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Formations of force network 
and softening of amorphous elastic 
materials from a coarsen‑grained 
particle model
Rei Kurita 1*, Yuto Tamura 1 & Marie Tani 1,2

Amorphous materials, such as granular substances, glasses, emulsions, foams, and cells, play 
significant roles in various aspects of daily life, serving as building materials, plastics, food products, 
and agricultural items. Understanding the mechanical response of these materials to external forces 
is crucial for comprehending their deformation, toughness, and stiffness. Despite the recognition of 
the formation of force networks within amorphous materials, the mechanisms behind their formation 
and their impact on macroscopic physical properties remain elusive. In this study, we employ a coarse-
grained particle model to investigate the mechanical response, wherein local physical properties are 
integrated into the softness of the particles. Our findings reveal the emergence of a chain-like force 
distribution, which correlates with the planar distribution of softness and heterogeneous density 
variations. Additionally, we observe that the amorphous material undergoes softening due to the 
heterogeneous distribution of softness, a phenomenon explicable through a simple theoretical 
framework. Moreover, we demonstrate that the ambiguity regarding the size ratio of the blob to the 
force network can be adjusted by the amplitude of planar fluctuations in softness, underscoring the 
robustness of the coarse-grained particle model.
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Amorphous materials, including granular substances, glasses, emulsions, foams, and cells, find widespread appli-
cations as building materials, plastics, food products, and thermal insulators in our daily lives. The mechanical 
properties of these materials are commonly characterized by parameters such as Young’s modulus and bulk 
modulus, which are pivotal for material design. Despite their adherence to classical mechanics at the level of 
individual compositions, these amorphous materials often display intricate macroscopic behaviors. For instance, 
certain components within these materials may exhibit fluid-like behavior, such as hourglass phenomena and 
avalanches, while also demonstrating solid-like characteristics like clogging hoppers and pipes1–5. Therefore, 
elucidating the complex mechanical responses of amorphous materials is essential for leveraging their diverse 
functionalities effectively.

In amorphous elastic materials, external forces propagate through localized pathways known as force net-
works or stress networks6–14. These force networks have been extensively investigated as crucial components for 
understanding complex dynamic responses. Over the years, force visualization experiments have been conducted 
to explore the mechanical behavior of granular materials6–11. For instance, it has been observed that compress-
ing an unjammed state results in a shear jamming state when the force network percolates in all directions8. 
Furthermore, studies have indicated that the force network becomes isotropic through the vibration of granular 
materials9.

Despite investigations into the features of force networks, the mechanism underlying their formation remains 
unclear. Furthermore, the relationship between the force network and macroscopic properties, such as the 
bulk modulus of amorphous materials, remains ambiguous. Understanding these aspects requires studying 
amorphous materials on a scale larger than their individual components. For instance, the falling dynamics of 
grains have been likened to Rayleigh–Taylor instability phenomena in fluids15–19, with typical length scales of 
these macroscopic flows several orders of magnitude larger than the grain size. To elucidate such macroscopic 
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behaviors, a coarse-grained model is often considered effective as a meso-scale statistical mechanics approach. 
This modeling technique has traditionally been employed to explain phenomenological behaviors in various 
systems, including polymers, liquid crystals20, and phase separations21. Recently, coarse-grained models have 
successfully demonstrated the fracture of amorphous materials22,23. In these models, it is assumed that density 
is heterogeneous, and the shear modulus strongly depends on density. Application of shear leads to enhanced 
density fluctuations, ultimately resulting in fracture.

Recent molecular dynamics simulations have revealed that the local elastic moduli exhibit spatial distribution 
in the random packing state24–26. Moreover, it has been observed that fluctuations in local elastic moduli increase 
as the jamming threshold is approached25. Additionally, features of sound wave propagation in amorphous solids 
have been found to correlate with the heterogeneous distribution of local elastic moduli24. Based on these find-
ings, we hypothesize that the formation mechanism of force networks is also linked to the distribution of local 
elastic moduli. We characterize the local elastic moduli as the softness of a disk, incorporating factors such as 
local packing fraction, local structure, and interactions. Subsequently, we investigate the relationship between 
the force network and the planar distribution of softness using a coarse-grained particle model.

