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Motif‑based community detection 
in heterogeneous multilayer 
networks
Yafang Liu , Aiwen Li , An Zeng , Jianlin Zhou *, Ying Fan * & Zengru Di 

Multilayer networks composed of intralayer edges and interlayer edges are an important type of 
complex networks. Considering the heterogeneity of nodes and edges, it is necessary to design more 
reasonable and diverse community detection methods for multilayer networks. Existing research 
on community detection in multilayer networks mainly focuses on multiplexing networks (where 
the nodes are homogeneous and the edges are heterogeneous), but few studies have focused on 
heterogeneous multilayer networks where both nodes and edges represent different semantics. In 
this paper, we studied community detection on heterogeneous multilayer networks and proposed 
a motif-based detection algorithm. First, the communities and motifs of multilayer networks are 
defined, especially the interlayer motifs. Then, the modularity of multilayer networks based on these 
motifs is designed, and the community structure of the multilayer network is detected by maximizing 
the modularity of multilayer networks. Finally, we verify the effectiveness of the detection algorithm 
on synthetic networks. In the experiments on synthetic networks, comparing with the classical 
community detection algorithms (without considering interlayer heterogeneity), the motif-based 
modularity community detection algorithm can obtain better results under different evaluation 
indexes, and we found that there exists a certain relationship between motifs and communities. In 
addition, the proposed algorithm is applied in the empirical network, which shows its practicability 
in the real world. This study provides a solution for the investigation of heterogeneous information in 
multilayer networks.

The research of multilayer networks is a current frontier and a hot issue in the field of complex networks, which 
considers multiple types of nodes and edges relationships (including intralayer and interlayer edges), reflecting 
the heterogeneity of nodes and edges in networks. In general, a network in which the nodes are homogeneous 
and the edges are heterogeneous is called a multiplexing network1–4, for example, in social networks, there are 
two different social relationships between the same users, friendship and work, which can be abstracted into 
different layers in networks5,6. At present, research on multiplexing networks has covered many aspects, such as 
robustness7,8, dynamics9,10, community structure3,11,12, disease transmission13,14, etc. Further, a network in which 
both nodes and edges are heterogeneous is called the heterogeneous multilayer network15–17. For example, in 
financial systems, the heterogeneity of nodes is reflected in the two different individuals of stocks and users, 
and the heterogeneity of edges is reflected in the stock relationship, the user relationship, and the relationship 
between the user and the stock they hold can be constituted as a two-layer network18. In ecological networks, the 
heterogeneity of nodes is reflected in the two different individuals of plants and animals, and the heterogeneity 
of edges is reflected in the relationship between plants, the relationship between animals, and the relationship 
between plants and animals19–21. Due to the complexity caused by the heterogeneity of nodes and edges, most 
of the existing studies only focus on the robustness22,23 and cascade failure24 of the network, and there are few 
studies focusing on community detection in heterogeneous multilayer networks.

Community structure is the main macroscopic feature of complex networks25. Most of the current research 
on the community structure of multilayer networks is based on multiplexing networks, in which the community 
refers to the structure consisting of homogeneous nodes that are all more tightly connected in different layers11. 
Community detection on multilayer networks is usually implemented based on three methods: the algorithms 
based on modularity optimization26–28, network layer aggregation-based algorithms29,30, and dynamics-based 
algorithms31,32, among which modularity is the most widely used4,33. In 2010, Mucha et al.26 summarized the 
previous studies to obtain a modularity function for multilayer networks. In 2018, Pamfil et al.27 obtained various 
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types of multilayer networks and demonstrated its effectiveness in synthetic and empirical networks. In 2019, 
Zhang et al.28 proposed a multilayer edge mixture model, and identifies different communities. Although the 
existing research on community detection of multiplexing networks has been relatively mature, it does not take 
into account the heterogeneity of nodes.

In the heterogeneous multilayer network, the community refers to the structure consisting of heterogeneous 
nodes that are all more tightly connected in different layers. Compared with the community of multiplexing 
networks, the community of heterogeneous multilayer networks can reflect the relationship between different 
types of individuals in different environments. Therefore, it is very necessary to study the community detection 
of the heterogeneous multilayer network. At present, there are some researches about it. Lin et al. proposed 
MetaGraph decomposition framework to extract communities from networks containing various social 
backgrounds and interaction relations34. Liu et al. proposed the use of composite modularity for community 
detection of heterogeneous multi-relational networks, and realized community detection of multi-relational 
networks35. Pramanik et al. proposed the multilayer modularity index to detect communities consisting of only 
one type or multiple types of nodes (and edges)36. However, the existing research mainly explores the low-order 
structure by using the information of nodes and edges in the network alone, without considering the high-order 
structure (e.g. motif), which contains more meso-scale information about the network37–39.

