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A data‑driven global flood 
forecasting system for medium 
to large rivers
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Losses from catastrophic floods are driving intense efforts to increase preparedness and improve 
response to disastrous flood events by providing early warnings. Yet accurate flood forecasting 
remains a challenge due to uncertainty in modeling, calibrating, and validating a useful early warning 
system. This paper presents the Requisitely Simple (ReqSim) flood forecasting system that includes 
key variables and processes of basin hydrology and atmospheric forcing in a data‑driven modeling 
framework. The simplicity of the modeling structure and data requirements of the system allows for 
customization and implementation in any medium to large rain‑fed river basin globally, provided there 
are water level or discharge measurements at the forecast locations. The proposed system’s efficacy 
is demonstrated in this paper through providing useful forecasts for various river basins around the 
world. This include 3–10‑day forecasts for the Ganges and Brahmaputra rivers in South Asia, 2–3‑day 
forecast for the Amur and Yangtze rivers in East Asia, 5–10‑day forecasts for the Niger, Congo and 
Zambezi rivers in West and Central Africa, 6–8‑day forecasts for the Danube River in Europe, 2–5‑day 
forecasts for the Parana River in South America, and 2–7‑day forecasts for the Mississippi, Missouri, 
Ohio, and Arkansas rivers in the USA. The study also quantifies the effect of basin size, topography, 
hydrometeorology, and river flow controls on forecast accuracy and lead times. Results indicate that 
ReqSim’s forecasts perform better in river systems with moderate slopes, high flow persistence, and 
less flow controls. The simple structure, minimal data requirements, ease of operation, and useful 
operational accuracy make ReqSim an attractive option for effective real‑time flood forecasting in 
medium and large river basins worldwide.

Floods represent 39% of all natural disasters worldwide since  20001, and they have gone up to 46% since  20102. 
With changing climatic conditions, more and more floods are observed along with more extreme weather pat-
terns. In addition, changes in land cover, land use, urbanization and infrastructure development in river basins 
are increasing flood risk and associated damage across the world. For instance, between 1960 and 2010, the 
number of recorded floods has increased by ten  times2 and the economic losses have risen by seven-fold3. River 
flooding alone affects 21 million people and $96 billion in GDP worldwide each year, with the developing world 
increasingly exposed to flood risks more than the developed  world4. If flooding conditions were better forecasted, 
then at-risk communities in flood-prone areas might have a chance to avoid the hazards of natural flooding 
becoming a disaster. Adequate preparation requires at least 5–10 days advance notice of a  flood5,6. However, 
providing early flood warning through an operational flood forecasting system remains a key global challenge, 
particularly for resource-constrained regions of the world.

A global flood forecasting system is a network of data collection, modeling, and dissemination systems that 
are used to forecast and monitor the risk of flooding in different regions of the world. These systems typically 
use a combination of meteorological data, hydrological data, and geographic information, as described in the 
Global Flood Monitoring System (GFMS) by the University of  Maryland7, to produce flood forecasts and alerts. 
These three types of data are used by computer models, such as the Global Flood Awareness System (GloFAS)8, 
to predict the likelihood and severity of flooding in different regions. Findings from these models are then used 
to develop alert systems, such as the Flood Forecasting and Early Warning System (FFEWS) by the World Mete-
orological Organization (WMO)9, to issue flood warnings to the public and emergency response agencies when a 
flood is imminent. A key challenge in the development and implementation of global-scale flood forecasting sys-
tems is the availability and access to data, complexity of modeling requirements, and ease of operationalization, 
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as highlighted by various organizations such as the World Meteorological Organization (WMO) and the United 
Nations (UN), as well as in several academic journal  publications9,10.

Over the last several decades, with an advanced understanding of atmospheric physics and river basin hydrol-
ogy, deployment of upper atmospheric satellite observation networks, and increased computational power, our 
ability to integrate meteorological and hydrological modeling capabilities to develop regional and global-scale 
flood forecasting schemes has vastly  improved11–13. A 2014 publication provided a detailed overview of as many 
as 14 global and four continental-scale flood forecasting  schemes13. As of January 2023, however, most of these 
schemes are currently not in operation. In fact, currently there are only a few real-time flood forecasting systems 
available on a continental or global scale. To the best of our knowledge, only two global and four continental 
models exist for real-time flood  forecasting12.

The Global Flood Awareness System (GloFAS) is one such global-scale scheme, jointly developed by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) and the Joint Research Centre of the European 
Commission (EC). Since 2011, GloFAS has been providing ensemble streamflow forecasts at daily time steps and 
flood exceedance probabilities for large rivers around the world for up to 30 days in  advance8,12,14. The scheme 
employs a distributed hydrological model at 0.1° spatial resolution with ensemble Numerical Weather Predic-
tion (NWP) inputs covering the entire  globe14,15. The other one is the Global Flood Forecasting and Information 
System (GLOFFIS) developed by Deltares, the Netherlands, and is based on a distributed hydrological model 
with precipitation inputs from several NWPs. It also provides ensemble streamflow forecasts for up to 16-day 
lead time at 0.50 resolution and deterministic forecasts for 10-days at a 0.10  resolution12,16.

There are several forecasting schemes that provide experimental forecasts for the short range (1–5-day). For 
example, the NASA-funded Global Flood Monitoring System (GFMS, http:// flood. umd. edu/) provides forecasts 
for up to 5 days with the incorporation of satellite precipitation data as inputs to a hydrologic model covering a 
quasi-global grid (50°N–50°S)17. Similarly, the Floods Global system (http:// floods. global) with the input of satel-
lite precipitation as well predicts streamflow and flood exceedances in the next 3 days. Another is the Ensemble 
Framework for Flash Flood Forecasting (EF5) scheme (http:// ef5. ou. edu/ index. html/) that provides forecasts 
for up to 24 h in advance with the satellite precipitation  inputs18.