Models and methods
We assume that microscopic physical properties should be averaged at mesoscales, such as the typical length of 
force networks. Accordingly, we partition the elastic material into blobs with a certain diameter. Within each 
blob, we characterize the local elastic moduli as softness, considering factors such as local packing fraction, local 
structure, and interactions refer to Fig. 1. By employing this concept, we investigated a two-dimensional soft 
disk model wherein the softness of each disk varies. As the blobs encompass the heterogeneous planar distribu-
tion of local packing fraction as softness, they are arranged in a close-packed hexagonal lattice configuration.

Each disk denoted as i possesses an elastic parameter Gi indicative of its softness. A total of 65536 soft disks 
with a diameter D are organized within a triangular grid measuring 256 × 256. Periodic boundary conditions 
are imposed in both the x and y directions. The value of D is fixed at 1, while the positions of the disks along the 
x and y axes are indexed by the number of layers nx and ny.

We generated a heterogeneous distribution of disk elasticities using the Cahn-Hilliard-Cook equation21,27 
expressed as follows:

where t denotes time, Ŵ(r) represents a field determining the softness of particles at position r and ξ stands for the 
correlation length of fluctuations of Ŵ(r) . Assuming local equilibrium and employing the fluctuation-dissipation 
relation, the correlation function of the dimensionless noise g(r, t) can be described as

where i, j = x, y , δij is Kronecker delta and δ(r) denotes a delta function. We conducted numerical simulations 
of Eq. (1) on a 256 × 256 square lattice. As the order parameter is conserved, 〈Ŵ(r)〉 remains 0. Each lattice 
point (nx , ny) corresponds to a blob located at that position. The relationship between Ŵ(r) and Gi is defined 
as Gi = �Gi� +�Ŵ(r)/(Ŵmax − Ŵmin) , where 〈Gi〉 is the mean value of Gi , � represents the strength of fluctua-
tions of the softness, and Ŵmax and Ŵmin are maximum and minimum of Ŵ in the entire system. We set the mean 
softness parameter �Gi� = 1 . Since Ŵmax ≈ −Ŵmin , a range of values for Gi becomes 1−�/2 ≤ Gi ≤ 1+�/2 . 
Consequently, ξ represents the correlation length of the fluctuations of Gi and � represents the amplitude of these 
fluctuations. Additionally, ξ and � are treated as variable independent parameters in this simulation, although 
the critical point argument for hyperuniformity suggests a potential interdependence between them28.

(1)
∂Ŵ(r)

∂t
= ∇2[Ŵ(r)+ Ŵ(r)3 − ξ 2∇2Ŵ(r)] − ∇ · �g(r, t),

(2)��gi(r, t)�gj(r
′
, t ′)� = δijδ(r − r

′)δ(t − t ′),

Figure 1.   Schematic of a coarse-grained particle model for a granular material, serving as an example of 
amorphous elastic materials. It depicts the hierarchical structure of granular systems, which comprises 
individual grains, several grains forming a blob, the arrangement of these blobs, and the resulting force network. 
The two images on the left showcase grains, with scale bars indicating 1 mm. The image on the right visualizes 
the force using a photoelastic disk, with a scale bar of 5 mm. Additionally, for reference, the hierarchical 
structure of polymers (including blobs, spring-beads model, and polymer network in gels) is depicted, 
suggesting an analogy to granular systems.
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Taking into account the micro-deformation within the system, the interaction between the disks can be 
approximated using a harmonic potential. Disks i and j interact via a pairwise harmonic potential:

where Gij = (Gi + Gj)/2 and rij is a center-to-center distance between disks i and j. Then we obtain

where 
∑

j signifies the summation over disk j, which is in contact with disk i. F i represents the force vector act-
ing on disk i, while r̂ij denotes the unit vector pointing from disk i to disk j. We specify that the interaction is 
purely repulsive, thus f(r) = �(r) where � is the Heaviside function. Additionally, we assume a loose packing in 
granular systems or soft components like emulsions and bubbles. Consequently, compression of the blob and 
overlap between pairs of disks are permissible. To streamline the model, friction between the disks is disregarded.

We compressed the system by 0.1% in both the x and y directions. Each particle follows the normalized 
overdamped equation.

where drirepresents the displacement of disk i during each simulation time step dt. We set dt = 0.001. We consider 
the system to have reached a steady state when the maximum velocity of all particles becomes less than 1.0× 10−6 . 
We conducted 5 runs with the same ξ and � , but with the different planar distribution of G. We confirmed that 
the results remained essentially unchanged regardless of the initial conditions.

