptor by the number of non-hydrogen atoms in the protein. Scaling 3D descriptors by the 
number of non-hydrogen atoms in the crystallographic structure addresses a crucial variability in protein sizes 
used for crystallization. Crystallographers often cleave certain protein fragments to successfully achieve crystal-
lographic structures. Such size variations can significantly influence 3D descriptors, skewing their interpretation. 

Table 1.   Matched Molecular Pairs (MMPs) exclusively manifested as ACs among kinase populations that are 
included in this study.

Pair MMP Target 1 Target 2 Pair MMP Target 1 Target 2

1 PIM1 PIM2 4 PIM1 PIM2

CHEMBL4099731 CHEMBL4097308 CHEMBL3956349 CHEMBL4060101

2 PIM1 PIM2 5 CDK2 GSK3B

CHEMBL4088342 CHEMBL3634758 CHEMBL359554 CHEMBL360866

3 PIM1 PIM2

CHEMBL3676258 CHEMBL3676285

http://protr.org/
https://www.uniprot.org/
http://protr.org/


3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:9058  | https://doi.org/10.1038/s41598-024-59501-w

www.nature.com/scientificreports/

Pr
ot

ei
n 

ki
na

se
U

ni
Pr

ot
 co

de
A

A
 co

un
t

C
ry

st
al

 
st

ru
ct

ur
e 

co
un

t
In

hi
bi

to
rs

 
co

un
t

M
M

Ps
 

co
un

t
A

C
s c

ou
nt

A
C

s/
M

M
Ps

%
Pr

ot
ei

n 
ki

na
se

U
ni

Pr
ot

 co
de

A
A

 co
un

t

C
ry

st
al

 
st

ru
ct

ur
e 

co
un

t
In

hi
bi

to
rs

 
co

un
t

M
M

Ps
 

co
un

t
A

C
s c

ou
nt

A
C

s/
M

M
Ps

%

A
BL

1*
P0

05
19

11
30

12
14

14
85

8
24

2.
8

IT
K

*
Q

08
88

1
62

0
8

73
6

18
1

1
0.

6

A
C

K
1(

TN
K

2)
Q

07
91

2
10

38
7

37
6

54
1

1.
9

JA
K

2
O

60
67

4
11

32
20

17
43

81
6

19
2.

3

A
K

T2
P3

17
51

48
1

4
78

4
20

1
0

0.
0

K
D

R 
(V

EG
FR

2)
P3

59
68

13
56

14
12

76
37

2
8

2.
2

A
LK

Q
9U

M
73

16
20

18
82

7
19

4
0

0.
0

K
IT

(S
C

FR
)

P1
07

21
97

6
5

68
8

18
4

15
8.

2

AU
RK

A
 (A

ur
or

a 
A

)*
O

14
96

5
40

3
19

11
37

34
1

5
1.

5
K

RS
1(

M
ST

2)
Q

13
18

8
49

1
1

81
0

22
8

1
0.

4

A
X

L(
U

FO
)

P3
05

30
89

4
1

43
4

87
0

0.
0

LC
K

P0
62

39
50

9
20

17
61

35
3

1
0.

3

BR
K

(P
TK

6)
Q

13
88

2
45

1
2

39
8

65
1

1.
5

LI
M

K
1

P5
36

67
64

7
4

76
2

16
9

0
0.

0

BT
K

Q
06

18
7 

Q
06

18
7 

Q
06

18
7 

7 
Q

06
18

7 
Q

06
18

7
65

9
18

76
4

17
0

1
0.

6
LY

N
P0

79
48

51
2

2
61

9
17

1
0

0.
0

C
A

M
K

2D
Q

13
55

7
49

9
4

62
6

15
3

0
0.

0
M

A
P4

K
4 

(H
G

K
)

O
95

81
9

12
39

14
98

0
25

1
8

3.
2

C
D

K
2

P2
49

41
29

8
20

11
15

54
1

21
3.

9
M

A
PK

1 
(E

RK
2)

*
P2

84
82

36
0

19
16

53
38

7
2

0.
5

C
H

EK
1 

(C
H

K
1)

O
14

75
7

47
6

19
10

41
27

2
4

1.
5

M
A

PK
13

(S
A

PK
4)

*
O

15
26

4
36

5
4

73
0

18
5

0
0.

0

C
H

EK
2

O
96

01
7

54
3

20
67

5
16

5
0

0.
0

M
A

PK
8 

(J
N

K
1)

P4
59

83
42

7
12

92
7

22
0

0
0.

0

C
LK

2
P4

97
60

49
9

6
88

6
22

0
5

2.
3

M
A

PK
A

(3
PK

)*
 (3

pK
)*

Q
16

64
4

38
2

5
73

7
19

2
0

0.
0

C
LK

4
Q

9H
A

Z1
48

1
1

98
5

20
8

4
1.

9
M

A
RK

2(
EM

K
1)

Q
7K

ZI
7

78
8

3
64

6
16

1
0

0.
0

C
N

K
(P

LK
3)

Q
9H

4B
4

64
6

1
72

2
18

4
0

0.
0

M
EL

K
(P

K
38

)
Q

14
68

0
65

1
18

57
6

14
2

5
3.

5

C
SF

1R
 (F

M
S)

*
P0

73
33

97
2

7
95

9
25

4
11

4.
3

M
ET

P0
85

81
13

90
18

12
65

35
2

1
0.

3

C
SN

K
1A

1 
(C

K
1α

1)
P4

87
29

33
7

1
91

9
22

4
0

0.
0

N
EK

2*
P5

19
55

44
5

19
89

4
22

0
0

0.
0

C
SN

K
1D

P4
87

30
41

5
17

73
3

18
6

0
0.

0
N

TR
K

1 
(T

RK
A

)*
P0

46
29

79
6

17
88

4
22

2
1

0.
5

C
SN

K
2A

1(
C

K
2α

1)
P6

84
00

39
1

19
81

4
21

5
6

2.
8

N
TR

K
2 

(T
RK

B)
Q

16
62

0
82

2
3

91
9

23
4

2
0.

9

cT
A

K
1(

M
A

RK
3)

P2
74

48
75

3
1

76
0

20
2

1
0.

5
N

TR
K

3 
(T

RK
C

)
Q

16
28

8
83

9
4

68
0

14
2

1
0.

7

D
A

PK
3 

(Z
IP

K
)

O
43

29
3

45
4

5
91

9
24

9
2

0.
8

PA
K

1
Q

13
15

3
54

5
8

87
9

25
6

0
0.

0

D
C

LK
1

O
15

07
5

74
0

5
60

8
12

9
0

0.
0

PA
K

4*
O

96
01

3
59

1
13

11
97

35
4

0
0.

0

D
YR

K
1A

*
Q

13
62

7
76

3
20

10
47

27
5

6
2.

2
PD

K
1

Q
15

11
8

43
6

20
70

9
17

9
0

0.
0

EG
FR

 (E
rb

B1
)

P0
05

33
12

10
17

15
57

41
9

11
2.

6
PH

KG
2(

PS
K

-C
3)

*
P1

57
35

40
6

1
58

0
11

6
0

0.
0

EP
H

A
2(

EC
K

)
P2

93
17

97
6

17
69

4
17

4
1

0.
6

PI
3K

-a
lp

ha
P4

23
36

10
68

13
10

75
67

2
8

1.
2

FA
K

1(
PT

K
2)

Q
05

39
7

10
52

19
72

5
15

8
0

0.
0

PI
M

1*
P1

13
09

31
3

17
24

98
13

72
17

1.
2

FE
S*

P0
73

32
82

2
1

39
2

68
0

0.
0

PI
M

2
Q

9P
1W

9
31

1
2

86
6

28
6

5
1.

