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Dimerized Hofstadter model 
in two‑leg ladder quasi‑crystals
Sara Aghtouman  & Mir Vahid Hosseini *

We theoretically study topological features, band structure, and localization properties of a dimerized 
two-leg ladder with an oscillating on-site potential. The periodicity of the on-site potential can take 
either rational or irrational values. We consider two types of dimerized configurations; symmetric and 
asymmetric models. For rational values of the periodicity as long as inversion symmetry is preserved 
both symmetric and asymmetric ladders can host topological phases. Additionally, the energy 
spectrum of the models exhibits a fractal structure known as the Hofstadter butterfly spectrum, 
dependent on the dimerization of the hopping and the strength of the on-site potential. In the case of 
irrational values for the periodicity, a metal-insulator phase transition occurs with small values of the 
critical strength of the on-site potential in the dimerized cases. Our models incorporate the effects of 
lattice configuration and quasi-periodicity, paving the way for establishing platforms that host both 
topological and non-topological phase transitions.

Non-trivial phase and quantum localization are the two most important features of topological states that have 
recently attracted much attention1–3. Such properties can serve as potential applications in quantum computing4. 
The quantum Hall effect5,6 harbors both of these features7,8. Topological edge states with energies within the gap 
are localized at the boundaries of the 2D quantum Hall lattice9. The topology of the edge states is linked to the 
bulk states and can be quantified by bulk topological invariants10. Also, thanks to the periodic motion of charge 
carriers in the presence of a gauge field within a periodic lattice structure of host materials, a fractal spectrum, 
known as Hofstadter’s butterfly spectrum, emerges11,12.

On the other hand, a 2D quantum Hall effect on the square lattice with the next-nearest-neighbor hopping13–15 
can be reduced to a 1D quasi-periodic lattice16,17 exhibiting a metal-insulator transition. Subsequently, the topo-
logical edge states of 2D quantum Hall effect can be mapped into boundary states residing within certain gaps 
of a 1D quasi-periodic system18. Generally, in a 1D quasi-periodic lattice, in addition to the periodic discrete 
lattice, there is another periodic potential with different periodicity. Such quasi-periodic lattice systems have 
attracted much interest theoretically19–22 and experimentally23–25 due to providing a playground for studying 
band topology and localization in more realistic situations, namely, quasi-crystals26.

The quasi-periodic models have been further generalized to diverse systems20,27–32 revealing a mobility 
edge33–35 even beyond the tight-binding assumption34,36. Such systems have been used to demonstrate a self-
duality symmetry37,38, an adiabatic pumping of boundary states26,39, quantum nonergodicity40, a many-body 
critical phase41, and localization effects42–44,46. The Hofstadter spectrum and topological phases have been pro-
posed in a 1D quasi-periodic cold-atomic setting theoretically18 and observed experimentally in acoustic quasi-
crystals47. The effect of periodically corrugations on a 1D lattice has been investigated resulting in the generation 
of topological states and butterfly spectrum48.

Furthermore, a non-trivial phase can be induced in 1D systems only by lattice dimerization49,50 being realized 
experimentally51,52. The dimerized 1D lattice has been generalized to a variety of configurations53–57 including, for 
example, spin-orbit coupling58 with characterized topological phase transitions59. The topological phase region 
has been extended due to invoking both spin-orbit coupling and Zeeman magnetic field60,61. Further, a non-zero 
Chern number has been obtained in the presence of both nearest-neighbor and next-nearest-neighbor hoppings62. 
Also, more sublattices per unitcell have been taken into account theoretically63–65 and experimentally66 which 
can host topological metal phase67. Also, it has been shown that coupled 1D dimerized lattices can host rich 
non-trivial topological features68–72 even with zero Berry curvature73. In the two-leg ladder geometry, the charge 
fractionalization has been characterized by Wilson lines74. Experimentally, topological bound states in a double 
dimerized chain based on split ring resonators75 and metamaterials76 have been observed.