An overview of current global and regional flood forecasting capabilities presented above reveals that there 
are relatively few real-time schemes. This is attributed to system complexity related to the numerous hydrome-
teorological, geophysical, and land use factors, as well as modeling complexity caused by uncertainties in pre-
cipitation data, lack of ground measurements, and scale mismatch in rainfall-runoff  generation19–26. To address 
these challenges, we present a data-driven flood forecasting system that can be operationalized in low resource 
settings with relative ease, yet still provides quality forecasts at local, regional, and global scales. The proposed 
data-driven flood forecasting system, called the Requisitely Simple or ReqSim flood forecast system, includes a 
simpler modeling structure, utilizes readily available data, and is easier to implement in real time. ReqSim aims 
to learn from the data about how the river basin’s hydrologic system works by identifying and using adaptive 
relationships between a series of inputs and  outputs19. Further details of the ReqSim system are available in the 
Methods section and have been previously documented in earlier  publications11,27.

The proposed system was applied to 51 watersheds in 13 major river basins from five continents (Fig. 1a). 
This paper presents the results of ReqSim application to the Ganges, Brahmaputra, Meghna (GBM) and Indus 
River basins in South Asia; the Niger, Congo and the Zambezi River basins in West and Central Africa; the 
Parana (La Plata) in South America; the Mississippi-Missouri in North America; and the Danube River basin 
in Europe (Fig. 1). The selection of forecast locations and watersheds was contingent upon the availability of 
recorded streamflow measurements, particularly post January 15, 2015, when the operational Global Forecast 
System (GFS) from the National Centers for Environmental Prediction (NCEP) started providing forecasted 
precipitation data. Observed river data and rainfall, along with the forecasted rainfall are crucial input data to the 
data-driven model presented here. However, for the La Plata River basin in South America and the Congo, Nigar, 
and Zambezi River basins in Africa, observed river data post January 15, 2015, were unavailable. Consequently, 
model development for these river basins relied on streamflow and rainfall data predating 2015, with observed 
rainfall considered as "true" forecast rainfall. For more detailed information on the methods and data employed, 
please refer to the Methods section at the end.

The ReqSim provides promising findings for short (3–5-day) to medium-range (6–10-day) flood forecasts for 
medium to large river basins. It has done so by combining available rainfall data from satellite and weather mod-
els, measurements of streamflow or water level, and day-to-day persistence of flow conditions. The daily rainfall 
averaged over a few large domains of a river basin (i.e., space-aggregated rainfall) and then further aggregated 
by the domains’ travel time (i.e., space–time aggregated) with a subsequent time lag adjustment is found to be a 
good predictor of basin’s rainfall-runoff response and downstream streamflow conditions. In essence, travel time 
for water from every domain to reach downstream forecast locations, space–time aggregated upstream domain 
rainfalls, and streamflow or water level measurements at forecasting locations are integrated into a regression 
model framework to forecast the likelihood of flooding at those locations. Using this approach, ReqSim is able 
to provide comparable or better forecasting accuracy relative to more complicated methods, such as detailed 
hydrologic modeling or satellite altimetry-based flood forecasting  techniques11,27.

The paper begins by summarizing the performance of the ReqSim forecast in each river basin, and then 
examines factors that may impact the model’s performance. These include river basin’s characteristics such as 
basin size, topography, hydrology, and degree of streamflow regulation in the river basin. Overall, the findings 
suggest that smaller river basins with flashier flood flow and shorter concentration time (travel time) have a 
shorter lead time for useful forecasts, while larger river basins with gradual rise and fall in flood and longer 
concentration time have longer lead times for useful flood  forecasts28. To the best of our knowledge, this is 
perhaps one of the first studies to demonstrate the efficacy of flood forecasting over a large range of scales from 
different regions of the world.

http://flood.umd.edu/
http://floods.global
http://ef5.ou.edu/index.html/
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Findings from ReqSim
In this study, we have selected 51 watersheds in 13 major river basins from five continents to improve their 
operational flood forecasting capabilities with the application of the ReqSim system. The hydrology, meteorol-
ogy, and geographic information of the selected river basins (and their sub-basins) in this study differ substan-
tially. Unsurprisingly, ReqSim’s forecasting accuracy also differs significantly from basin to basin. Our goal with 
ReqSim is not to provide an off the shelf system that can be used anywhere but to provide a platform that can 
be customized with minimal time and resources for different basins with varied meteorological, hydrological, 
and geographic information. The following subsections present an overview of ReqSim’s streamflow forecast 
accuracy, including their strengths and limitations—for a range of river basins around the world. The results are 
divided into four basin scales based on their size: small (< 100,000  km2, in short < 100 K  km2), medium (100 K 
to 500 K  km2), large (500 K to 1000 K  km2) and very large river basins (> 1000 K  km2).

ReqSim forecast accuracy
The section explores ReqSim’s forecast performance by presenting a range of quality forecast lead times alongside 
their corresponding performance metrics. This range of lead time demonstrates ReqSim’s capability to provide 
quality forecasts across different forecast locations and flood years. In this study, the ‘quality forecast’ is defined 

Figure 1.  Flood forecasting by ReqSim for various regions of the world (a) and maximum lead time with 
reasonable forecasting accuracy (b–g).
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based on performance metrics such as coefficient of determination  (R2), Nash Sutcliffe Efficiency (NSE) and 
Kling-Gupta Efficiency (KGE) values equal to or greater than 0.8, 0.7, and 0.8, respectively. The discussion of 
results follow these criteria throughout the paper. For more information on the evaluation criteria, please see 
the “Methods and data” section.

South and East Asia
The evaluation of ReqSim performance demonstrates its ability to provide high-quality forecasts for various 
South Asian river basins, such as the Ganges (which drains Nepal, and part of India and Bangladesh) and the 
Brahmaputra (drains part of China, India, Bhutan, and Bangladesh), with lead times of 6–10 days (Fig. 1b).