7

FG
FR

1*
P1

13
62

82
2

8
98

6
25

2
1

0.
4

PK
N

2(
PR

KC
L2

)*
Q

16
51

3
98

4
1

70
1

16
7

4
2.

4

FG
FR

3(
JT

K
4)

P2
26

07
80

6
2

65
7

16
0

0
0.

0
PL

K
1

P5
33

50
60

3
5

82
9

21
8

1
0.

5

FL
T1

*
P1

79
48

13
38

1
15

88
28

6
11

3.
8

PR
K

A
C

A
 (P

K
A

)*
P1

76
12

35
1

17
11

67
37

7
0

0.
0

FL
T3

P3
68

88
99

3
5

10
25

27
5

7
2.

5
PR

KC
I (

PK
C

io
ta

)
P4

17
43

59
6

5
47

9
99

0
0.

0

FY
N

P0
62

41
53

7
1

16
65

32
5

2
0.

6
PY

K
2(

FA
K

2)
Q

14
28

9
10

09
9

42
7

85
0

0.
0

G
SK

3B
 (G

SK
3 

be
ta

)
P4

98
41

42
0

20
13

56
52

9
35

6.
6

RE
T

P0
79

49
11

14
17

72
7

13
8

3
2.

2

H
C

C
S-

4
Q

9N
YL

2
80

0
3

60
4

12
5

0
0.

0
RO

C
K

1
Q

13
46

4
13

54
19

11
27

38
2

0
0.

0

H
ER

2 
(e

rb
B2

)
P0

46
26

12
55

2
13

90
22

2
0

0.
0

RP
S6

K
A

3 
(R

SK
2)

P5
18

12
74

0
8

10
00

26
0

2
0.

8

H
ER

4 
(E

rb
B4

)*
Q

15
30

3
13

08
2

67
0

16
7

0
0.

0
RP

S6
K

B1
 (S

6K
1)

P2
34

43
52

5
13

71
6

18
4

5
2.

7

H
IP

K
2

Q
9H

2X
6

11
98

2
68

0
17

5
0

0.
0

SR
C

P1
29

31
53

6
6

10
56

54
7

7
1.

3

IG
F1

R
P0

80
69

13
67

11
87

0
25

7
0

0.
0

SR
PK

1
Q

96
SB

4
65

5
6

60
9

12
7

0
0.

0

IN
SR

P0
62

13
13

82
2

73
4

18
3

0
0.

0
SY

K
P4

34
05

63
5

18
59

1
16

5
0

0.
0

IR
A

K
4

Q
9N

W
Z3

46
0

20
86

9
26

4
3

1.
1

TY
K

2
P2

95
97

11
87

3
80

2
28

3
0

0.
0

Ta
bl

e 
2.

  C
ol

le
ct

ed
 k

in
as

es
, t

he
ir 

U
ni

Pr
ot

 co
de

, c
ou

nt
 o

f a
m

in
o 

A
ci

d 
(A

A
), 

co
rr

es
po

nd
in

g 
us

ed
 cr

ys
ta

l s
tr

uc
tu

re
s, 

co
lle

ct
ed

 in
hi

bi
to

rs
, M

M
Ps

, A
cs

 a
nd

 %
 A

C
s/

M
M

Ps
. *

Th
es

e 
w

er
e 

in
cl

ud
ed

 in
 

th
e 

te
st

in
g 

se
t.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:9058  | https://doi.org/10.1038/s41598-024-59501-w

www.nature.com/scientificreports/

Pair MMP AC1 Not AC2 Pair MMP AC1 Not AC2

1 2 8 4 2 1

CHEMBL373798 CHEMBL219722 CHEMBL502156 CHEMBL458333

2 2 25 5 4 51

CHEMBL3646211 CHEMBL1977148 CHEMBL1985311 CHEMBL1993722

3 2 1 6 3 65

CHEMBL1290073 CHEMBL1289976 CHEMBL474432 CHEMBL514499

7 3 74 10 2 74

CHEMBL185569 CHEMBL184847 CHEMBL1973145 CHEMBL196363

8 4 48 11 4 64

CHEMBL1981410 CHEMBL260092 CHEMBL1966816 CHEMBL1980142

9 4 34 12 2 61

CHEMBL1973720 CHEMBL2006439 CHEMBL1970317 CHEMBL1980297

(continued)
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Normalizing 3D descriptors by dividing by the number of heavy atoms (excluding hydrogens) effectively miti-
gates this size-related bias. Consequently, comparing 3D descriptors across different protein crystallographic 
structures becomes more meaningful, especially when investigating ligand-induced conformational changes.

For example, if certain protein is represented by 10 crystallographic structures, then ProtrWeb descriptors 
were calculated once for this protein based on its amino acid sequence. The resulting descriptors were then con-
catenated ten times with ten different sets of 3D descriptors corresponding to each crystallographic structure of 
the same protein. Therefore, the section corresponding to this protein in the machine learning training, or testing, 
tables included 10 row entries filled with the same ProtrWeb descriptors and differing 3D descriptors accord-
ing to each crystallographic structure. The repetitive use of slightly differing data is commonly implemented in 
machine learning as data augmentation tool to enhance machine learning models30–32. All protein entries and 
descriptors are shown in supporting Excel file SM1.

Protein kinase inhibitors
Inhibitors of each collected protein kinase together with their associated bioactivity data were gathered from 
ChEMBL database (https://​www.​ebi.​ac.​uk/​chembl/). Only Inhibitors of wild type protein kinases were collected. 
Being largely bioassay-independent, only Ki values were collected for this study. Molecules of approximate Ki 
values such as “>”, “<”, or “~” were excluded. For molecules of multiple Ki values, the corresponding geometric 
average was considered as potency label on the condition that all values fell within the same order of magnitude, 
else they were discarded.

Protein kinase inhibitors are classified as being type I or type II based on the enzyme activation state during 
binding bioassay33,34. Type I inhibitors typically do not require a DFG-out conformation for binding and they 
are compatible with multiple A-loop conformations, i.e., type I inhibitors do not exhibit significant activation 
state preference. In contrast, type II inhibitors bind preferentially to DFG-out conformation33,34. Unfortunately, 
bioactivity data in ChEMBL lack clear and consistent information about the activation state of protein kinases 
during bioassay conditions. To overcome this obstacle, we included only type I kinase inhibitors in this study. 
This was possible based on a Hu et al. study, which identified 70 molecular fragments as type II signatures35. 
Accordingly, SMARTS depictions of all 70 signature fragments35 were generated using Discovery Studio 4.5 and 
were used as queries to separate type II from type I kinase inhibitors.

Eventually, data collection culminated in 72,726 inhibitors of bioactivities ranging from 0.001 nM to a maxi-
mum of 1.0 mM, with lists of inhibitors ranging from 376 to 2498 for each protein kinase.

Table 3.   Matched Molecular Pairs (MMPs) frequently found among kinase ligand populations included in 
this study. 1 Count of protein kinases in which the particular MMP was reported as activity cliff partners among 
corresponding ligands. 2 Count of protein kinases in which the particular MMP was reported to have similar 
potencies (i.e., not activity cliff partners) among corresponding ligands.