Result
Formation of the force network
Initially, we examined the force distribution. Figure 2a and b illustrate the planar distribution of the top 10% of 
Gij and the top 10% of the force Fij between disks i and j, respectively. The structure is generated using Eq. (1) 
with ξ = 10 and � = 1 at t = 1000. For large sections of the pattern, there appears to be a significant correlation 
between Fij and Gij . However, the distribution of Gij exhibits a cluster-like behavior, while that of Fij forms a thin 
network, which is a typical characteristic of amorphous materials6–14. Figure 3 presents an image plot of the 
probability of Fij and Gij at ξ = 10 and � = 1. It indicates that Fij is qualitatively correlated with Gij , although Fij is 
widely dispersed around a straight line. Fitting by a linear function yields a slope of 5.8 × 10−4 . If the displace-
ments of the disks were uniform, Fij and Gij would be perfectly proportional, and the slope would be 1.0 × 10−3 . 
Hence, the smaller slope suggests spatially inhomogeneous displacement. Additionally, we compute the Pearson 
correlation coefficient P between Fij and Gij . The obtained value of P = 0.61 indicates a correlation between Fij and 
Gij , albeit not a strong one. This finding is consistent with the difference in planar distribution between Fij and Gij . 
Further insight into the deviation of the correlation between Fij and Gij will be provided in the next subsection.

We also examined the force distribution when the planar distribution of Gij remains the same, but only the 
amplitude of the fluctuation � is varied. It was observed that the appearance of the planar distribution of Fij 
changes minimally. Figure 3b shows the correlation of Fij with the same combination of i and j at � = 0.1 and � 
= 1. The data scatter is significantly narrower, and it was found that the slope is 10.0, identical to the ratio of � . 
Additionally, the Pearson correlation coefficient P = 0.994 for Fij between � = 0.1 and � = 1 is close to 1. This 
suggests that the planar distribution of Fij is primarily determined by the planar distribution of Gij , rather than � . 
Thus, the characteristic length of the force network is solely determined by ξ , which represents the characteristic 
length of G fluctuations.

(3)U(rij) =
Gij

2
(rij − D)2f (D − rij)

(4)F i =
∑

j

∂Uij

∂rij
r̂ij = −

∑

j

Gij(D − rij)f (D − rij)r̂ij ,

(5)dri = F idt,

Figure 2.   (a) planar distribution of the top 10% of Gij with ξ = 10 and � = 1 . (b) planar distribution of the 
top 10% of Fij . In broad sections of the pattern, there appears to be a significant correlation between Fij and Gij . 
Meanwhile, the distribution of Gij exhibits a cluster-like pattern, whereas the distribution of Fij forms a network.
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Sandwiched system
To explore the mechanism underlying the reduction in correlation between Fij and Gij , numerical simulations 
were conducted using a model system. As depicted in Fig. 2, regions sandwiched by high Gij exhibit the larger 
Fij . To simplify the analysis, a binary system was considered, comprising regions with high ( Gi = 1.5 ) and low 
( Gi = 0.5 ) Gi values. Figure 4a illustrates the planar distribution of Gi , with high Gi regions positioned at the 
upper and lower centers, referred to as a “sandwiched system”. In this configuration, nx and ny are set to 64, with 
the width and height of each high Gi region being 8 and 16, respectively. The system is subjected to a compres-
sion of 0.1%.

Figure 4b illustrates the spatial distribution of the top 10% of Fij within the sandwiching system. The rec-
tangular areas enclosed by solid lines denote the high Gi regions. The force is distributed prominently not only 
within the high Gi regions but also within the low Gi region sandwiched by the high Gi region. Previous studies 
have highlighted the crucial role of density change δρ in force distribution, given the strong dependence of 
bulk modulus on density in a jammed state29. Thus, we calculated the local density around disk i, denoted as ρi , 
utilizing the equation:

where r̄i represents the mean value of rij averaged over the nearest neighbor disk j. Subsequently, the density 
change is defined as δρi = ρi − ρ0 , with ρ0 (= 1) denoting the initial density. Figure 5a depicts the density change 

(6)ρi ∼ (D/r̄i)
2
,

Figure 3.   (a) Image plot of the probability of Fij and Gij at ξ = 10 and � = 1 . Upon fitting with a linear 
function, the obtained slope is 5.8 × 10−4 , which is smaller than the slope when the displacements are uniform 
(1.0 × 10−3 ). It is observed that the data exhibit wide dispersion. (b) Image plot of the probability of Fij in 
a system with � = 0.1 and Fij with � = 1 for the same combination of i and j. The planar distribution of Gij 
remains unchanged. It is noted that the scattering of data is significantly narrower. The colors correspond to the 
probability.