The Coefficient of Determination  (R2) and Nash–Sutcliffe Efficiency (NSE) values at all forecast locations 
along the Ganges River—from Elginbridge in Uttar Pradesh to Gangpur and Kanpur in Bihar, then Farakka 
in West Bengal, India to Hardinge Bridge in Bangladesh—have been 0.8 or greater during the 2017 and 2018 
monsoon season (June–September). The  R2 and NSE values over 0.8 suggest a quality flood forecast that can aid 
local authorities in making timely mitigation plans. The performance along the main Brahmaputra River on the 
eastern Tibetan Plateau in China is reasonably accurate with a 3-day lead time. The performance improves once 
the river flows through the Yarlung Tsangpo Grand Canyon and enters Arunachal Pradesh of India. For example, 
ReqSim can provide accurate forecasts 4–5 days advance at locations such as Dibrugarh near the China-India 
border to Guwahati in Assam, India, then 7 days ahead beyond the India-Bangladesh border at Bahadurabad 
inside Bangladesh (Fig. 1b), with  R2, NSE values ranging from 0.6 to 0.75. The performance of the Brahmaputra 
River is highly encouraging compared to the Ganges, in which the steep terrain and high intensity rainfall results 
in significantly flashier flood flows, which are hard to predict beyond short-range (1–3 days)29.

In an earlier  publication12, we presented a detailed comparison between ReqSim’s forecasts and several exist-
ing but more resource-intensive  methods30–32 for these two river basins. Findings show that ReqSim was able 
to generate comparable, and in some cases better, flood forecasts across the flood season as well as during peak 
flood flow for 2007–2015. These results motivate us to explore the efficacy of Reqsim for other regions. It is also 
worthwhile to note that there is currently no operational flood forecasting scheme in India that provides forecasts 
beyond a 2–3-day lead  time28.

The reason for better performance along the main rivers of the Ganges and Brahmaputra basin is attributed 
to several basin characteristics, such as basin size, topography, and rainfall patterns (Table 1). For example, fore-
cast locations that show accurate forecast for a 7–10-day lead time typically have large upstream basin areas, an 
average slope of 3–6%, and average annual rainfall of about 1,400 mm in these two river basins. The ReqSim also 
provides quality forecasts at 4–7 days in advance for medium river basins with slope (annual rainfall) of 16–19% 
(1700 mm) and 2–5 days for small rivers with slope (annual rainfall) of 10–27% (2300 mm).

The ReqSim provides 3–4-day accurate forecasts for the Indus River downstream of the Guddu Barrage in cen-
tral Pakistan, with  R2 and NSE values above 0.8. The Guddu Barrage location is characterized by large basin areas 
with slope (annual rainfall) of 13–15% (730 mm) in the upstream region (Table 1). However, for medium-sized 
watersheds in this basin, the accuracy is somewhat limited with only 2 days forecasted for Khyber Pakhtunkhwa 
and Kalabagh Dam in Punjab, with upstream basin slope (annual rainfall) of 20–23% (810 mm). Despite this, the 
ReqSim’s sub-basin scale forecasting for the Indus River is significant as it is the first flood forecasting scheme 
in this basin that allows for forecasts beyond a 1–2 day lead  time33. The ReqSim therefore can play a crucial role 

Table 1.  ReqSim’s performance in the major river basins worldwide, presenting the maximum lead time for 
quality forecasts relative to basin scales, topography and hydrologic condition.

River basin (s) Basin scale in size
No. of forecast 
locations Area (in 1000  km2) Slope (%) Annual rainfall (mm) Lead time (day) NSE KGE

Ganges–Brahmaputra

Small 7  < 100 10–27 2250 2–5 0.73–0.92 0.79–0.94

Medium 3 100–500 16–19 1700 3–7 0.72–0.78 0.79–0.86

Large 6 500–1000 3–6 1400 7–10 0.82–0.97 0.79–0.94

Indus

Small Not available

Medium 2 100–500 20–23 810 2–3 0.86–0.87 0.92

Large 1 500–1000 13–15 730 3–5 0.78 0.85

La Plata

Small to medium N/A

Large 2 500–1000 1–1.3 1325 3–5 0.81–0.94 0.9–0.96

Very large 3  > 1000 2–2.3 1400 5–10 0.81–0.97 0.80–0.95

Niger, Congo, and 
Zambezi

Small Not available

Medium 2 100–500 1.2–1.5 1250 5–7 0.97–0.99 0.98

Large to very large 3  > 500 1.1–1.8 1130 7–10 0.95–0.97 0.97

Mississippi

Small Not available

Medium 6 100–500 0.9–3.0 1300 2–5 0.72–0.79 0.79–0.81

Large to very large 4  > 500 2–2.5 1200 4–7 0.71–0.92 0.79–0.94

Missouri

Small Not Available

Medium 2  < 1000 1.7 918 3–5 0.76 0.8

Large to very large 3  > 1000 2.2–2.6 850 2–4 0.73–0.89 0.8–0.88
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in Pakistan by predicting the flow into major reservoirs and dams, and by enabling an efficient and timely dam 
operation strategy to reduce downstream flood risk.

The ReqSim has also shown high forecasting accuracy along the Yangtze River in China and the Amur River 
in China and Russia in the downstream areas, with a 3–7-day lead time (Fig. 1c) and  R2 and NSE values ranging 
between 0.7 and 0.8.

Figure 2 presents a comparison between observed and forecasted streamflow at various lead times for multiple 
forecast locations in major river basins worldwide, including those in South Asia. The focus is on showing forecast 
performance at key locations within each basin, where the ReqSim model consistently provides high-quality 
forecasts over different lead times. However, not all stations are shown with the same lead time forecasts; instead, 
the figure presents performance up to the lead time where the model’s accuracy meets the predetermined quality 
forecast criteria outlined earlier in this paper. This ensures that only forecast data meeting the established quality 
standards are included. Additionally, while there are several other locations within each river basin demonstrating 
quality forecasts, they were intentionally omitted to maintain figure readability. The periods in the figure vary 
across the river basins, primarily due to the availability of observed streamflow data.