Pair MMP AC1 Not AC2 Pair MMP AC1 Not AC2

13
2 59 17 2 44

CHEMBL1970317 CHEMBL1967116 CHEMBL2006010 CHEMBL1980540

14 2 70 18 2 73

CHEMBL404367 CHEMBL1964692 CHEMBL1242373 CHEMBL1994693

15 2 7 19 2 71

CHEMBL1996255 CHEMBL223360 CHEMBL211378 CHEMBL213505

16 2 17

CHEMBL1976936 CHEMBL1997846

https://www.ebi.ac.uk/chembl/
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Analysis of matched molecular pairs and activity cliffs
A pair of ligands is defined as a "matching molecular pair" (MMP) if just one chemical transformation separates 
them from one another26,36. In the current project, MMPs within inhibitors population of each protein kinase 
were identified using the “Find Activity Cliffs using MMPs” protocol implemented in Discovery Studio 4.5. 
The following settings were implemented: The maximum number of heavy atoms in the fragments that define 
an MMP (not including attachment points) was set to 5 atoms. MMPs with bigger fragments are not counted. 
Additionally, the minimum number of heavy atoms in the core that define an MMP (not including attachment 
points) was set to be 10 atoms. MMPs with smaller cores are not counted. MMPs with activity difference threshold 
exceeding 100 folds (i.e., 2 log cycles) were considered to be ACs.

Nevertheless, in order to eliminate the possibility of activity cliffs (ACs) being compound-dependent phe-
nomena, we systematically screened all collected inhibitors to identify shared matched molecular pairs (MMPs) 
across different kinases. Subsequently, we evaluated their bioactivities against the corresponding protein kinases. 
This comprehensive analysis unveiled 24 MMPs consistently observed across different kinase targets. Among 
these, 19 MMPs demonstrated varying AC or non-AC behavior across different kinases, indicating that their 
activity cliff behaviors are independent of the specific compounds (refer to Table 3 in the “Results”), prompting 
their inclusion in the study. Remarkably, five out of the 24 common MMPs exclusively exhibited AC behavior, 
even when assessed against distinct protein kinases (Table 1, see Supporting Excel file SM0 for further details). 
Despite this observation, we chose not to exclude these five MMPs from our investigation, as they were tested 
against only two homologous kinases each. This limited testing context is insufficient to definitively conclude 
that their behaviors are strictly compound-dependent. Table 2 and Supporting Excel file SM1 show the collected 
kinases, the count of collected of inhibitors, MMPs and ACs within each set of inhibitors.

Scanning machine learners (MLs)
In following ML experiments, the calculated protein descriptors served as explanatory variables, while the ratio 
ACs/MMPs (Table 2) served to define the response classes. We classified the collected kinases as follows: Kinases 
with no ACs were assigned to “No ACs” category, those which exhibit 0 < ACs/MMPs% ≤ 1.0% were arbitrary 
assigned to “Low ACs” category. Likewise, kinases with ACs/MMPs% values > 1.0% were arbitrary assigned to 
the “High ACs” category. The collected kinases (Table 2) were randomly divided into training and testing sets. 
The testing set consists of 16 proteins marked with asterisks in Table 2 (see Supporting Excel file SM2) with 154 
crystallographic structures (see supporting Excel file SM3). Where, the training set comprises 64 protein (see 
supporting Excel file SM4) with 617 crystallographic structures (see supporting Excel file SM5). Several MLs 
were scanned to identify the best ML capable of correlating ACs propensity with protein properties.

ML models were evaluated based on their accuracies (Eq. 1)37–39 and Cohen’s Kappa values (κ, Eq. 2)40 in 
classifying the training set into “No ACs”, “Low ACs” or “High ACs” using leave-20%-out cross-validation.

where TP and TN are the numbers of truly identified proteins as “No ACs”, “Low ACs” or “High ACs”, respec-
tively, by the particular ML. N is the number of all observations in the training list. Pe is the probability of chance 
agreement (hypothetical) calculated from the probabilities of each observer randomly seeing each category in the 
data. Po is the relative observed accuracy (i.e., agreement among raters). If the raters (i.e., real versus predicted 
ACs responses) are in complete agreement, then κ = 1. If there is no agreement among the raters other than what 
would be expected by chance (as given by Pe), κ = 0. Negative Cohen’s kappa value implies the agreement is worse 
than random, while 0.01–0.20 as none to slight agreement, 0.21–0.40 as fair agreement, 0.41–0.60 as moderate 
agreement, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement40.

Leave-20%-out (or fivefold cross-validation) validation involves excluding 20% of the training data points, 
then constructing the ML model using the remaining training data. The resulting model is subsequently used 
for classifying the excluded data. The procedure is repeated until all data points are excluded from the training 
list and predicted at least once. Accuracy and Cohen’s Kappa values are computed by comparing ML model 
classification results with real bioactivity classes. Conversely, calculating accuracy and Cohen’s Kappa values 
against the testing set involves comparing the classification results of the particular ML model with the actual 
classes of the testing data24.

Assessed machine learners
Due to substantial variances in ProtrWeb-generated descriptors, and a notable lack of normalization in a sig-
nificant portion of them, our evaluation focused on machine learning algorithms that do not strictly require 
data normalization. Specifically, we considered extreme gradient boosting, random forest, and Naïve Bayesian 
algorithms, as they are known for their resilience to feature scaling issues41–43. On the other hand, we chose to 
assess the probabilistic neural network learner node implemented in KNIME because it automatically normal-
izes input features24.

Extreme Gradient Boosting (XGBoost): XGBoost is a decision tree (DT)-based method that uses an ensem-
ble of weak DT-type models to create new boosted DT-type models with a reduced loss function44. We imple-
mented the XGBoost Learner node within KNIME Analytics Platform (Version 4.1.3) with the following set-
tings: Tree booster was implemented with depth wise grow policy, boosting rounds = 100, Eta = 0.3, Gamma = 0, 

(1)Accuracy =
TP+ TN

N

(2)κ =
Po− Pe

1− Pe
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maximum depth = 6, minimum child weight = 1, maximum delta step = 0, subsampling rate = 1, column sampling 
rate by tree = 1, column sampling rate by level = 1, lambda = 1, Alpha = 0, sketch epsilon = 0.03, scaled position 
weight = 1. Maximum number of bins = 256, Sample type (uniform), Normalize type (tree), and Dropout rate = 0.

Random Forest (RF): RF is a classification multipurpose ML strategy based on Decision Trees ensembles 
(DTs)45. Each individual tree independently predicts a classification and “votes” for the related class. Majority 
of the votes decide the overall predictions. We implemented Weka-RF learner node within KNIME Analytics 
Platform (Version 4.7.5) with the following settings: Splitting criterion is the Information Gain Ratio (normalizes 
the standard information gain by the split entropy to overcome any unfair preference for nominal splits with 
many child nodes), Number of trees = 100. No limitations were imposed on the number of levels or minimum 
node size. The accuracy was calculated using out-of-bag internal validation.

Naïve Bayesian (NB): NB classifier assumes each descriptor to contribute independently to the probability 
that certain observation (e.g., a protein kinase) belongs to a particular class (e.g., having or not having ACs). 
The probability of certain observation to belong to a particular class is the multiplication of the individual prob-
abilities of that class within each individual descriptor46,47. We implemented NB learner node within KNIME 
Analytics Platform (Version 4.7.5) with the following parameters: Default probability = 0.0001, minimum stand-
ard deviation = 0.0001, threshold standard deviation = 0.0 and maximum number of unique nominal values per 
attribute = 20.

Probabilistic neural network (PNN): Probabilistic neural network (PNN) based on the Dynamic Decay 
Adjustment method on labeled data using Constructive Training of Probabilistic Neural Networks as the underly-
ing algorithm48,49. We implemented PNN Learner node within KNIME Analytics Platform (Version 4.7.5) using 
PNN theta minus = 0.2 and theta plus = 0.4 and without specifying maximum number of epochs so that the PNN 
process is repeated until stable rule model is achieved.