Figure 4.   (a) The planar distribution of Gi , with a portion of the low Gi (green) region being sandwiched by the 
high Gi (purple) region. (b) The planar distribution of the top 10% of Fij . The rectangular area enclosed by the 
solid line represents the high Gi region. The force is prominently distributed not only within the high Gi region 
but also within the low Gi region that is sandwiched by the high Gi region.
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profile as a function of x at the center along the y-axis ( ny = 32). The region sandwiched by the high Gi regions 
is enclosed by dotted lines, as shown in Fig. 5. It is observed that the density within the sandwiched region sur-
passes that of other low Gi regions. Consequently, elasticity within the sandwiched region effectively increases 
after compression, leading to significant force distribution.

Here we extend the findings derived from the model systems to the fluctuated system, as depicted 
in Fig. 2. Figure 5b shows 〈δρ〉 plotted against Gi , where 〈δρ〉 represents the mean value within the range 
Gi − 0.005 < Gi ≤ Gi + 0.005 , with error bars indicating the standard deviation. It is observed that the density 
increases in the lower Gi region, consistent with the density change observed in the sandwiched model. This 
observation suggests that the force network is constructed by connecting the higher Gi regions.

Total potential energy
Although the underlying microscopic mechanism behind force chains has been unveiled, the impact of the force 
network on macroscopic physical properties remains ambiguous. In this study, we quantify the total potential 
energy within the systems, where the second derivative of the potential energy with respect to the volume cor-
responds to the bulk modulus. Figure 6a shows the variation of the total potential energy U with respect to � . 
Different symbols such as circles, squares, triangles, and inverted triangles represent U values corresponding 
to ξ = 1, 3, 5, and 10, respectively. It is observed that U predominantly relies on � , with a minor dependency 
on ξ . This implies that the material undergoes softening when � is substantial. The influence of ξ on U will be 
addressed subsequently.

To explore the relationship between the variation in U and the structural changes, we computed the potential 
change δU = U0 − U  , where U0 represents the potential energy in a homogeneous system ( � = 0). Figure 6b 
displays δU plotted against � . Our analysis reveals that δU exhibits a proportional relationship with �2 for each 
ξ value. Given our previous demonstration of how the planar distribution of Gi induces density heterogeneity, we 
further investigated the correlation between δU  and the standard deviation of density σ , as depicted in Fig. 6c. 
Notably, we observed that δU across all systems with varying � and ξ values conforms to a scaling law δU ∼ σ 2 . 
This finding suggests that density change plays a crucial role in determining the total potential energy.

It is essential to recognize that the size of the blob is arbitrary and subject to ambiguity. The influence of this 
ambiguity on the coarse-grained particle model needs to be considered. Our investigation revealed that the size 
of the force network is determined by ξ , representing the characteristic length of planar softness inhomogeneity 
relative to the blob size. As such, changes in the definition of the blob size should correspondingly affect ξ . For 
instance, in a system with ξ = 10, increasing the blob size by a factor of 10 should theoretically yield equivalence 
to a system with ξ = 1. However, despite the scale change, slight discrepancies in δU  between ξ = 10 and ξ = 
1 are observed, as shown in Fig. 6b. To address this discrepancy empirically, we introduce a rescaling factor 
�r = (0.015ξ + 0.985)� , where �r represents the rescaled � . Specifically, we select ξ and � values such that �r 
matches for different combinations, such as (ξ ,�) = (1, 1) and (ξ ,�) = (10, 0.881) . We find that δU  collapses 
across different ξ values when �r remains consistent, despite variations in the ξ and � combinations, as shown 
in Fig. 6d. Thus, although the blob size remains ambiguous, achieving system equivalence through �r rescaling 
demonstrates the robustness of this coarse-grained particle model.