Subsequently, the combination of the hopping dimerization and potential modulations can host topological 
states77, for instance, in Fibonacci quasi-crystals78 while there exists a topological equivalence between crystal and 
quasi-crystal band structures78,79. Also, in 2D lattices, it has been investigated the mutual effect of simultaneous 
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modulations of hopping and on-site potential80 survives topological states in the localized regime81. For incom-
mensurate hopping modulation case, Anderson-like localization has been found without mobility edge39. While 
for commensurate case, the emergence of topological gapless zero-energy modes has been reported77. In the 
two-leg dimerized lattice, the effect of including inter-leg coupling quasi periodicity and leaving on-site chemical 
potential modulations has been studied preserving particle-hole symmetry82.

However, a little attention has been paid to quasi-one-dimensional quasi-periodic systems83 with modu-
lating hoppings and on-site potentials. In practice, particularly, for natural materials, it is easy to manipulate 
quasi-periodicity through on-site chemical potential via a spatially varying electric or back gate voltage. So, an 
alternative route is to implement quasi-periodic on-site chemical potentials preserving inversion symmetry. 
Subsequently, a topological quasi-periodic dimerized two-leg ladder would be realized.

In this paper, we study the topological features and localization character of a dimerized quasi 1D two-leg 
ladder with modulated on-site potential. The dimerization pattern can be either symmetric or asymmetric. The 
on-site potential has its own strength and frequency. We find that when the periodicity of the potential is such 
that it includes an even number of unitcells, the system has inversion symmetry. So the system hosts non-trivial 
topological edge states. The distribution of the topological regions in the phase diagram depends on either sym-
metric or asymmetric dimerization patterns. While if an odd number of unitcells lies in one period of the on-site 
potential, the system is topologically trivial regardless of dimerization pattern. We also show that the energy 
spectrum in terms of the on-site frequency has a fractal structure, which is known as the Hofstadter butterfly 
spectrum11,16. The spectrum displays a strong dependence not only on the type of dimerization pattern but also 
on the strength of the dimerization. For larger on-site potential strength, most of the states tend to be localized. 
For a irrational value of the frequency of the on-site potential, metal-insulator phase transition occurs at a certain 
strength of the on-site potential. Interestingly, in the presence of the dimerization, the critical value of the on-site 
potential strength decreases compared to the non-dimerized case.

The paper is organized as follows. In “Model and theory”, we introduce the model of the system having two dif-
ferent types; symmetric and asymmetric dimerized two-leg ladders. In “Symmetry analysis”, the symmetries of the 
system for commensurate and incommensurate cases are investigated. Accordingly, a relevant topological invari-
ant is introduced in “Topological invariant”. In “Results and discussion”, the numerical results for rational and 
irrational values of the on-site potential frequency are presented. “Summary” includes the concluding remarks.

Model and theory
We consider a dimerized two-leg ladder comprising of four sublattices per unitcell, as shown in Fig. 1, with an 
alternating on-site potential. The lattice structure can have two types of dimerization: (i) Symmetric dimeriza-
tion where the upper and the lower legs have the same dimerization pattern (see Fig. 1a) and (ii) Asymmetric 
dimerization where the dimerization of the upper leg is opposite to that of the lower leg (see Fig. 1b). The tight-
binding Hamiltonian describing the system is44,68,69,82

where the ladder Hamiltonian H0 is

(1)H = H0 + U ,

Figure 1.   Schematic representation of a commensurate two-leg ladder containing four sublattices per unitcell, 
indicated by dashed boxes, with different periodicity ( 1/α = 1, 2, 3 ) for alternating on-site potentials, indicated 
by solid boxes. (a) Symmetric model with identical dimerized legs. (b) Asymmetric model with opposite 
dimerized legs.
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and the on-site potential U is

with

Here, |xj� is the localized basis ket on the sublattice x(= a, b, c, d) at the jth unitcell. ti and t ′i with i = 1, 2 are, 
respectively, the intra unitcell and the inter unitcell hopping amplitudes for the upper ( i = 1 ) and lower ( i = 2 ) 
legs. tp is the interleg hopping. N is the number of unitcells. Vj is the on-site potential at the jth unitcell with v is 
the disorder strength, θ is a phase shift, and 1/α is the periodicity of the potential. Note that α would take rational 
and irrational values for commensurate and incommensurate lattices, respectively. For the commensurate case, 
1/α determines how many unitcells lie within a one period of the on-site potential (see Fig. 1). While for the 
incommensurate case, an integer number of unitcells does not fit into the one period of the on-site potential.