Global feature importance (GFI)
The enormous number of protein descriptors (about 9900) suggests that any associated ML model(s) would 
probably encounter overfitting problems. Additionally, numerous descriptors render the process of genetic min-
ing for optimal subset of descriptors quite challenging. Therefore, it is crucial to limit the number of descriptors 
of reasonable ML models (found during ML scanning) to only those that could be impactful. This was done by 
removing constant values and low variability descriptors (done automatically by ML KNIME nodes) followed by 
implementing the Global Feature Importance (GFI) KNIME node. This component identifies influential descrip-
tors and rank them according to their importance. It requires a testing set that represents the entire distribution 
of the training set. GFI implements surrogate models, which are simply interpretable models that are trained to 
mimic the behavior of the original model by overfitting its predictions. The assumption is that if the interpretable 
surrogate model can accurately predict the same outcomes as the original model, it may be used to understand 
how the input features relate to those outcomes.

Surrogate Random Forest model was implemented in the current research. In this model, feature significance 
is determined by tallying the number of splits a feature has received and at what rank (level) inside the random 
forest trees50. GFI was applied against best performing MLs, namely, XGBoost44 and RF45. The resulting models 
(each ML with associated descriptors of GFI exceeding zero) were validated by judging their classification powers 
(Accuracy and Cohen’s kappa values) based on their abilities to correctly classify testing and training sets into 
“No ACs”, “Low ACs” or “High ACs”. The leave-20%-out cross-validation was used for the training set.

Genetic algorithm (GA)
Successful MLs were subsequently combined with GA to select subset of descriptors, from those designated to 
be impactful by GFI, to construct optimal ML models.

The GA cycle is comprised of four phases27: (1) Encoding mechanism; (2) Determination of a fitness func-
tion; (3) Creation of a chromosomal population; (4) Genetic manipulation of chromosomes. This article imple-
ments a gene-based encoding system in which suggested models are encoded as vectors (chromosomes) and 
the presence or absence of descriptors in a given model is encoded by individual bins (genes), i.e., each value 
in the gene string representing an independent variable (0 = absent, 1 = present). An initial number of random 
models (chromosomes) are generated. Each chromosome has a fitness value that indicates how successful it is 
in comparison to other chromosomes. Genetic manipulation involves mating among successful chromosomes 
and mutation of some genes within randomly selected chromosomes. The GA KNIME node was implemented 
herein using the following parameters27: Population of initial random chromosomes = 100, maximum number of 
generations to exit from a genetic selection cycle = 500. The fitness criterion was configured to be Cohen’s Kappa 
value of the ML model resulting from features selected by each genetic chromosome (implementing leave-20%-
out cross-validation for the training set).

ML model evaluation using variable classification thresholds
To further assess the robustness of the successful ML models (i.e., GA-RF and GA-XGboost, see Machine 
Learning section in “Results”) we opted to challenge them against two distinct additional kinase classification 
approaches, namely, (A) A binary classification scheme in which kinases with no ACs were assigned to “No ACs” 
category, while those of ACs/MMPs% > 0% were assigned to the “With ACs” category (Threshold A in Table 4). 
(B) A ternary classification scheme in which kinases with no ACs were assigned to “No ACs” category, while 
those showing 0 < ACs/MMPs% ≤ 2.59% were assigned to the “Low ACs” category. However, kinases with ACs/
MMPs% values > 2.59% were assigned to the “High ACs” category (Threshold B in Table 4). The value 2.59% is 
the average of ACs/MMPs percentage + 1.0 standard deviation calculated for the collected kinases.
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Y‑scrambling
To validate our models and rule out chance correlations, we performed Y-scrambling51 using 1000 random 
bioactivity data generated from the training sets. Herein, the successful machine learners were challenged to 
create ML models using random data that were as accurate as the original nonrandomized data based on Leave-
20%-Out cross-validations. We repeated Y-scrambling using GA feature selection and all impactful descriptors 
defined by GFI (180 features).

Influence of binding sites on ACs propensity
To explore the potential impact of binding site properties on the likelihood of having ACs within protein kinase 
inhibitors, binding site exclusive descriptors were computed for the collected crystallographic complexes (771 
structures) using the ProteinsPlus online tool (https://​prote​ins.​plus)52. The calculated descriptors included count 
of hydrogen bond acceptors, count of hydrogen bond donors, count of hydrophobic moieties, count of heavy 
atoms (i.e., non-hydrogen atoms), count of metal ions, binding site depth (in Å), surface area (in Å2), volume (in 
Å3) and surface area-to-volume ratio (see supporting Excel file SM6). Subsequently, XGBoost and RF machine 
learners were separately coupled with genetic algorithm to select binding site descriptors that collectively exhibit 
best possible correlation with the propensity of having ACs. The default threshold was used as response in ML 
(Kinases with no ACs were assigned to “No ACs” category, those which exhibit 0 < ACs/MMPs% ≤ 1.0% were arbi-
trary assigned to “Low ACs” category. Likewise, kinases with ACs/MMPs% values > 1.0% were arbitrary assigned 
to the “High ACs” category). The resulting ML models were evaluated based on their accuracies (Eq. 1)37–39 and 
Cohen’s Kappa values (κ, Eq. 2)40 in classifying the training (using leave-20%-out cross-validation) and testing sets.

Table 4.   The best MLs models and their success statistical criteria. a Tripeptide composition defined as 
Ntripeptide/(N-2), where Ntripeptide is count of the particular tripeptide in the protein and N is length of the protein 
sequence. FTA: phenylalanine, threonine and alanine; VME: valine, methionine and glutamic acid; YDG: 
tyrosine, aspartic acid and glycine; GTT: glycine and two threonine; EFV: glutamic acid, phenylalanine and 
valine; VQH: valine, glutamine and histidine; DPS: aspartic acid, proline and serine; EMY: glutamic acid, 
methionine and tyrosine; DAYM780201.lag5 and CHAM820101.lag6 are Moran autocorrelation descriptors 
and prop5.G2.residue0 is composition, transition, and distribution descriptor. b Training set provided in 
Table 2 (supporting Excel file SM4). c Testing set: marked with asterisks in Table 2 (supporting Excel file SM2). 
d Y-scrambling results are shown in supporting folder 2. e Accuracy: as in Eq. (1). f Cohen’s κ: as in Eq. (2). 
g Kinases without any ACs classified as “No ACs” category, kinases with 0 < ACs/MMPs ≤ 1 classified as “Low 
ACs”, and kinases with ACs/MMPs > 1.0% classified as “High ACs”. h Kinases without any ACs classified as “No 
ACs” category, and kinases with ACs classified as “With ACs”. i Kinases without any ACs classified as “No ACs” 
category, kinases with 0 < ACs/MMPs ≤ 2.59% classified as “Low ACs”, and kinases with ACs/MMPs > 2.59% 
classified as “High ACs”. j Scrambling was performed based on genetic selection of descriptors of the best 
models (XGboost or RF). k Scrambling was performed based on impactful descriptors defined by GFI (180 
descriptors).