The motif is a form of a higher-order structure, which refers to a network subgraph with a higher probability 
of occurrence than in a random network. The existing research shows that the use of motifs for community 
detection can get a better effect. Reference39 proposes a community detection method using motif weighted 
tags based on single-layer networks. Reference37 proposed a generalized framework for community detection 
based on high-order structure, and obtained good results in single layer network. Reference38 extended the 
motif to multiplexing networks. It integrated the method of network layer aggregation, used multilayer topology 
information to construct a single-layer network, and the results of community detection are satisfactory. However, 
the above studies are based on single-layer networks and multiplexing networks, which do not consider the 
heterogeneous multilayer networks.

In this paper, we consider the research of community detection algorithm based on motif in heterogeneous 
multilayer networks. First, we redefine motifs of multilayer networks to break through the problem of 
heterogeneity in the study of multilayer networks and provide a solution for the study of heterogeneity. Then, 
we modified the modularity of multilayer networks by interlayer motifs and intralayer motifs, and proposed an 
Motif-Based Community Detection in Heterogeneous Multilayer Networks (CDMMHN) Finally, we performed 
an experimental evaluation on synthetic networks. To investigate the effectiveness of the proposed algorithm, 
we conducted an extensive experimental evaluation on networks containing different densities of community 
structures, and the results show that our algorithm is effective.

The information for each section of this article is as follows. In Section 1, we summarize some related research 
on multilayer networks. In Section 2, we describe the problem and define the community structure of the 
heterogeneous multilayer network. In Section 3, we define the motifs of multilayer networks and propose a motif-
based modularity that is suitable for heterogeneous multilayer networks, and propose a community detection 
algorithm by motif-based modularity. In Section 4, we use evaluation indicators to measure the algorithmic 
results of the community detection for the more general multilayer networks which are synthetic, and the 
relationship between the motif and community structure in multilayer networks is analyzed, and community 
detection was performed in empirical networks. In Section 5, we summarize our work and provide an outlook 
on future research directions.

Related work
Current research for multilayer networks involves a variety of forms of multilayer networks, especially multi-
relational networks. One of these classes refers to networks in which different layers of networks represent 
different interactions between the same individuals (nodes in different layers may be missing and increasing, 
but the vast majority of nodes in different layers of networks are consistent). Take two-layer social network 
as an example, the nodes represent users, and the connected edges refer to the network built by two kinds of 
relationships (e.g., interaction, following, etc.) of these users. There is a one-to-one correspondence between 
the nodes in different layers of the network, but there are no substantial edges, all such networks are called 
multiplexed networks.

At present, many researches on community detection are based on multiplex networks, in 2019, Alimadadi 
et al.40 proposed a semi-supervised joint symmetric non-negative matrix decomposition using topological 
information of the network as well as prior information algorithm for community detection in multilayer 
networks; in 2022, Venturini et al.41 investigated multilayer networks with the same set of nodes but without 
interlayer contiguous edges and proposed a filter-based multi-objective optimization approach for community 
detection by maximizing the modularity of different layers; in 2022, Ortiz-Bouza et al.42 proposed a multiple 
orthogonal nonnegative matrix TriFactorization method to achieve the detection of cross-layer communities 
in multilayer networks as well as unique communities on a single layer; in 2023, Roozbahani et al.43 designed a 
multi-relational directed network based on a semi-supervised approach for overlapping community detection; 
in 2023, Cai et al.12 proposed a graph convolution fusion model based on intralayer and interlayer information to 
achieve community detection for multiplexing networks. These studies are based on the topology information of 
the network, and some studies are based on the motif. In 2018, Pizzuti et al.44 proposed a motif-based community 
detection method based on multi-objective optimization, the main idea of which is based on the number of 
motifs; in 2023, Li et al.45 proposed a community detection algorithm for multiplexing networks based on 
motif awareness, which reduces the loss of information during network aggregation and improves the quality 
of community detection.
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The other category refers to networks in which other interrelationships are added to the underlying 
relationships. In the case of two-layer networks, for example, a two-layer network with interlayer edges is 
constructed by introducing a third type of interaction between individuals (e.g., friendship) into the two-layer 
network as an interlayer edge of the network. In 2020, Contisciani et al.46 proposed a principled probabilistic 
approach for community detection in multilayer networks by fusing the attributes of nodes and network structure 
information; in 2022, Al-sharoa et al.3 proposed a joint non-negative matrix decomposition method for the 
community detection of multilayer networks by dividing the multilayer network design into a combination of 
multiplexing and dichotomous networks.

However, in the existing studies, there are few studies focusing on community detection in heterogeneous 
multilayer networks, and most of the existing studies are directed to the robustness22,23 and cascade failure24 of 
the network, and there are almost no studies on the community division of the network. We consider the design 
of a method for community detection for multilayer networks that are heterogeneous in terms of both nodes 
and edges.