For the symmetric model, all the intra unitcell and inter leg hoppings are equal to t1,2 = tp = t(1+ δt) 
and the two inter unitcell hoppings are equal to t ′1,2 = t(1− δt) . But for the asymmetric form of the lat-
tice dimerization, the intra unitcell hopping on the upper leg is equal to the inter unitcell hopping on the 
lower leg, t1 = t ′2 = t(1− δt) . Similarly, the other intra and inter unitcell hoppings are equal to each other as 
t ′1 = t2 = t(1+ δt) and the inter leg hoppings is tp = t(1+ δt) with t being the magnitude of hopping. The 
dimerization strength is δt = δ0 cosϑ with the amplitude δ0 and the phase ϑ . We set t as the unit of the energy 
and δ0 = 0.8 , without loss of generality.

If the eigenstate of the system, |�� , can be expanded by the localized basis ψx,j as |�� =
∑

j

⊕

x=a,b,c,d ψx,j|xj� 
so the eigenvalue equation H|�� = E|�� can be written as

where the 4N × 4N Hamiltonian matrix is

with

Symmetry analysis
In this section, our focus is on the investigation of the symmetry characteristics in both incommensurate and 
commensurate scenarios. As mentioned in the previous section the distinctive features between these two sce-
narios manifest in the value of α . Additionally, it is crucial to note that in the incommensurate case, translational 
symmetry is violated, prompting an exploration of symmetry under open boundary conditions.

For the incommensurate case, e.g., α = (
√
5− 1)/2 , Hamiltonian (6) for both symmetric and asymmetric 

models only exhibits time-reversal symmetry under open boundary condition, i.e., TH∗
T = H , where the 

unitary part of time-reversal operator for the entire system is T = σ04N and σ0i is an i × i identity matrix. Fur-
thermore, the value of α implies a lack of inversion symmetry, as the on-site potential’s periodicity does not align 
with an integer number of unitcells. Consequently, the absence of symmetry suggests that the system might not 
support topologically non-trivial phases.

(2)

H0 =
N
∑

j=1

[

t1(|aj��bj| + |bj��aj|)+ t2(|cj��dj| + |dj��cj|)+ tp(|aj��cj| + |cj��aj| + |bj��dj| + |dj��bj|)
]

+
N−1
∑

j=1

[

t′1(|bj��aj+1| + |aj+1��bj|)+ t ′2(|dj��cj+1| + |cj+1��dj|)
]

,

(3)U =
N
∑

j=1

Vj

[

|aj��aj| + |cj��cj| − |bj��bj| − |dj��dj|
]

,

(4)Vj = v cos(2παj + θ).

(5)

t1ψb,j + t ′1ψb,j−1 + tpψc,j + Vjψa,j =Eψa,j ,

t1ψa,j + t ′1ψa,j+1 + tpψd,j − Vjψb,j =Eψb,j ,

tpψa,j + t2ψd,j + t ′2ψd,j−1 + Vjψc,j =Eψc,j ,

tpψb,j + t2ψc,j + t ′2ψc,j+1 − Vjψd,j =Eψd,j ,

(6)H =























A1 B 0 . . . . . . . . . 0
B† A2 B 0 . . . . . . 0
0 B† A3 B . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 B† AN−2 B 0
0 . . . . . . 0 B† AN−1 B
0 . . . . . . . . . 0 B† AN























,

(7)Aj =







Vj t1 tp 0
t1 − Vj 0 tp
tp 0 Vj t2
0 tp t2 − Vj






,B =







0 0 0 0
t ′1 0 0 0
0 0 0 0
0 0 t′2 0






.
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For the commensurate case, there is a translational symmetry so Hamiltonian (Eq. 1) can be written in the 
Fourier space as

where

and the Hamiltonian matrix is

with

The Bloch condition in the momentum space, i.e., ψx,m+ 1
α
= ei

k
α ψx,m , is used. In the following, we will investigate 

symmetries of the system with either even or odd numbers of unitcells, e.g., 1/α = 2 and 1/α = 3 , for both sym-
metric and asymmetric cases.