Theoretical approach
In this subsection, we present a theoretical elucidation of the mechanism behind the decrease in total potential 
energy with � . Initially, we examine a simplified scenario involving a one-dimensional arrangement of three 
particles, labeled as disks i, j, and k, arranged sequentially. The interactions between disk i and j, and between disk 
j and k, are denoted by Uij and Ujk , respectively. The size of the disks is normalized to 1. We assume that the disk i 

Figure 5.   (a) The density change δρ profile as a function of x at the center along the y-axis ( ny = 32) within the 
sandwiched system. Despite uniform Gi values, notably higher density is observed in the region sandwiched by 
the high Gi regions (within the dotted lines). (b) 〈δρ〉 as a function of Gi within the fluctuated system, as shown 
in Fig. 2. Error bars denote standard deviations. It is notable that 〈δρ〉 is larger in regions with the lower Gi , while 
conversely, it is smaller in regions with the higher Gi.
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is harder than the disk k. Under compression by α , the distance between disk i and j contracts to α/2− δ , while 
the distance between disk j and k contracts to α/2+ δ . Subsequently, the total potential energy can be expressed 
as U = Uij(α/2− δ)+ Ujk(α/2+ δ) . Expanding U to the second-order terms with respect to δ , we obtain

where U ′ and U ′′ represent the first and second derivatives of U with respect to the distance, respectively. Mean-
while, by considering the balance of forces, we derived

Expanding Eq. (8) to the first term with respect to δ , we obtain

Subsequently, Eq. (9) is substituted into Eq. (7), resulting in:

Given that the second derivative of U is positive from the stability of the system, the total potential 
energy decreases δ  = 0 . Finally, we substitute our potential, where Uij =

1
2
(�G� +�/2)(α/2− δ)2 and 

Ujk =
1
2
(�G� −�/2)(α/2+ δ)2 , into Eq. (8).

then,

(7)U = Uij(α/2)+ Ujk(α/2)+ [−U
′

ij(α/2)+ U
′

jk(α/2)]δ +
1

2
[U

′′

ij (α/2)+ U
′′

jk(α/2)]δ
2
,

(8)U
′

ij(α/2− δ) =U
′

jk(α/2+ δ).

(9)U
′

ij(α/2)− U
′

jk(α/2) =[U
′′

ij (α/2)+ U
′′

jk(α/2)]δ.

(10)U = Uij(α/2)+ Ujk(α/2)−
1

2
[U

′′

ij (α/2)+ U
′′

jk(α/2)]δ
2
.

(11)δ =
α

4�G�
�,

(12)δU =
α2

16�G�
�2

.

Figure 6.   (a) The total potential energy U as a function of � , showcasing various ξ values. Circle, square, 
triangle, and inverted triangle symbols represent U with ξ = 1, 3, 5, and 10, respectively. (b) The dependence of 
potential change δU on � . Notably, δU exhibits a proportional relationship with �2 for each ξ . (c) The potential 
change δU as a function of σ , where σ denotes the standard deviation of ρ . It is noteworthy that δU across all 
systems with varying � and ξ values adheres to a scaling law δU ∼ σ 2 . (d) δU is plotted against �r , illustrating 
collapsed behavior across different ξ values when �r remains consistent, despite variations in the ξ and � 
combinations.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8888  | https://doi.org/10.1038/s41598-024-59498-2

www.nature.com/scientificreports/

Thus, we obtained δU ∝ �2 in the simplified model.
Next, we explore the scaling law δU ∼ �2

r ∼ σ 2 in a two-dimensional system. The total potential energy can 
be expressed as the summation of Eq. (3) as follows

In a homogeneous system with a compression rate of α = 0.001 , the distance rij between particles i and j uni-
formly becomes D − αD , yielding a total potential energy of U0 = �Gij�(αD)

2N(Z/2)/2 = 0.098304 . Here, 
Z(= 6) denotes the number of particles in contact with each particle. Subsequently, we consider the heteroge-
neous case where Gij and rij are described as Gij = �Gij� + δGij and rij = D − αD + δrij , where δGij and δrij are 
deviations from the average. Consequently, 

∑

i

∑

j δGij = 0 and 
∑

i

∑

j δrij = 0 . Given that δrij ∼ 10−4 , much 
smaller than αD and δGij , the term δr2ij becomes negligible. Thus, δU  can be approximated as follows :