ML
GA-selected 
featuresa

Activity cliffs 
definitions

Leave-20%-out cross validation 
using training setb External testing setc

Average of 1000 Y-Scrambling 
trials based on Leave-20%-Outd 
cross-validation of training data 
(maximum values in brackets)

Accuracye Cohen’s κf Accuracye Cohen’s κf

GA feature 
selectionj

GFI-Selected 
Featuresk

Accuracy/Cohen’s κ
Accuracy/
Cohen’s κ

GA-XGboost

VME Default ACs 
Definitionsg 0.69 0.49 0.69 0.52 0.38 (0.59)/− 0.02 

(0.35)
0.38 
(0.61)/− 0.03 
(0.34)GTT​

YDG
Threshold (A)h 0.80 0.59 0.81 0.61 0.50 (0.72)/− 0.02 

(0.44)
0.49 
(0.78)/− 0.03 
(0.56)FTA

EFV
Threshold (B)i 0.77 0.59 0.63 0.37 0.41 (0.66)/− 0.03 

(0.40)
0.41 
(0.70)/− 0.03 
(0.49)DAYM780201.lag5

GA-RF

VME Default ACs 
Definitionsg 0.67 0.47 0.75 0.62 0.38 (0.63)/− 0.01 

(0.38)
0.39 
(0.56)/− 0.02 
(0.29)GTT​

DPS
Threshold (A)h 0.78 0.56 0.69 0.38 0.49 (0.70)/− 0.02 

(0.41)
0.49 
(0.72)/− 0.03 
(0.42)VQH

EMY

Threshold (B)i 0.67 0.43 0.69 0.49 0.41 (0.63)/− 0.02 
(0.36)

0.42 
(0.63)/− 0.03 
(0.34)

CHAM820101.lag6

prop5.G2.residue0

https://proteins.plus
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Results
While earlier efforts related to ACs focused on the structural characteristics of MMPs to explain the 
phenomenon1,4–6,8,9,11,12,15,26,35, instances where MMPs exhibit ACs behavior upon interacting with some protein 
kinases while maintaining similar affinities with others led us to perceive ACs as protein-related phenomenon. 
Table 3 provides examples of closely analogous compounds (MMPs) exhibiting distinct bioactivity behaviors 
among various protein kinases. For instance, pair 1 in Table 3 exemplifies a single substituent variation, wherein 
the hydrogen atom is replaced with a fluorine atom. This alteration leads to notable differences in affinity against 
two kinases, namely, FLT3 and KIT, with potency varying by at least 100-folds. However, the same pair exhibits 
similar affinities (i.e., does not demonstrate ACs behavior) towards eight different protein kinases, specifically 
ABL1, CSF1R, FLT1, FYN, KDR, LCK, LYN, and SRC (refer to supporting Excel file SM0 for additional details 
in this regard).

Data collection
Although activity cliffs can be artificially introduced for any protein target (e.g., by introducing an extra meth-
ylene group to a tightly fitting ligand or by replacing a deeply buried hydrogen atom with a strongly hydrophilic 
moiety like sulfonate), it can be safely assumed that such artefacts are not found in the ChEMBL database. This 
is because compounds deposited in ChEMBL are not random structures; rather they were deliberately designed 
by medicinal chemists in such a way to avoid loss of bioactivity. Consequently, the protein kinases we identified 
as cliff forming are, in reality, kinases that have the unique ability to deceive human medicinal chemists into 
generating activity cliffs.

However, it is still essential to collect accurate ligand binding data to successfully assess any potential rela-
tionship between protein characteristics and the propensity of having ACs. Therefore, in order to minimize the 
impact of inter-laboratory differences frequently present with bioactivity indicators (e.g., IC50), we only included 
inhibitors whose bioactivities were reported as Ki values53. Moreover, we limited ourselves to type I protein kinase 
inhibitors and excluded type II kinase inhibitors. This was performed by fitting the collected inhibitors against 
signature fragments identified for type II kinase inhibitors35. Inhibitors with matching fragments were excluded. 
ACs were defined as MMPs of bioactivity difference exceeding 100 folds.

It can be argued that the presence or absence of ACs can be a function of the explored chemical space of the 
particular protein kinase. For example, absence of ACs for a particular protein kinase is due to limited medicinal 
chemistry exploration rather than intrinsic factors associated with the protein kinase itself. Furthermore, certain 
ACs may be published in IC50 format, while others may not be reported at all since the researchers simply did 
not bother to measure Ki or IC50 for the inactive AC members after noticing their low % inhibition at a certain 
inhibitor concentration.

Therefore, we took two steps to address these issues. Firstly, we only collected protein kinases that have large 
number of reported ligands, in particular MMPs. We considered ACK1 (Table 2) as baseline threshold to include 
or exclude any protein kinase in the study. ACK1 has one reported AC among 54 MMPs (originating from 
376 reported inhibitors), which is the least count of MMPs among all protein kinases reported to exhibit ACs 
(based on our data collection rules, e.g., Ki data only). As a result, it is reasonable to assume that if the binding 
space of a specific protein kinase has been explored by more than 54 MMPs without identifying any ACs, then 

Figure 1.   Counts of protein kinases in different classes as function to the count of reported MMPs in ChEMBL 
database.
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this target is likely to be resistant to the ACs phenomenon. Based on this reasonable assumption, we gathered 
protein kinases of at least 54 known MMPs. Above this limit, the presence of even a single AC indicates that the 
particular protein kinase is susceptible to AC phenomenon. Still, it would be unfair to assume that all proteins 
in this category behave similarly; a kinase showing numerous ACs among its MMPs should differ significantly 
from another kinase displaying rare ACs despite having an equivalent number of MMPs.

Therefore, to deal with this dilemma we initiated our modeling endeavors by attempting regression-based 
machine learning to establish a correlation between the normalized counts of ACs, i.e., the ratio of ACs-to-
MMPs, with protein properties. Regrettably, all our efforts in this direction proved unsuccessful, as indicated by 
numerous unpublished ML trials, which we believe is due to limited data.

This prompted us to take our second step in tackling the challenges presented by ACs-related data limitations, 
namely, by transitioning to classification-based machine learning. In this direction, we categorized the collected 
kinases into three classes based on their ACs population: Kinases without any ACs were designated to the “No 
ACs” category, those with an ACs/MMPs ratio percentage between 0 and 1.0% were arbitrary placed in the “Low 
ACs” category, and kinases with an ACs/MMPs percentage of > 1.0% were grouped in the “High ACs” category.

Figure 1 shows the counts of "No ACs", "Low ACs" and "High ACs" protein kinases as function of their 
reported MMPs in ChEMBL database. Clearly, from the graph the “No ACs” category supersedes the "Low ACs" 
and "High ACs" categories in the first three intervals, i.e., 50–200. However, although protein kinases of higher 
MMPs counts (> 200) incline towards the ACs-vulnerable classes, still significant “No ACs” minority exists within 
these categories, which emphasizes the existence of AC-resistant protein kinases despite extensive medicinal 
chemistry exploration. Conclusions from Fig. 2 provided impetus for our proposition that the existence/absence 
of ACs, within certain protein kinase binders, points to the level of resistance/vulnerability of that target to ACs 
regardless to the extent of explored chemical space. Therefore, our use of the terms "No ACs", "Low ACs" and 
"High ACs" are very plausible surrogates for AC resistance/vulnerability, and should limit errors resulting from 
data restrictions due to the limited number of collected protein kinases, excluding IC50 values, or total absence 
of bioactivity data covering the inactive AC members as mentioned earlier. In other words, members of the 
“No ACs” category will remain to be considered resistant to ACs even if future extensive medicinal chemistry 
exploration unveils few ACs or if we overstepped some of their ACs because the corresponding bioactivities data 
were expressed as IC50 values, etc.