Symmetric ladder
For the symmetric ladder (see Fig.1a), t1 = t2 = tp , t ′1 = t ′2 , we take 1/α = 2 implying that V1 = −V2 . So Ham-
iltonian (10) can be re-written in the basis �†

k = (ψa,1,ψb,1,ψc,1,ψd,1,ψa,2,ψb,2,ψc,2,ψd,2)
† as

whose elements are defined in Eqs. (7) and (11). It is easy to show that Hamiltonian (Eq. 12) exhibits time-reversal 
and inversion symmetry. The time-reversal symmetry, i.e., TiH

∗(k)Ti = H(−k) , has the corresponding unitary 
operators T1 = σ02 ⊗ (σx ⊗ σ02) and T2 = σ08 . In addition, the inversion symmetry, i.e., �iH(k)�i = H(−k) , 
is characterized by two distinctive operators �1 = σx ⊗ (σx ⊗ σx) and �2 = σx ⊗ (σ02 ⊗ σx) . Here σx represents 
the x component of the Pauli matrices.

The presence of the two inversion operators suggests the existence of an additional symmetry, namely, the 
exchange symmetry72. The exchange operator can be expressed as the product of the two operators of inversion 
symmetry, i.e., Y = �1 ·�2 = σ02 ⊗ (σx ⊗ σ02) . This operator exchanges the two legs of the ladder and their 
corresponding sublattices as

Obviously, Hamiltonian (12) can commute with the exchange operator, [Y ,H(k)] = 0 and it can be brought into 
the block diagonal form as

where

and

(8)H =
∑

k

�
†
kH(k)�k ,

(9)�
†
k = (ψa,1,ψb,1,ψc,1,ψd,1, ...,ψa, 1

α
,ψb, 1

α
,ψc, 1

α
,ψd, 1

α
)†,

(10)H(k) =

























A1 C 0 . . . . . . . . . D
C† A2 C 0 . . . . . . 0
0 C† A3 C . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 . . . 0 C† A 1
α
−2 C 0

0 . . . . . . 0 C† A 1
α
−1 C

D† . . . . . . . . . 0 C† A 1
α

























,

(11)C = Beik , D = B†e−i k
α .

(12)H(k) =
(

A1 C + D
C† + D† A2

)

,

(13)Y� → � ′ =





















ψc,1

ψd,1

ψa,1

ψb,1

ψc,2

ψd,2

ψa,2

ψb,2





















.

(14)H̃ = XHX−1 =
(

h− 0
0 h+

)

,

(15)h± =









±t1 + V1 t1 0 t ′1e
2ik

t1 ± t1 − V1 t ′1e
−ik 0

0 t ′1e
ik ± t1 − V1 t1

t ′1e
−i2k 0 t1 ± t1 + V1









,
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This means that in the presence of such symmetry, one can decompose the system into two decoupled subsystems. 
Therefore, topological properties of each subsystem is independent of the other one. It is worthwhile noting 
that each subsystem (Eq. 15) has the inversion symmetry, i.e., �′h(k)�′ = h(−k) , with �′ = σx ⊗ σx being the 
subsystem inversion operator.

In general, for any even number of 1/α = M ( M = 2n , n ∈ N ) under the condition θ = ( 1
2α − 1)πα , the 

system exhibits inversion symmetry. However, in the case of 1/α = 2 , inversion symmetry exists for all values of 
θ without any additional conditions. This arises from the reduction of Eq. (4) to Vj = (−1)jv cos θ . The inversion 
symmetry operators for the entire system take the forms �1 = σx4M and �2 = σx ⊗ (σ0M ⊗ σx) where

While for the subsystems, the inversion operator is �′ = σx2M . Besides, for the entire system the time-reversal 
operators take the forms T1 = σ02 ⊗ (σx ⊗ σ0M ) and T2 = σ04M.