Western and Central Africa, and Central Europe
The ReqSim’s forecasting accuracy in the Niger, Congo, and Zambezi River basins in Africa is very promis-
ing, particularly in medium to large river basins with upstream basin slope less than 2% and annual rainfall of 
1200 mm (Fig. 1d and Table 1). The system provides accurate forecasts 3–7 days in advance for medium-sized 
watersheds upstream at two locations, Bangui on the Congo River in Central African Republic and Katima 
Mulilo on the Zambezi River in Zambia. On the Niger River in Nigeria and the Congo River in Congo, two 
other forecast sites, Lokoja and Kinshasa respectively, provide accurate flood forecasts up to 10 days in advance 
using the ReqSim. The  R2 and NSE values for the lead time of quality forecasts range between 0.80 and 0.95 at 
all forecasting sites in these river basins. The Niger and Congo River basins have faced unprecedented floods in 
2020, resulting in devastating human, social, and economic costs for the countries in the  region34. These high 
forecasting accuracies for basins with different hydrological, meteorological, and geographic conditions suggest 
that the ReqSim has the potential to disseminate timely and accurate flood forecasts at longer lead times in these 
river basins in Africa, which is currently  unavailable35. Figure 2 compares observed and forecasted streamflow 
at various lead times for multiple forecast locations in African and European basins considered in the study.

South America
The ReqSim’s performance in the La Plata River basin in South America, which drains parts of Brazil, Paraguay, 
Uruguay, and Argentina, has been limited to 2–5-day lead times. For example, ReqSim provides accurate fore-
casts up to 3 days in advance at Porto Murtinho on the Paraguay River and the Usina Itaipu Dam on the Parana 
River on the Brazil-Paraguay border. The  R2 and NSE values for both these locations are above 0.8, with large 
basin areas upstream. However, beyond these forecast lead times, the model results are significantly influence by 
flow persistence, making them unusable for forecasting purposes. The slope of the basins varies from 1 to 1.3% 
with an annual rainfall of about 1325 mm. The performance improves after the confluence of the Paraguay and 
Parana Rivers, with increased basin area and flow persistence. For example, at the forecast locations of Corrientes, 
Chapeton, and Timbues on the Parana River in Argentina, ReqSim provides accurate forecasts up to 5 days in 
advance with  R2 and NSE values well above 0.9. All of these forecasting sites have very large contributing areas 
upstream, with mild basin slopes between 2 and 2.3% and annual rainfall amounts over 1400 mm (Table 1).

North America
The ReqSim’s forecast performance in the Mississippi-Missouri River basin in the USA, North America’s largest 
river basin, is limited to the Mississippi, Ohio and lower Missouri River only. In the Ohio River basin, ReqSim 
begins providing reasonable forecasts at least 2 days in advance from Louisville, Kentucky. The ReqSim modeling 
system continues to provide useful forecasts up to a 3-day lead time in the downstream, including the location 
of Olmsted, Illinois, close to the Ohio-Mississippi River confluence, with  R2 and NSE values greater than 0.8. 
All of these forecasting sites have medium-sized river basins upstream with an average slope (annual rainfall) of 
2.5–2.7% (1300 mm). We tested our forecast system at two more forecast sites upriver from Louisville, but found 
poor results, even though they had medium-sized watersheds upstream with a mild slope (2.8–3%). One of the 
reasons why forecasts are not useful beyond a 3-day lead time in the Ohio basin may be related to snowmelt-
driven flood flows between February and April. The ReqSim works well when a near-linear relationship between 
space–time aggregated upstream rainfall and downstream streamflow is established. However, as the Ohio River 
basin has largely snowmelt-driven flood flows, it appears that the ReqSim is unable to provide accurate forecasts 
beyond a relatively short lead time in that basin. Therefore, we need to customize the ReqSim’s modeling structure 
to address snow-driven flood forecasts.

The ReqSim begins by providing reasonably accurate forecasts up to 3 days in advance along the Mississippi 
River from the forecasting site at Clinton, Iowa and its downstream location Keokuk, also in Iowa. However, 
despite the significant increase in upstream watershed areas as a result of the Missouri River joining the Mis-
sissippi near St. Louis, Missouri, the performance of ReqSim does not improve until the Ohio River joins the 
Mississippi near Thebes in Illinois. The performance from Clinton to Thebes, therefore, remains consistent up 
to a 3-day lead time with both  R2 and NSE values above 0.9. After the confluence of the Mississippi and Ohio 
Rivers, forecasts of up to 5–7 days in advance can be made for the locations of New Madrid in Missouri and 
Vicksburg in Mississippi, with an accuracy of  R2 and NSE values more than 0.9.

The ReqSim is applied to several locations on the Missouri River, all of which have very large upstream basin 
areas with relatively mild basin slopes (2.2–2.6%) and low annual rainfall (800–900 mm). However, forecasts 
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are not useful for these locations beyond a 2-day lead time. In the next section, we will discuss why ReqSim 
cannot provide accurate forecasts for longer lead times at some of the forecast sites in Missouri or other river 
basins, even though they have medium to large or very large watersheds upstream. These findings in Missouri 
are somewhat anomalous when compared to ReqSim’s general forecasting performance, and will require further 

Figure 2.  ReqSim forecast performance. The graph shows the comparison between observed and forecasted 
streamflow for 16 locations in major river basins around the world with different forecasting lead time.
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examination. On the other hand, the ReqSim forecast for the downstream of the Arkansas River at Murray Dam 
and the Columbia River at Port Westward in Oregon is encouraging for a 3-day lead time. The  R2 and NSE values 
of forecasts at these locations range from 0.68 to 0.79. Figure 2 compares observed and forecasted streamflow at 
various lead times for multiple forecast locations in Mississippi and Ohio river basins.