In this context, when the correlation length ξ exceeds 1, the value of Gj for disk j, which is in contact with disk 
i, closely resembles Gi . Consequently, we posit that δrij is approximately equal to δri  and δGij is approximately 
equal to δGi  , where δri  and δGi  denote the mean distance and the mean Gij averaged across neighboring disk j. 
Given the observation that higher values of Gij correspond to lower density or larger δrij , and conversely, smaller 
δrij corresponds to lower Gij , we establish the following relationship :

Here, �r represents the difference of Gi , thus

Finally, we derive

Expressed as σ =
√

1
N

∑

i(ρ
2
i − �ρ�)2 , the deviation in density can be formulated. Given the smallness of δrij 

and α , the expression can be approximated as follows

Combining Eqs. (15), (17), and (19), it is obtained that δU ∝ σ 2.

Discussion
In our study, we compare our findings with prior vibration experiments, wherein the force network achieves 
homogeneity through vibration9. It is established in literature that the packing fraction of granular systems 
increases under vibration, approaching random close packing1. Notably, the state of random close packing is 
identified as hyperuniform, characterized by nearly uniform compressibility across all locations28,30–32. Our 
simulations corroborate that when ξ is small, the propagation of force attains uniformity, aligning well with 
experimental observations.

Furthermore, previous studies have reported that the system exhibits a significant response to shear defor-
mation near the jamming point, despite the lack of direct coupling between shear deformation and density 
changes, unlike compression. For instance, shear-induced decreases in the effective moduli of aggregates have 
been reported33. Additionally, fractures often occur following enhancements in density fluctuations induced by 
shear stress22,23. Investigating the behavior of systems characterized by inhomogeneous G under shear deforma-
tion would be of interest.

Additionally, we highlight the significance of the formation of the force network in controlling stress-induced 
phenomena. Research has shown that stress can suppress liquid-liquid phase separation in cells34 , and it can also 
influence the absorption and desorption of guest molecules in metal-organic frameworks (MOFs)35,36. There-
fore, the characteristics of the force networks are expected to have a substantial impact on the functionality of 

(13)U =
1

2

∑

i

∑

j

1

2
Gij(D − rij)

2
.

(14)

δU =U0 −
1

4

∑

i

∑

j

(�Gij� + δGij)(αD − δrij)
2

=
1

2

∑

i

∑

j

αDδGijδrij .

(15)δri ∝ δGi .

(16)δGi ∝ �r .

(17)δU ≈
1

2

∑

i

αDδGi δri

(18)∝�2
r .

(19)

σ ∼

�

�

�

�

�

1

N

�

i





1

Z

�

j

2δrij

D


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∝

�

1
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�

i

δri
2
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these stress-induced phenomena. Consequently, material design based on this coarse-grained particle model is 
considered necessary.

Conclusion
Many amorphous elastic materials, including glasses, emulsions, foams, and cells, exhibit complex macroscopic 
behaviors and are extensively utilized in everyday applications, necessitating both mechanical and chemical 
stability. Despite the recognized importance of the force network, the mechanisms governing its formation 
and its relationship with macroscopic properties remain unclear. Consequently, a qualitative understanding of 
the macroscopic properties of amorphous materials is still lacking. In such large systems, a phenomenological 
approach, such as a simple coarse-grained model, is generally effective. In this study, we investigate the formation 
of the force network and the variation in total potential energy using a coarse-grained particle model incorpo-
rating local packing fraction, particle shape, and microstructure into the softness G of the disk. We observe the 
formation of a force network resembling that observed in amorphous elastic materials, driven by the correlation 
length of fluctuations of G. Additionally, we find that amorphous elastic materials undergo softening due to 
the amplitude of the fluctuations of G, with softening scaling by the square of the density deviation, explicable 
through a simple theory. Furthermore, we observe that the ambiguity in blob size suggests the robustness of the 
coarse-grained particle model.

In this study, simulations using a coarse-grained particle model suggest that alterations in the effective local 
elastic modulus, prompted by changes in density, play a significant role. To validate local density changes and 
changes in local modulus of elasticity, it is essential to incorporate feedback from molecular dynamics simulations 
of compression. Additionally, we operated under the assumption that deformation is small in this simulation, 
thus applying the harmonic potential. However, it’s crucial to acknowledge that the potential may not remain 
harmonic under significant deformation. Although the decrease in total potential energy remains consistent, 
the relationship between total potential energy and density change could potentially vary. Therefore, exploring 
the potential dependence of our findings is a critical avenue for future research.
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