Now let’s check the case 1/α = 3 with the Hamiltonian that is re-written as

whose elements are defined in Eqs. (7) and (11). The basis is �†
k = (ψa,1,ψb,1,ψc,1,ψd,1, ...,ψa,3,ψb,3,ψc,3,ψd,3)

† . 
In this case, although there is no inversion symmetry resulting in non-topological subsystems, one still can find 
the exchange operator Y = σ03 ⊗ (σx ⊗ σ02) exchanging the two legs of the ladder and their corresponding 
sublattices as Y� → |� ′� =

⊕

x=c,d,a,b
y=1,2,3

ψx,y|x� ⊗ |y� . Similarly, in the basis of the exchange operator, i.e., X, 

the Hamiltonian (Eq. 18) can be block-diagonalized as

where

and

For Hamiltonian (Eq. 18) the time-reversal operators take the forms T1 = σ03 ⊗ (σx ⊗ σ02) and T2 = σ012 . In 
general, for any odd number of 1/α = M ( M = 2n+ 1 ) there is no inversion symmetry. Moreover, the time-
reversal symmetry operators are T1 = σ0M ⊗ (σx ⊗ σ02) and T2 = σ04M.

(16)X =





















0 0 0 0 0 − 1 0 1
0 0 0 0 − 1 0 1 0
0 − 1 0 1 0 0 0 0
−1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0





















.

(17)

(18)H(k) =





A1 C D
C† A2 C
D† C† A3



 ,

(19)H̃ = XHX−1 =
(

h− 0
0 h+

)

,

(20)h± =

















±t1 − V3 t1 0 0 0 t ′1e
3ik

t1 ± t1 + V3 t ′1e
−ik 0 0 0

0 t ′1e
ik ± t1 − V2 t1 0 0

0 0 t1 ± t1 + V2 t ′1e
−ik 0

0 0 0 t ′1e
ik ± t1 + V1 t1

t ′1e
−3ik 0 0 0 t1 ± t1 − V1

















,

(21)X =





































0 0 0 0 0 0 0 0 0 − 1 0 1
0 0 0 0 0 0 0 0 − 1 0 1 0
0 0 0 0 0 − 1 0 1 0 0 0 0
0 0 0 0 − 1 0 1 0 0 0 0 0
0 − 1 0 1 0 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0





































.
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Asymmetric ladder
For asymmetric model, with t1 = t ′2, t2 = t ′1 and 1/α = 2 , we get the general form of Hamiltonian (Eq. 12). In 
this case, the only inversion symmetry operator is � = σx ⊗ (σ02 ⊗ σx) . So, there is no exchange symmetry. 
Subsequently, the system cannot be decomposed into subsystems. Also, the time-reversal symmetry operator 
is T = σ08 . So, for the entire system with 1/α = M ( M = 2n ) the inversion and time-reversal symmetry take 
the forms � = σx ⊗ (σ0M ⊗ σx) and T = σ04M , respectively. Also at 1/α = 3 , with applying the conditions of 
the asymmetric ladder, we get Hamiltonian (Eq. 18) supporting only time-reversal symmetry with operator 
T = σ012 . In general, for any odd number of 1/α = M ( M = 2n+ 1 ) there is not any inversion symmetry and 
the time-reversal operator takes the general form T = σ04M.

Topological invariant
As already discussed above, in the presence of the on-site potential with a period maintaining an even number 
of unitcells, the chain has inversion symmetry and, as will be shown below, it would hosts non-trivial topological 
phases84. So we calculate the Z invariant85,86, as a relevant invariant for the ladder, defined by

where ε1ij and ε2ij are the number of negative parities of the band structure at the super symmetry points k = 0 
and k = π in the ith band gap of the jth subspace, respectively.

Furthermore, in order to investigate the localization property of the states, we calculate the inverse participa-
tion ratio (IPR) of each state as87

where ψx,j is defined above. When IPR tends to 0, the states are extended and for IPR values close to 1, the states 
are localized. We will also calculate the mean IPR (MIPR)44 associated with the ground state over 10 phases shift 
randomly in order to reveal metal-insulator phase transition.