Relationships between basin scales and forecast lead time
A closer examination of the interrelationship between river basin scales, topography, hydrometeorology, stream-
flow persistence, and lead time (Fig. 3) reveals interesting insights into the role of basin scales and conditions 
related to flood forecasting accuracy.

For instance, generally, the lead time for quality forecasts tends to increase with larger upstream contributing 
basin areas (Fig. 3a) and with greater flow persistence (Fig. 3d), but it decreases as slope increases (Fig. 3c). This 
outcome is therefore not unexpected with the persistence-based model presented here. However, establishing 
a direct relationship with basin average annual rainfall (Fig. 3b) proves challenging when analyzing data from 
various river basins worldwide with diverse hydroclimatology. Nonetheless, patterns emerge within the same 
large basin or under similar hydroclimatic conditions. For instance, in the Ganges, Brahmaputra, and Meghna 
River basin (G, B, M points in Fig. 3b), the lead time for quality forecasts increases with a decrease in upstream 
basin rainfall. Conversely, in the Niger, Zambezi, and Congo River basins in Africa (N points in Fig. 3b), the 
Mississippi and Missouri River basins in North America (Ms and Mr points in Fig. 3b), and the La Plata River 
basin in South America (L points), the lead time for quality forecasts increases with an increase in basin rainfall. 
In other words, greater quality forecasts are available for the arid river basins than the semi-arid or dry basins.

Figure 3.  Variations of forecast lead time and accuracies for different basin scales and conditions. The 
figure shows relationships between river basin area and (a) basin topography (percent slope), (b) basin 
hydrometeorology (annual rainfall), (c) persistence in the streamflow (day-to-day correlation), (d) forecasting 
lead time (days).
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Even considering these two contrasting features among these river basins with their respective basin slope 
and persistence, it becomes evident that higher basin rainfall in the Ganges, Brahmaputra, and the Meghna basin 
coincides with smaller watersheds in mountainous regions, therefore having higher average slope and lower 
flow persistence or runoff concentration time. On the other hand, lower rainfall or semi-arid regions in Africa, 
South and North America, considered in this study, are located in mountainous areas with greater slope, and 
thus less flow persistence. From this discussion, it is clear that topography, slope, and finally flow persistence 
affect flood forecast quality more profoundly, with longer persistence or time of concentration likely to provide 
higher forecast accuracy with longer lead time.

These relationships are neither linear nor easily generalizable; they vary significantly between medium to 
large (100 K to 1000 K  km2) and for very large river basins (over 1000 K  km2). Table 2 provides a summary of 
basin scales and conditions which may serve as a guide for other forecasting techniques like machine learning, 
satellite altimetry-based algorithms, or detailed physically based hydrological modeling applied to different basin 
sizes and hydrometeorological conditions.

The role of river connectivity on forecast lead time
There are, however, several contextual inconsistencies observed in our assessment of forecasting accuracy. For 
instance, there are several medium to very large watersheds, particularly in the La Plata and Missouri River 
basins, some of which do not have steep slopes or high annual rainfall and show enough persistence in their 
streamflow measurement in the downstream, yet the ReqSim failed to generate reasonably accurate forecasts 
at longer lead times (Fig. 3d,e). To explore this further, we examined the river connectivity from upstream to 
downstream, by using the connectivity status index (CSI)36. The lower the CSI value, the more the river is regu-
lated along its path. As the ReqSim system is based on a near-linear relationship between upstream rainfall and 
downstream flow, any obstruction in the river’s natural flow is likely to affect this relationship, which in turn 
reduces the likelihood of getting better forecasting accuracy for longer lead times.

A recent global  study36 has assessed the connectivity of 12 million km of rivers worldwide and reported that 
only 37% of rivers longer than 1000 km remain free-flowing over their entirety, while 23% of them flow unin-
terruptedly to the ocean. The study proposes a connectivity status index (CSI) to indicate the rivers’ ability to 
flow naturally, while rivers with low CSI numbers are classified as regulated rivers. We analyzed the CSI values 
of rivers at each of our forecasting sites, compared them to the maximum lead time of ReqSim’s forecasting 
accuracy, along with other characteristics of the basins such as basin size, slope, and hydrometeorology. Nearly 
all the rivers for which the ReqSim was unable to provide reasonably high forecasting accuracy for longer lead 
times fall within the CSI value of 75, which suggests that they are moderate to highly regulated rivers (See Zone 
A and B in Fig. 4). Therefore, the river connectivity and the extent to which the river is regulated will play an 
important role in customizing ReqSim for operational purposes for different basins.

The Zone C appears to be somewhat different than Zones A and B in Fig. 4. The ReqSim provides reason-
ably accurate forecasts for up to 10 days in advance for the Ganges River in Bihar State in India and further 
downstream in Bangladesh, even though the river is identified as highly regulated, with CSI values of around 50 
or less. The Ganges River’s CSI value, at locations such as Patna and Farakka in India, and Hardinge Bridge in 
Bangladesh, is around 50 mainly because of a very large barrage at Farakka that diverts the flow of the Ganges. 
However, the barrage is usually unregulated and left open during most of the flood season (June–September) 
in order to avoid flooding in upstream areas. As a result, the Farakka Barrage has relatively less impact on the 
river’s natural flow during the flood  season37 as the treaty is only meant for sharing the dry season flow, allowing 
for more accurate forecasting with longer lead time using ReqSim.

Discussion
The state of the catchment and the predictability of hydrometeorological inputs are crucial factors that impact 
the accuracy of flood  forecasting11,27. This study examines how the scale of a river basin affects the quality 
and lead time of flood forecasts by incorporating catchment characteristics (e.g., size and topography) and 
hydrometeorological conditions (e.g., average rainfall and streamflow persistence). Rainfall is a key input for 
physical process-based hydrological models and is commonly seen as a major source of uncertainty in flood 
 forecasting38–40. Physical process-based models face challenges due to the mismatch between model equations 
and the variability of rainfall and runoff generation mechanisms, as well as uncertainties associated with param-
eter estimation, model calibration, and  validation11,12,17,19. Yet there is a perception that increasing space–time 
resolution and physical parameterization can improve forecasting  accuracy27. Such a perception may lead to the 
development of overly complicated models without significantly improving forecasting quality. In this paper, we 
present a data-driven flood forecasting system that strikes a balance between the complexity of model structure 

Table 2.  Role of basin area, topography and hydrometeorology on forecasting lead time and accuracy of 
ReqSim forecast.