On the proteins side, because all protein kinases have comparable ATP catalytic sites that are frequently 
targeted by customized inhibitors, we hypothesize that the proclivity to have ACs is related to the entire protein 
matrix, not just the binding site23. Accordingly, complete FASTA codes of the selected targets were downloaded 

Figure 2.   Three-dimensional plot of the top three principal components calculated based on Protr 9920 
descriptors for the collected modelled list of protein kinases (red filled circles) compared to 509 known protein 
kinases (black filled circles).
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from UniProt (https://​www.​unipr​ot.​org/). ProtrWeb (http://​protr.​org/) was used to generate fairly large number 
of diverse structural and physicochemical descriptors for the collected proteins28. However, due to the limited 
number of collected protein kinases (only 80), we opted to augment them by multiple crystallographic structures 
for each protein target. Corresponding three-dimensional (3D) descriptors were included as additional explana-
tory descriptors. This should also be valuable in evaluating the effects of 3D descriptors extracted from crystal-
lographic structures on the ACs phenomenon: Numerous crystallographic ligand–protein structures should help 
to determine whether the magnitude of protein conformational shifts upon binding ligand correlates with the 
likelihood of encountering ACs within the corresponding ligand population. Such conformational modifica-
tions can be easily enrolled in machine learning models represented by counts of hydrogen bonds, electrostatic 
interactions, van der Waals forces, and π–π stacking interactions within the protein matrix. Overall, the study 
included 771 protein crystallographic structures representing 80 protein kinases.

Despite their limited number, the collected kinases are good representatives of the population of known pro-
tein kinases (508 members) as in Fig. 2. Clearly, the collected kinases uniformly mingle within the population of 
protein kinases in a 3D plot of the three main principal components calculated based on ProtrWeb descriptors 
(ca. 9900 descriptors).

Machine learning (ML)
We subsequently applied ML to evaluate how relevant protein descriptors to the propensity of having ACs. Clas-
sification ML studies commenced by splitting the collected kinases into training and testing sets (as in Table 2, 
testing compounds are marked with asterisks). The training list included 617 crystallographic complexes (cor-
responding to 64 protein kinases, equivalent to ca. 80% of the collected protein kinases list) of which 238 are 
labeled as “No ACs”, 101 are labeled as “Low ACs” and 278 are labeled as “High ACs”. The testing set, on the 
other hand, included 154 complexes (corresponding to 16 protein kinases, equivalent to ca. 20% of the collected 
protein kinases list, marked with asterisks in Table 2) of which 45 are labeled as “No ACs”, 52 labeled as “Low 
ACs” and 57 labeled as “High ACs”. Supporting Excel files SM3 and Supporting Excel files SM5 show all details 
of the training and testing sets.

Subsequently, several machine learners were scanned to identify which can best correlate protein proper-
ties with the tendency of having ACs. All protein descriptors were incorporated in this stage including three-
dimensional descriptors extracted from crystallographic structures. Two prominent learners emerged from this 
tournament, namely, XGBoost (XGB) and Random Forest (RF).

RF is a supervised ML method composed of combination of uncorrelated decision tree (DT) predictors 
whose prediction by committee is more accurate than that of any individual DTs45. XGBoost, on the other hand, 
is a tree-based standardized ensemble method that uses an ensemble of weak DT-type models to create new 
subsequent boosted DT-type models with a reduced loss function44.

However, to avoid overfitting due to the large number of protein descriptors (ca. 9,900), we opted to imple-
ment the Global Feature Importance (GFI) KNIME node to identify influential descriptors and rank them 
according to their significance vis-à-vis propensity of having ACs. GFI assessment identified 180 features of 
global importance values exceeding zero for both models (feature significance is computed by calculating the 
number of times and level at which a feature was selected for a split among all available features in a surrogate 
RF model). Expectedly, dimensionality reduction using GFI (from 9928 to 180 descriptors) enhanced the predic-
tive power of XGBoost and RF learners against the testing set (see supporting Excel file SM7 for more details).

Remarkably, only amino acid sequence-dependent, i.e., Protr-generated, descriptors emerged as impact-
ful in the GFI analysis, while their 3D counterparts failed to do so and were totally excluded. Still, we took an 
additional step to exclude the possibility that this failure is because of the limited number of 3D descriptors 
(8 including 4 reversible binding intra-protein interactions and their normalized forms) compared to Protr-
generated descriptors (~ 9920): We reduced the dimensionality of ProtrWeb descriptors to ten latent variables 
using PCA. Subsequently, we re-assessed the GFI of the 18 descriptors (i.e., 10 Protr-based PCA-descriptors and 
8 3D-descriptors). The details can be found in supporting Excel file SM8. Significantly, nine of the Protr latent 
variables ranked above their 3D counterparts. This behavior suggests that the protein sequence is essentially the 
main player in the propensity of having ACs rather than any protein conformational rearrangements induced 
upon ligand binding (encoded in the 3D crystallographic structures of the proteins). Moreover, the poor impact 
of the 3D descriptors suggests that adding the crystallographic structures served only to augment the datapoints 
by repetition, which might cause unforeseen biases within the training data. Therefore, we decided to carry out 
subsequent machine learning steps using the original unaugmented training and testing sets (i.e., 80 protein 
targets divided into 64 and 16 training and testing observations, respectively, see supporting Excel files SM2 and 
supporting Excel files SM4).

Despite the ability of GFI-embedded RF to rank features based on their impact on response, its capacity to 
identify feature interactions diminishes with a larger number of features54. Furthermore, the commonly used 
Permutation Feature Importance (PFI) metric in RF models has limitations when dealing with strongly correlated 
features55. Therefore, we opted to engage GFI-filtered descriptors in genetic algorithm (GA) feature-selection 
tournaments to identify the most impactful set of protein properties that influence ACs propensity. Incidentally, 
we refrained from implementing PCA-based latent variables in subsequent ML modeling due to their ambigu-
ous inferences.

Table 4 shows the resulting models, their descriptors and statistical criteria. Clearly, GA-XGboost and GA-RF 
achieved significant accuracies and Cohen’s Kappa values upon GA-driven feature reduction. The Cohen’s Kappa 
values of both models ranged from 0.47 to 0.62 against training (Leave-20%-Out) and testing sets (Table 4, default 
ACs definitions) indicating moderate to substantial reliability56,57. Nonetheless, the two models fell short of per-
fect reliability (i.e., κ from 0.81 to 1.0)40,56,57, implying the existence of additional factors contributing to the ACs 

https://www.uniprot.org/
http://protr.org/
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phenomenon, e.g., trapping a water molecule in the binding site, the ligand being a bit too big for a tight pocket, 
or weakening a crucial protein–ligand interaction. Another interesting inference from Table 4 is the apparent 
orthogonality of the two ML models, as can be deduced from their differing descriptors, suggesting the possibility 
of stacking the two ML models in a meta-learning model (e.g., consensus voting)58.

However, in our definition of ACs, we relied on Ki values to mitigate the inter-laboratory variabilities com-
monly observed in IC50 values. This approach may have overlooked some information pertaining to ACs associ-
ated with IC50 data. Consequently, it is possible that certain kinases, initially labeled with a low number of ACs, 
may indeed have more ACs reported in IC50 format. Furthermore, protein kinases initially categorized with a low 
number of ACs might exhibit additional ACs in future research, potentially transitioning from the “Low ACs” 
to the “High ACs” class. Considering these possibilities, we chose to assess our models using an extra two-class 
response: “With ACs” and “Without ACs”. Similarly, to account for the potential scenario where certain protein 
kinase members labeled as “High ACs”, in our default ACs classification, could gain even more ACs in future 
research, leading to a division within this category between those with significantly more ACs and those closer 
to the “Low ACs” category, we deemed it reasonable to expand the “Low ACs” category. Therefore, we thought 
it is reasonable to expand the “Low ACs” category to include such members using the concept of “mean plus 
one standard deviation”. Needless to say, this concept is used in statistical analysis to identify values that are 
significantly different from the average59.