Results and discussion
In our model, we first present the results of the commensurate case for rational values of α , revealing the non-
trivial topological properties of bulk systems. Then, we discuss the effect of dimerization on the metal-insulator 
transition point17 for the incommensurate case at α = (

√
5− 1)/2 . In the following, we investigate the numeri-

cally calculated results for both symmetric and asymmetric models in detail.

Rational value of α
In Fig. 2a, b, the energy spectra and the relevant topological invariant of the symmetric model are shown as 
a function of ϑ for θ = π/4 and v = 0.8 . It can be seen from Fig. 2a, with the value of 1/α = 2 , as ϑ varies, 
topological phase transitions can occur at ϑ = π/2, 3π/2 . Subsequently, the Z invariant shows a non-trivial 
value between ϑ = π/2 and ϑ = 3π/2 , resulting in the appearance of doubly degenerate localized edge states 
not only in the gap but also inside the topological bulk states. Also, the Z invariant gets the value 2. Because, 

(22)Z :=
∑

j

∑

i

|ε1ij − ε2ij|,

(23)IPR =
∑

j

∑

x |ψx,j|4

(
∑

j

∑

x |ψx,j|2)2
,

Figure 2.   (Color online) Energy spectrum and the topological invariant Z of the symmetric ladder versus ϑ 
for (a) 1/α = 2 and (b) 1/α = 3 . (c) Maximum value of IPR as a function of the unitcell number N for different 
values of 1/α with ϑ = π . Here, θ = π/4 and v = 0.8.
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as already discussed, the system can be decomposed into two subsystems, each with its own set of topological 
edge states positioned either in the bulk or gap of the other subsystem. Such edge states are finite-energy ones 
being protected by the inversion symmetry of the subsystem Hamiltonian. But by changing the periodicity of 
the on-site potential covering an odd number of unitcells, for instance, 1/α = 3 , the inversion symmetry will be 
broken. Subsequently, as it is shown in Fig. 2b, in this case, the edge states are no longer protected topologically 
and the topological invariant takes trivial values for all values of the dimerization ϑ . In Fig. 2c, the IPR of the 
most localized states is depicted as a function of unitcell number N for both even and odd numbers of 1/α . In 
either case, it is evident that the localized states remain unaffected as the system size increases. This implies that 
the induced localization is scale-free45.

Figure 3a, b show the dependence of the band structure and the topological Z invariant of the asymmetric 
model on ϑ . As shown in Fig. 3a, for 1/α = 2 , with the opening of the band gap, doubly degenerate edge states 
appear in the gap and the Z number gets a non-zero value due to the presence of the inversion symmetry of the 
whole system. In this case, since the system cannot be decomposed into subsystems, unlike the symmetric case, 
the Z invariant takes the value 1. For 1/α = 3 , as depicted in Fig. 3b, the energy spectrum is topologically trivial. 
Because, the system lacks the inversion symmetry. Furthermore, the bulk gap closing does not occur around 
ϑ = π/2, 3π/2 which is in contrast to the symmetric ladder case. Figure 3c shows the maximum value of the IPR 
of the states versus the system length. Similar to the symmetric case, in the present case, the observed localization 
remains independent of the system size, irrespective of whether 1/α is even or odd.

The topological phase diagram of the symmetric (asymmetric) ladder is displayed in the top (bottom) row 
of Fig. 4 for 1/α = 2 . In the symmetric ladder, the topological and the trivial regions are shown in red and 
blue colors, respectively. In Fig. 4a, the Z invariant is shown as functions of θ and ϑ with v = 0.8 . The middle 
area around π/2 < ϑ < 3π/2 for any value of θ is covered by a topological region. In Fig. 4b, the Z invariant 
is depicted as functions of v and ϑ with θ = π/4 . Again around π/2 < ϑ < 3π/2 , there is a topological region 
but below the value v = 2.5.