Basin size No. of forecast locations Slope (%) Annual rainfall (mm) Lead time (day)

Small (< 100 K  km2) 8 1.3–27 (19.5) 1300–4900 (2200) 2–5

Medium (100 to 500 K  km2) 16 1–23 (8.5) 750–1750 (1250) 3–7

Large (500 to 1000 K  km2) 12 1–19 (7) 700–1900 (1350) 3–10

Very Large (> 1000 K  km2) 13 1–2.6 (2) 800–1400 (1100) 5–10
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and the simplicity of operationalization. The proposed system is complex enough to capture key variables and 
rainfall-driven processes related to river basin hydrology, but simple enough in its structure, data requirements, 
and ease of operationalization for real-time flood forecasting. As we have shown, the ReqSim incorporates 
essential features of river basin hydrology such as rainfall, flow travel time, streamflow persistence, and flood 
propagation in its modeling structure, and can provide useful flood forecasts for medium to large river basins 
worldwide. It is important to note that the current version of ReqSim does not account for snowmelt-driven 
catchment hydrology. Consequently, the model is not suitable for river basins or watersheds where snowmelt-
induced flood peaks are prominent.

Our application of ReqSim across the selected medium to large river basins on five continents revealed 
that factors like basin scale, topography, hydrometeorology, and the free-flowing nature of a river can have a 
significant impact on flood forecast performances. Overall, the ReqSim forecasts perform more effectively in 
river systems with moderate slopes, and semi-arid to wet hydroclimatic conditions. For instance, in the Ganges, 
Brahmaputra, and Meghna River basins in South Asia, ReqSim can provide 2–5-day accurate forecasts for small 
basins, 4–7 days for medium basins, and 7–10 days for large basins. However, in the Indus River basin, the 
forecast lead time is shorter at 1–2 days for medium basins and 3–4 days for large basins. Similarly, in African 
river basins such as the Niger, Congo, and Zambezi, ReqSim can provide accurate forecasts for medium basins 
within 3–5 days, and for large to very large basins within 5–10 days lead time. In the La Plata River basin in 
South America, ReqSim can provide accurate forecasts for large basins within 2–3 days, while it is up to 5 days 
for very large basins. In the Ohio River basins in the USA, ReqSim can provide accurate forecasts for medium 
basins up to 2–3 days in advance, while the same lead time is possible for large basins in the upper Mississippi 
basin. Additionally, ReqSim can generate 5–7-day accurate forecasts for the lower Mississippi River, which has 
a very large upstream basin area.

Our results further suggest that forecast accuracy and lead time are also impacted by human-caused interven-
tions such as restrictions on natural flow in rivers, in addition to natural factors like basin size, topography, and 
hydrometeorological conditions. Rivers with more flow control measures, such as dams or barrages, are less likely 
to generate accurate forecasts with longer lead times. This highlights the importance of incorporating river con-
nectivity information as well as operation strategy of river control structures in flood forecasting models, whether 
they are data-driven or physical process-based, in order to achieve accurate forecasts with longer lead times.

The ReqSim application has shown that large-scale weather systems captured by satellite and numerical 
weather models (e.g., GPM, TMPA, GFS, etc.) can be used in a data-driven model to obtain forecasts with rea-
sonable accuracy without the need for complicated data processing operations. This is particularly useful in situ-
ations where access to measured data from upstream basins is limited, and other forecasting methods maybe 
resource-intensive and operationally prohibitive. Over the years, many complex and detailed hydrological and 
multi-modeling frameworks, as well as satellite altimetry-based flood forecasting schemes have been developed. 
However, some of these models have failed to provide expected results or are not currently operational. This is 
often due to the complexity of their model structure, the need for significant data and resources, and difficulties 
in transferring technology to local forecasting agencies. This is where the ReqSim system is novel and innovative 
in its ability to provide effective real-time flood forecasting on a global scale. Compared to other complex and 
resource-intensive methods, it provides a SMART alternative:

1. Simplicity (S): A simple structure makes the system easy to understand and operate, which is especially 
important in areas with limited resources or expertise. For example, in developing countries, where resources 

Figure 4.  The role of river connectivity on ReqSim forecast lead time.
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are limited and expertise in flood forecasting is not as developed, a simple system is more likely to be adopted 
and implemented effectively.

2. Minimal data requirements (M): The system requires minimal data inputs, making it more accessible to areas 
where data is scarce or difficult to collect. For example, in remote or rural areas, where weather and water 
level monitoring stations are not as prevalent, a system that requires minimal data inputs is more likely to 
be effective.

3. Affordability (A): A simple, minimal data requirement, easy-to-operate system is more cost-effective to 
implement and maintain than more complicated, resource-intensive methods. For example, a data-driven 
system that uses statistical or machine learning algorithms, rather than a more complex hydrological model, 
can be more cost-effective to develop and maintain.

4. Reliability (R): The system’s accuracy is operationally useful, making it a reliable and valuable tool for mak-
ing critical decisions related to flood management. It provides comparable forecasts to more complicated 
 methods12,13.

5. Transferability and scalability (T): It can be easily scaled up or down depending on the area, making it more 
adaptable to different regions and contexts. For example, a data-driven system can be implemented in a 
limited number of critical forecasting locations and later be scaled up to cover a larger area.

Overall, a data-driven flood forecasting system is a SMART option for effective real-time flood forecasting 
across the globe. Such a cost-effective, adaptable, and easy to understand system will make it more accessible 
for disaster management and early warning in many areas around the world. We believe that these key features 
of the ReqSim system will make it widely applicable and actionable for medium to large river basins worldwide.