Therefore, as additional validation of our optimal GA-ML models we decided to evaluate them on the basis 
of two additional alternative ACs definitions (i.e., ACs thresholds), namely, (A) A binary classification in which 
kinases with no ACs were assigned to “No ACs” category, while those of ACs/MMPs% > 0% were assigned to 
“With ACs” category (Threshold A in Table 4). (B) A ternary classification in which kinases with no ACs were 
assigned to “No ACs” category, while those showing ACs were further divided into two groups based on the 
average of their ACs/MMPs% values plus one standard deviation (equals 2.59%). Therefore, kinases exhibiting 
0 < ACs/MMPs% ≤ 2.59% were assigned to the “Low ACs” category. While, kinases of ACs/MMPs% values > 2.59% 
were assumed to be significantly different from the mean, and therefore, were assigned to a distinct “High ACs” 
category (Threshold B in Table 4). Clearly, from Table 4, both optimal ML models (GA-RF and GA-XGboost) 
maintained successful statistical criteria against training and testing sets despite varying ACs class definitions. 
Noticeably, both optimal models demonstrated successful statistical performance on both training and testing 
sets, despite variations in ACs class definitions. However, GA-XGboost exhibited the best performance when 
utilizing the binary kinase classification (Threshold A, Table 4). On the other hand, the GA-RF model showed 
better performance in the ternary classification system (Threshold B, Table 4) compared to its performance in the 
binary classification system (Threshold A). This trend suggests that GA-XGboost and GA-RF are complementary 
models, and using them together should enhance the prediction accuracy of ACs propensities among kinases.

To rule out the possibility of chance correlations, we opted to validate our models using Y-scrambling51. 
1000 random bioactivity data were created from the training sets. Then, the successful machine learners were 
challenged to create ML models using random data as accurate as the original nonrandomized data based on 

Table 5.   The best possible ML models connecting binding site properties with ACs propensity at default ACs 
Definition. a Acceptors: Count of hydrogen bond acceptor within the binding pocket, Depth: the depth of the 
binding pocket in Å extending from outer rim to the furthest point in the biding site, Hydrophobicity: count 
of hydrophobic amino acids in the binding pocket, Heavy Atoms: sum of the non-hydrogen atoms within 
the binding pocket, Volume: the volume of the binding pocket in Å3, Surface: the surface area of the binding 
pocket in Å2. b Training set and Testing set are provided in Supporting File SM6. c Accuracy: as in Eq. (1). 
d Cohen’s κ: as in Eq. (2).

ML GA-selected featuresa

Training setb leave-20%-out cross validation External testing setb

Accuracyc Cohen’s κd Accuracyc Cohen’s κd

GA-XGboost

Acceptors

0.46 0.12 0.42 0.11

Depth (Å)

Hydrophobicity

Heavy Atoms

Volume (Å3)

GA-RF

Acceptors

0.50 0.15 0.44 0.14

Depth (Å)

Hydrophobicity

Heavy Atoms

Surface (Å2)

Volume (Å3)
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Leave-20%-Out cross-validations. We repeated Y-scrambling based on (1) GA feature selection, and (2) all 
impactful descriptors defined by GFI (180 features). The results of 1000 Y-scrambling trials are summarized in 
Table 4, while the detailed results can be found in supporting folder 2. Notably, the nonrandomized training 
sets unanimously yielded models of higher leave-20%-out cross-validation accuracies and Cohen’s Kappa values 
compared to all their corresponding randomized experiments (whether GA-selected or impactful GFI descrip-
tors). Overall, these findings strongly emphasize the validity of the two machine learning models.

Although kinase-binding sites are generally conserved to bind to ATP, we opted to investigate any potential 
role played by binding sites on the ACs phenomenon. Towards this, we explored the possibility of correlating 
binding site exclusive properties with the propensity of ACs through ML. However, given that kinase-binding 
sites consist of non-continuous amino acid sequences originating from distinct parts of the protein chain, it 
is inappropriate to extract Protr-based descriptors for binding sites. This is because the Protr package neces-
sitates continuous, uninterrupted amino acid sequences for proteins under assessment [28]. As an alternative, 
we chose to extract 3D properties reflecting the pharmacophoric characteristics of the binding sites of the col-
lected crystallographic complexes (771 structures) using the ProteinsPlus online tool (https://​prote​ins.​plus, see 
the experimental section Influence of Binding Sites on ACs Propensity) [52]. The computed descriptors were 
then utilized to search for optimal ML models employing the best-performing machine learners in our study, 
namely XGBoost and RF, coupled with genetic algorithm. The resulting models and their success criteria are 
summarized in Table 5. Clearly, the best possible ML models failed to correlate exclusive binding site properties 
with the likelihood of having ACs. 

Discussion
Unsurprisingly, all our attempts to exclusively correlate the ACs phenomenon with kinase-binding sites failed to 
reveal any feasible relationship. This conclusion is substantiated by experimental evidence.

For instance, Fig. 3 illustrates crystallographic complexes corresponding to an AC pair bound within the 
protein kinase KDR (PDB codes 3CP9 and 3CPC). Both ligands are evidently closely aligned within the bind-
ing pocket and are anchored via identical binding interactions. Notably, the two compounds exhibit only slight 
differences at the binding site’s orifice, located distantly from their primary binding interactions within KDR’s 
binding site, as depicted in Fig. 3B. Remarkably, the binding pocket maintains the same conformational state 
upon binding to both ligands, indicating minimal involvement of the binding pocket in the ACs phenomenon.

These conclusions underscore the entire protein matrix as the fundamental factor in controlling this phe-
nomenon. Conversely, while relying on machine learning-selected protein descriptors to extract deep insights 

N
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O

H
N

NH2

C19, IC50 = 48 nM

N

N

N

OF

NH2

F
F

C52, IC50 = 5000 nM

A B

C D

Figure 3.   Crystallographic structures of KDR co-crystallized with AC pair (PDB codes: 3CP9 and 3CPC). (A) 
Superimposi tion of complexed ligands C19 (purple) and C52 (cyan) within KDR showing binding interactions 
anchoring the bound ligands, H-bonds are shown as green dotted lines, hydrophobic and π-stacking interactions 
are shown as pink and light pink dotted lines. (B) Water-accessible surface (Brown, Connelly’s Surface) covering 
KDR protein complexed with superimposed AC pair. (C, D) Chemical structure of C19 and C52.
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into the mechanisms underlying ACs may not be very satisfactory, machine learning remains feasible to draw 
some inferences about the protein factors that affect the formation of ACs. Clearly, from Table 4, the best GA-ML 
models reveal that certain tripeptide sequences apparently play certain role in the propensity of ACs. Notably, 
the tripeptide sequences FTA (phenylalanine, threonine, and alanine), VME (valine, methionine, and glutamic 
acid), YDG (tyrosine, aspartic acid, and glycine), GTT​ (glycine and two threonine), EFV (glutamic acid, phe-
nylalanine, and valine), VQH (valine, glutamine, and histidine), DPS (aspartic acid, proline, and serine), and 
EMY (glutamic acid, methionine, and tyrosine) are of particular significance. Likewise, emergence of the Moran 
autocorrelation descriptors DAYM780201.lag5 (relative mutability index) and CHAM820101.lag6 (a polariz-
ability parameter), as well as the composition, transition, and distribution descriptor prop5.G2.residue0 in the 
optimal GA-ML models suggests significant influence of inherent properties of the entire protein on the likeli-
hood of the occurrence of ACs28,54,55,60–62.