Similar to Fig. 4a, b, the topological phase diagram of the asymmetric ladder with 1/α = 2 is illustrated in 
Fig. 4c, d. The figures show the non-trivial and trivial regions in yellow and blue colors, respectively. As can be 
seen in Fig. 4c, topologically non-trivial regions can be found not only in the central region around θ ≈ ϑ ≈ π 
but also in the peripheral region. In Fig. 4d, we can see that the non-trivial region around π/2 < ϑ < 3π/2 
is extended up to the value v=7. However, in contrast to Fig. 4b, the topological region around ϑ ≈ π has the 
lowest value of v.

The commensurate scenario can be extended by taking into account the rational values as α = p
q , where p 

and q are integers and coprime. By incorporating the periodic potential Vj with a period q under open boundary 
conditions, we can solve the eigenvalue problem in relation to α using Eq. (6) with N = q = 199 . Subsequently, 
through the solution of the system and the computation of IPR , we obtain the fractal spectrum, known as 
Hofstadter spectra, including edge states. The Hofstadter spectra of the symmetric and asymmetric ladders at 
θ = π/4 are illustrated in Figs. 5 and 6, respectively.

Figure 5 shows the energy spectra of the symmetric model as a function of α . From the top row to the bottom 
row, the disorder strength is v = 0.5, 0.8, 2, 3, 5 and from the left column to the right column the dimerization is 
ϑ = π/4,π/2, 3π/4,π . For v = 0.5 and v = 0.8 , as shown on the first two rows of Fig. 5, at ϑ = π/4 , the Fermi 
energy is bulk gapless and there are two main gaps. At ϑ = π , the band widths increase and the main gaps 
reduces to partially narrow gaps. As ϑ increases the band widths decrease again such that a substantial main 

Figure 3.   (Color online) Energy spectrum and topological invariant Z of the asymmetric ladder versus ϑ for (a) 
1/α = 2 and (b) 1/α = 3 . (c) Maximum value of IPR as a function of the unitcell number N for different values 
of 1/α with ϑ = π . Here, θ = π/4 and v = 0.8.
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bulk gap appears around the Fermi energy. For the larger values of the disorder strength v = 2 and v = 3 (the 
third and the forth rows), at ϑ = π/4 , the two main gaps are decreased. Also, for larger values of ϑ the bands 
join together providing a bulk gapless system. For v = 5 (the fifth row), the spectrum is almost always gapless 
regardlss of the value of ϑ.

Figure 6 shows the Hofstadter butterfly spectrum of the asymmetric model versus α for different values of v 
and ϑ . The panels from the left column to the right column have the values ϑ = π/4,π/2, 3π/4,π , and from the 
top row to the bottom row have the values v = 0.5, 0.7, 2, 3, 5 . From the first two rows, one can see that, unlike the 
symmetric ladder case, for ϑ = π/4 , there a main gap at the Fermi level E = 0 . But, similar to the symmetric case, 
for ϑ = π/2 the system becomes gapless at the Fermi level. Because, at ϑ = π/2 , the system is non-dimerized so 
there is no difference between the two models. For ϑ = 3π/4,π a considerable gap opens at the Fermi level, and 
at the same time, the band widths decease. Moreover, at large disorder potential strength, v = 2, 3, 5 , the width 
of the band becomes wider so that the valence and conduction bands merge together and the band gap closes.

As evident from both Figs. 5 and 6, when the values of v are below certain thresholds, delocalized states 
dominate, while for larger values of v, localized states become more prominent. This observation suggests the 
existence of a transition point, which will be investigated further below. Moreover, typically, for α = 0, 1/2, 1 , 
the delocalized states can persist even at large values of v.

Irrational value of α
We now consider the model under open boundary conditions and solve Eq. (6) for the incommensurate case with 
irrational value of α = (

√
5− 1)/2 . We numerically evaluate the MIPR related to the ground states. The density 

plot of the phase diagram as functions of v and ϑ , for symmetric ladder is shown in Fig. 7a. The figure shows 
the delocalized states with blue color and the localized states with red color. Interestingly, the critical value of v, 
at which metal to insulator phase transition occurs, strongly depends on the dimerization strength. For ϑ ≈ π , 
i.e., the intra unitcell hoppings t1,2 are smaller that the inter unitcell hoppings t ′1,2 , the critical value v reaches to 
its smallest value. This implies that in this case only small values of disorder potential can make the system an 
insulator. Furthermore, for ϑ ≈ 0, 2π and large enough v, the states are the most localized ones. Figure 7b is the 
cross-section of the panel (a) and shows the dependence of MIPR on v for specific values of ϑ . It is clear that as 
ϑ decreases from π to 0 the value of the transition point increases and then slightly decreases.