Methods and data
Model structure
Streamflow persistence (i.e., how the streamflow remains similar in a river over several days) and space–time 
aggregated daily rainfall for large upstream basin domains are good predictors of streamflow and floods in the 
downstream  areas11. Using this as a guiding principle, our ReqSim flood forecast system consists of four com-
ponents: (1) day-to-day persistence of measured streamflow or water level at the river point for which the flood 
forecasts are intended to generate, (2) spatially aggregated observed and forecasted daily rainfall for several 
upstream basin domains (i.e., domain-averaged daily rainfall), (3) temporally aggregated domain-averaged daily 
rainfall over the range of flow travel time duration (maximum and minimum no. of days) it takes for the water 
to travel from each domain to reach the forecast location downstream, and (4) flow travel time lag adjusted 
space–time aggregated domain rainfall. The model thus works by tracking key features of river basin hydrology, 
such as flow persistence, space–time aggregated rainfall, flow travel time, and the relationship of upstream rainfall 
to the downstream streamflow response at the forecast location. The model structure is as follows:

where, Qt+n is the forecasted streamflow at n-day lead time; Qt , and Qt−1 are observed streamflow on forecast 
day t  and the day before that t − 1 , respectively; αn and βn are model coefficients related to persistence; and γn 
is regression interception coefficient. Ri,n are lagged space–time aggregated domain rainfall for a lead time of n 
days, and Ci,n are corresponding model coefficients for domain i and lead time n.

Ti,max and Ti,min are the maximum and minimum flow travel time from domain i in no. of days; t  is the forecast 
day or 0-day.  τ represents the time index, and Ri,τ is the daily rainfall of domain i at time τ.

Figure 5 illustrates the ReqSim modeling system including the input processing approach and model struc-
ture. However, it is important to note that forecasted rainfall is considered for up to n-day lead time when 
viewed from the forecast day or 0-day. For instance, if the lead time n is 10-day, Ti,max is 13 days and Ti,min is 
6 days for a specific domain, the space–time aggregated domain rainfall Ri,n is calculated by averaging the daily 
domain rainfall from the past 3 days ( t − Ti,max + n = 0− 13+ 10) to forecasted rainfall for the next 4 days 
( t − Ti,min + n = 0− 6+ 10) . Furthermore, if t − Ti,max + n  and/or t − Ti,min + n > t in Eq. (2), then forecasted 
rain of k-day lead time is incorporated into the aggregation, provided that both t − Ti,max + n  and t − Ti,min + n 
are less than or equal to (t + k ). The value of k , which represent the lead time of forecasted rain, does not neces-
sarily need to be equal to the lead time of flood forecasts, n , to generate skilled forecasts for medium to large 
river basins. It depends on factors such as basin size, topography, hydrology, and streamflow persistence. In an 
earlier  publication11, we demonstrated that incorporating 6–7-day forecasted rain into the model generated 
useful 10-day streamflow forecast for the downstream Ganges River. However, for smaller and flashier rivers 
with less streamflow persistence, it may be advantageous to utilize a forecasted rain lead time closer to the lead 
time of flood forecasts.

Creating isochrones or flow travel time maps is a crucial step in developing the ReqSim system. We use the 
spatial hydrological analyst (SHA) in ArcGIS and the spatially distributed unit hydrograph (SDUH)  concept41 
to create these maps. The SHA uses the eight-direction pour-point algorithm to determine flow direction, accu-
mulation, flow path and slope, then calculates the initial flow travel time using the mean velocity of the flow 
path derived from channel slop and roughness coefficient. The SDUH method, on the other hand, determines 
excess rainfall, establishes a time area histogram, and calculates the ordinates of the unit hydrograph, which is 

(1)Qn = αnQt + βnQt−1

∑m

i=1
Ci,nRi,n + γn

(2)Ri,n =
1

Ti,max − Ti,min + 1

∑t−Ti,min+n

τ=t−Ti,max+n
Ri,τ
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the incremental area divided by the representative time  interval42. The SHA operation then updates the initial 
flow travel time from the SDUH’s unit hydrograph generation, revises the flow velocity along the flow path, and 
finally calculates the flow travel time from each raster cell in the watershed to the basin outlet.

In the ReqSim, apart from regression coefficients αn , βn , and Ci,n , maximum and minimum flow travel time 
or Ti,max and Ti,min are important parameters that influence the model results significantly. A detail overview 
of model structure, flow travel time calculations, and parameter sensitivity analyses are available in our earlier 
 publication11. Developing a ReqSim model for an outlet of a watershed suggests that a linear regression model 
be developed incorporating the streamflow (or water level) measurements at that point and the observed and 
forecasted upstream rainfall.

Data
We collected daily streamflow measurements, observed and forecasted rainfall of upstream contributing basin 
areas, river basins’ GIS files, land elevation, and land use-land cover data from multiple sources. Streamflow and 
rainfall are used in the linear model while the land elevation and land use data were used for preparing basin 
isochrones or flow travel time maps. A summary of data and their sources are presented in Table 3.

For the South Asian and USA basins, the collected streamflow data covers the period 2015–2018, where the 
first two years were considered as model calibration and the next two years as validation period. For the African, 

Figure 5.  ReqSim flood forecast system’s model structure.

Table 3.  Utilized data and their sources.