Table 6 illustrates how these descriptors vary across different kinase classes (defined by our default ACs 
definitions). The VME tripeptide composition descriptor scored highest frequency of appearance (and average 
value) among “No ACs” class compared to the other two classes where it only emerged marginally. YDG trip-
eptide composition shows similar trend as it consistently decreased upon moving from “No ACs” to “Low ACs” 
and “High ACs”. Likewise, VQH tripeptide composition is totally absent from the “High ACs” category. On the 
contrary, the GTT​ tripeptide composition is absent in the “No ACs” category but shows an escalating appearance 
in the “Low ACs” and “High ACs” classes with frequencies of 6.3% and 21.4%, respectively. The corresponding 
averages of the GTT​ tripeptide composition follows a similar trend. Likewise, the EMY tripeptide composition 
exhibits a consistent increase as we move from the "No ACs" to the "Low ACs" and "High ACs" categories.

Notably, Table 4 indicates that the tripeptide compositions VME and GTT​ are particularly prominent in both 
optimal models, highlighting their significance. Unquestionably, when two distinct machine-learning models 
concur on particular shared features, it significantly strengthens the potential significance of these features. 
Table 6 further supports this finding, where these two descriptors show a clear correlation with ACs-related 
kinase classes.

However, the behaviors of other GA-ML selected descriptors, including the tripeptide compositions EFV, 
FTA, and DPS, as well as the Moran autocorrelation descriptors DAYM780201.lag5 and CHAM820101.lag6, 
and the composition, transition, and distribution descriptor prop5.G2.residue0, do not show a clear correlation 
with the ACs propensity. Nevertheless, their appearance in the optimal ML models indicates certain complex 
roles played by these descriptors in the ACs phenomenon.

To delve further into the role these specific tripeptides play in the ACs phenomenon, we sought to address 
several inquiries: Where within the protein kinases do these tripeptides reside? Do they exhibit greater prevalence 
within specific kinase subfamilies? Are these motifs associated with particular functional or structural motifs 
that could elucidate the observed outcomes? To address these inquiries, we compiled comprehensive information 
regarding the families and subfamilies of the collected protein kinases, along with the specific domains where 
each of the tripeptides is situated within their corresponding kinases. The collected information is shown in sup-
porting excel file SM9. The data suggests that there is no discernible trend in the distribution of these tripeptides 
among specific protein kinase families or subfamilies. However, approximately 52% of these tripeptides belong 
to the protein kinase domains of the collected proteins. Still, the remaining 48% are dispersed across various 
domains without exhibiting any discernible pattern. Overall, based on this information, it is challenging to 
draw definitive conclusions regarding how these specific tripeptide sequences influence the ACs phenomenon. 
Nevertheless, as pioneers in proposing the protein-related nature of the AC phenomenon, we hypothesized in 
earlier publications that the presence of potent AC twin members induces substantial, entropy-driven confor-
mational changes in the target protein24,25. This hypothesis finds support in experimental evidence. For instance, 

Table 6.   Descriptor variabilities among collected kinasesa. a Classes as demarcated by the default ACs 
definitions. b The percentage of kinases in the corresponding category that have the specific tripeptide at least 
once in their amino acid sequences. c Average of tripeptide composition within the particular kinase class. 
For how this is calculated see footnote of Table 4. d Standard deviation of tripeptide composition among the 
particular kinase class. e NA: Not Applicable.

Descriptors

Kinases in the “No ACs” Class Kinases in the “Low ACs” Class Kinases in the “High ACs” Class

%Kinasesb Averagec SDd %Kinases Average SD %Kinases Average SD

VME 52.8 8.26 × 10−4 1.03 × 10−3 6.3 1.28 × 10−4 5.11 × 10−4 7.1 6.52 × 10−5 2.41 × 10−4

YDG 16.7 2.18 × 10−4 5.26 × 10−4 12.5 1.87 × 10−4 5.15 × 10−4 3.6 2.96 × 10−5 1.56 × 10−4

VQH 5.6 1.04 × 10−4 4.60 × 10−4 25.0 3.13 × 10−4 5.98 × 10−4 0.0 0.0 0.0

GTT​ 0.0 0.0 0.0 6.3 4.50 × 10−5 1.80 × 10−4 21.4 4.12 × 10−4 9.65 × 10−4

EMY 2.8 4.72 × 10−5 2.83 × 10−4 6.3 9.51 × 10−5 3.81 × 10−4 14.3 1.22 × 10−4 3.07 × 10−4

EFV 13.9 2.14 × 10−4 6.24 × 10−4 12.5 2.13 × 10−4 6.11 × 10−4 10.7 8.75 × 10−5 2.58 × 10−4

FTA 5.6 1.21X10−4 5.05 × 10−4 25.0 3.70 × 10−4 7.10 × 10−4 7.1 1.25 × 10−4 4.74 × 10−4

DPS 22.2 2.26 × 10−4 4.95 × 10−4 31.3 5.41 × 10−4 8.88 × 10−4 3.6 2.96 × 10−5 1.56 × 10−4

DAYM780201.lag5 NAe 1.35 × 10−2 4.59 × 10−2 NA 1.63 × 10−2 4.42 × 10−2 NA − 4.16 × 10−3 4.04 × 10−2

CHAM820101.lag6 NA 4.56 × 10−2 4.98 × 10−2 NA 1.30 × 10−2 4.78 × 10−2 NA 4.02 × 10−2 4.54 × 10−2

Prop5.G2.residue0 NA 1.60 × 10−1 6.89 × 10−2 NA 1.56 × 10−1 5.13 × 10−2 NA 1.65 × 10−1 8.28 × 10−2
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the closely related potent analogs outlined in Table 7, which bear structural resemblances to AC pairs, display 
markedly distinct entropy-enthalpy binding thermodynamics63. Furthermore, they exert significantly disparate 
effects on the conformation of the entire target protein: the entropic binder (the lower entry in Table 7) induces 
substantial conformational rearrangements, whereas its enthalpic counterpart (the upper entry in Table 7) elicits 
only subtle modifications in protein structure.

Consequently, we posit that the tripeptide sequences identified by the optimal GA-ML models listed in 
Table 4, are intricately linked to the inherent predisposition of a specific protein kinase to undergo substantial 
conformational alterations driven by entropic binding. Yet, quantifying these entropic disparities poses a signifi-
cant challenge due to the intricate nature of protein conformational changes induced by entropy-driven ligand 
binding63–67, necessitating molecular dynamics simulations spanning tens of microseconds68.

Conclusion
Our study investigated ACs in the context of protein kinases, crucial therapeutic targets in drug discovery. We 
proposed that the presence of ACs depends on the specific target protein and its complete structural context, 
extending beyond the binding site alone. Our findings highlighted specific tripeptide sequences, such as FTA, 
VME, YDG, GTT, EFV, VQH, DPS, and EMY, as determinants of the propensity of ACs. Additionally, descriptors 
related to the overall protein’s inherent properties, like Moran autocorrelation and composition, transition, and 
distribution descriptors, were also significant in influencing ACs. Overall, our work sheds light on the intricate 
interplay between protein properties and AC occurrence, with potential implications for drug discovery and 
design. Future research in this area could deepen our understanding of the underlying mechanisms of ACs.

Data availability
The data generated or analyzed during this study are available within the article and its supporting material.
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