For asymmetric ladder, the density plot of the phase diagram as functions of v and ϑ , is shown in Fig. 7c. 
The dark blue region indicates metallic states. Similar to the symmetric ladder case, there is a non-monotonic 
behavior of the critical value of v versus dimerization such that the lowest critical value of v is around ϑ ≈ π . 
In contrast, for large enough disorder strength, the most localized states are around ϑ ≈ π . To clarify the phase 

Figure 4.   (Color online) Topological phase diagrams for symmetric (top row) and asymmetric (bottom row) 
ladders as functions of ( θ , ϑ ) (left column) with v = 0.8 , and of (v, ϑ ) (right column) with θ = π/4 . Here, 
1/α = 2.
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diagram, we have plotted the MIPR as a function of the v with various values of ϑ as shown in Fig. 7d. Similarly, 
in this ladder, with raising ϑ , from 0 to π the transition point gets larger values, but for ϑ > π/2 , the increasing 
of the ϑ makes the transition point to get smaller values with the smallest one at ϑ = π.

From Fig. 7, for both ladders, as a result, one finds that the overall critical value of the disorder strength 
is smaller than that of the original Aubry-Andre model, i.e., 1D non-dimerized chain with one sublattice per 
unitcell17. This can be attributed to the existence of more sublattices per unitcell in our model compared to the 
Aubry-Andre chain. Moreover, in overall, a small dimerization parameter, denoted as δt , results in a lower value 
for the transition point. Consequently, dimerization renders the metallic states more unstable than in the non-
dimerized case, favoring the formation of the insulating phase.

Figure 5.   (Color online) Energy spectrum of symmetric model versus α for v = 0.5 (a–d), v = 0.8 (e–h), v = 2 
(i–l), v = 3 (m–p), and v = 5 (q–t). Also, ϑ = π/4,π/2, 3π/4,π for the first, the second, the third, and the 
forth columns, respectively. Here, θ = π/4.
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Summary
We conducted a study on the topological and localization properties of the two-leg ladder with symmetric 
and asymmetric dimerization configurations, incorporating on-site energies. The on-site potential exhibits an 
oscillatory behavior along the chain. The lattice can be either commensurate or incommensurate, depending on 
whether the frequency of the on-site potential takes rational or irrational values. In the former case, an integer 
number of unitcells can fit within one period of the potential, while in the latter case, one period of the on-site 
potential does not cover an integer number of unitcells.

Figure 6.   (Color online) Energy spectrum of asymmetric model versus α for v = 0.5 (a–d), v = 0.7 (e–h), 
v = 2 (i–l), v = 3 (m–p) and v = 5 (q–t). Also, ϑ = π/4,π/2, 3π/4,π for the first, the second, the third, and 
the forth columns, respectively. Here, θ = π/4.
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We calculated the band structure and phase diagrams for both symmetric and asymmetric models. Our 
findings indicate that both models can host topologically non-trivial phases in the commensurate case when 
there is an even number of unitcells in one period of the on-site potential. Under such conditions, inversion 
symmetry can be established, protecting the symmetry-protected topological phases. Additionally, we obtained 
the fractal spectrum, known as Hofstadter’s butterfly, for the symmetric and asymmetric models with different 
dimerization and on-site potential strengths. Our analysis revealed that the states of the fractal spectrum tend 
to be more delocalized at on-site potential strengths less than certain values, while becoming more localized for 
sufficiently large on-site potential strengths.

Subsequently, we investigated incommensurate lattices, identifying metal-insulator transition points influ-
enced by the dimerization strength. The critical value of on-site potential strength for the transition point in the 
non-dimerized case is larger than that in the dimerized case, and vice versa.

Data availability
All data generated or analyzed during this study are included in this published article.
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