Data type Source

Daily streamflow

(i) Global Runoff Data Centre (GRDC) (https:// www. bafg. de/ GRDC/ 
EN/ Home/ homep age_ node. html)
(ii) Bangladesh Water Development Board (https:// www. bwdb. gov. 
bd/)
(iii) Institute of Water Modeling (IWM) (www. iwmbd. org)
(iv) World Bank—South Asia Water Initiative (http:// india wbg. rap. 
ucar. edu/ index. php/)
(v) Pakistan Water and Power Development Authority (http:// www. 
wapda. gov. pk/ index. php/ river- flow- in- pakis tan)
(vi) USGS National Water Information System (https:// water data. 
usgs. gov/ nwis/ rt)

Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 Real Time 
(RT) V07 (in short, TMPA 3B42RT V07) of 0.250 special resolution

NASA Goddard Earth Sciences Data and Information Services 
Center (https:// gpm. nasa. gov/ data- access/ downl oads/ trmm)

Global Precipitation Measurement (GPM) The Integrated Multi-satellitE Retrievals (IMERG) Late Precipita-
tion L3 V06 (in short, GPM_3IMERGDL) of 0.10 special resolution

NASA Goddard Earth Sciences Data and Information Services 
Center
https:// disc. gsfc. nasa. gov/ datas ets/ GPM_ 3IMER GDL_ 06/ summa ry? 
keywo rds= GPM_ 3IMER GDL_ 06

The National Centers for Environmental Prediction (NCEP) operational Global Forecast System (GFS) gener-
ated 1–10-day historical and real-time forecasted rainfall data of 0.250 special resolution

Research Data Archive (RDA)
https:// rda. ucar. edu/ datas ets/ ds084.1/

The river basin GIS shapefiles were collected GRDC and USGS HydroSHEDS (https:// hydro sheds. cr. usgs. gov/ 
hydro. php)

Land elevation data of 90 m spatial resolution Shuttle Radar Topography Mission (SRTM) generated Digital Eleva-
tion Model (DEM) (http:// srtm. csi. cgiar. org/ srtmd ata/)

Land use data of 5′ spatial resolution Global Mosaics of the standard (MODIS) land cover (MCD12Q1) 
(https:// webmap. ornl. gov/ wcsdo wn/ datas et. jsp? dg_ id= 10004_ 31)

https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://www.bwdb.gov.bd/
https://www.bwdb.gov.bd/
http://www.iwmbd.org
http://indiawbg.rap.ucar.edu/index.php/
http://indiawbg.rap.ucar.edu/index.php/
http://www.wapda.gov.pk/index.php/river-flow-in-pakistan
http://www.wapda.gov.pk/index.php/river-flow-in-pakistan
https://waterdata.usgs.gov/nwis/rt
https://waterdata.usgs.gov/nwis/rt
https://gpm.nasa.gov/data-access/downloads/trmm
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDL_06/summary?keywords=GPM_3IMERGDL_06
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDL_06/summary?keywords=GPM_3IMERGDL_06
https://rda.ucar.edu/datasets/ds084.1/
https://hydrosheds.cr.usgs.gov/hydro.php
https://hydrosheds.cr.usgs.gov/hydro.php
http://srtm.csi.cgiar.org/srtmdata/
https://webmap.ornl.gov/wcsdown/dataset.jsp?dg_id=10004_31
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South American and East Asian river basins, the streamflow data were available prior to historical GFS forecasted 
rainfall data becoming available in 2015. Therefore, TRMM 3B42RT, which is observed rainfall data, was consid-
ered both as observed and forecasted data in the model for the period 2000–2010, where the first five years were 
considered as calibration and the next five years as validation period. Observed rainfall being used as forecasted 
rainfall is considered as using “perfect forecast” data, since the most accurate forecast data would behave just 
like an observed data. Nevertheless, the ReqSim model performance when using the “perfect forecasted” rainfall 
versus the “real forecasted” rainfall does not differ significantly, as we have shown in our earlier  publication11.

Forecast performance assessment
In this study, three distinct performance criteria were used to assess the forecast quality: the coefficient of deter-
mination  (R2), Nash Sutcliffe Efficiency (NSE)43 and Kling-Gupta Efficiency (KGE)44. A forecast is considered 
useful and of high quality when these metrics meet or exceed certain threshold, specifically 0.8 for  R2, 0.7 for 
NSE, and 0.8 for KGE.

Qt,obs is the observed series, Qt,preict is the predicted values of the observed series using a linear equation, and 
Qt,sim is the simulations. In the equation of KGE, r is the correlation coefficient between observed and simulated 
data; σobs and µobs denote the standard deviation and mean of observed series, respectively, while σsim and µsim 
represent those of the simulated series. Generally, it is considered that model results with NSE values between 
0.65 and 0.75 are good and anything above that is very  good45. The KGE  criterion46 is increasingly being used in 
place of NSE, with values between 0.7 and 0.82 considered average to slightly good model performance, while 
values above 0.82 are considered good to very  good47.

By using the criteria explained above, we evaluated the performance of the ReqSim model at 51 forecast loca-
tions and identified the maximum forecast lead time for which the forecast quality is acceptable. Figure 3 shows 
these lead times in relation to the basin scale, such as small (< 100,000  km2 or < 100 K  km2), medium (100 K to 
500 K  km2), large (500 K to 1000 K  km2), and very large river basins (> 1000 K  km2). Additionally, we examined 
how the basin’s geophysical settings and hydrometeorological conditions affected forecast skill by analyzing the 
basin’s annual rainfall (in mm) and slope (in percent), as well as streamflow persistence (in no. of days lag to 
reach auto-correlation function, ACF 0.8). We also considered another important factor, which is whether the 
river is free-flowing or regulated. The connectivity status index (CSI) of a river, as outlined in a 2019 published 
Nature article, provides a scale of the river’s free-flowing or regulated  character36. Only rivers with a high level 
of connectivity (i.e., less obstruction from control structures) are classified as free-flowing with CSI values over 
95%. Conversely, rivers with low CSI numbers are regulated or controlled rivers. To determine the CSI of river 
reaches, the aforementioned study considered four types of river connectivity: longitudinal (connectivity between 
upstream and downstream), lateral (connectivity to floodplain and riparian areas), vertical (connectivity to 
groundwater and atmosphere), and temporal (connectivity based on seasonality of flows)36.

Data availability
The processed data that support the findings of this study are available from the corresponding author upon 
reasonable request.

Code availability
The codes that support the findings of this study are available from the corresponding author upon reasonable 
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