Community structure of heterogeneous multilayer networks
In multiplexing networks, because the nodes in different layers represent the same individuals, community 
detection needs to integrate the information of all layers and obtain a unified community detection result of the 
multiplexing network. However, for the heterogeneous multilayer network, because the nodes at different layers 
are not consistent, it is necessary to combine the information of intralayer edges and interlayer edges to make 
the nodes at different layers get a unified division. As shown in Fig. 1a, taking two-layer networks as an example, 
layer L1 and layer L2 are two networks constructed based on the intralayer edges, a bipartite network can be 
constructed based on the interlayer edges. For this two-layer network, G = {Gin,Gout} , where Gin represents the 
set of intralayer networks and Gout represents the set of interlayer networks. Gin =

{

GL1
in ,G

L2
in

}

 , Gout =

{

GL1L2
out

}

 , 
where L1 and L2 represent different layers of the multilayer network. Because the nodes of each layer in the net-
work represent a type of individuals, NL1 ( NL2 ) is used to represent the nodes of layer L1 ( L2 ), EL1 ( EL2 ) is used to 
represent the intralayer edges of layer L1 ( L2 ), and EL1L2 is used to represent the interlayer edges between layer 
L1 and layer L2.

Next, the community structure of heterogeneous multilayer networks is described in detail. In Fig. 1a, dif-
ferent colors represent different communities. To community C1 , it includes three parts: CL1

1  , CL2
1  , and the joined 

edges between the nodes (1, 2, 6, 8, 9, 10 and 17) of the two parts. In the layer of L1 , the nodes (1, 2, 6) in CL1
1  are 

closely connected, and these nodes are more sparsely connected to nodes in CL1
2 and CL1

3  in L1 . In the layer of L2 , 
the nodes (8, 9, 10 and 17) in CL2

1  are closely connected, and these nodes are more sparsely connected to nodes 
in CL2

2 and CL2
3  in L2 . For interlayer edges, CL1

1 and CL2
1  belong to the same community, the edges between nodes in 

CL1
1  of layer L1 and nodes in CL2

1  of layer L2 are close, the edges between the nodes in CL1
1  and the nodes in CL2

2  or 
CL2
3 are sparser, the edges between the nodes in CL2

1  and the nodes in CL1
2  or CL1

3 are sparser. The same is true for 
the other communities ( C2 and C3).

Most of the existing studies on community detection methods for multilayer networks are based on the edge 
information in the network, and rarely consider the local structure (e.g., motif) that can be constructed by the 
edges in the network. As a special kind of multilayer network, there have been some studies proposing community 
detection for multiplexing networks based on motifs38,47, and better results have been achieved. In heterogeneous 
multilayer networks, due to the heterogeneity of both its nodes and edges, simply using edges for community 
detection of the network can not make good use of the heterogeneous characteristics of the network. Motif, as a 

Figure 1.   Community structure of heterogeneous multilayer networks. (a) represents the community structure 
of the multilayer network. Different colors represent different communities, which are divided into three 
communities ( C1 , C2 and C3). (b) shows the structure of the intralayer motif for the network. (c) shows the 
structure of the interlayer motifs for the network based on layer L2. (d) shows the structure of the interlayer 
motif for the network based on layer L1.
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local network structure formed by the combination of nodes and edges, is able to interpret the heterogeneity of 
the network in a better way, and utilize the information of the network in a more comprehensive way. Therefore, 
in the next study of community detection for heterogeneous networks, we consider to do it based on motifs.

The proposed CDMMHN method
We consider designing an algorithm to break through the heterogeneity of multilayer networks and achieve 
the detection of community structures in multilayer networks where both nodes and edges are heterogeneous. 
Because motifs can well describe the heterogeneity of edges in more general multilayer networks, this section 
modifies a function of motif-based modularity for multilayer networks, and proposes a community detection 
algorithm suitable for heterogeneous multilayer networks.

Traditional modularity function of multilayer networks
The traditional modularity function for multilayer networks targets multiplexing networks, referring to multilayer 
networks with consistent nodes and different edge semantics., the modularity27 is calculated as:

where, At
ij represents the adjacency matrix of the network, t represents the layer of the network, dti  represents the 

degree of node i in the network on layer t, mt represents the number of edges in the current layer (layer t) of the 
network, δ(gti ,g

t
j ) determines whether node i in layer t and node j in layer t belong to the same community. If 

node i and node j are in the same community, δ(gti ,g
t
j ) = 1 , and if node i and node j are in the different com-

munity, δ(gti ,g
t
j ) = 0 . π t

i  refers to the parent of node i, which is the node that has a relationship with node i at 
another layer, and in a multiplexing network, it refers to node i at another layer. δ(gt−1

π t
i
,gti ) determines whether 

node i in layer t and its parent node (node i in layer t − 1 ) belong to the same community. If they are in the same 
community, δ(gt−1

π t
i
,gti ) = 1 , and if they are not in the same community, δ(gt−1

π t
i
,gti ) = 0.

Motif‑based modularity function of multilayer networks
Because of the heterogeneity of edges in multilayer networks, the motif is considered to study the network struc-
ture in multilayer networks. For a heterogeneous multilayer network, the edges of the same layer are homogenous, 
so the motif structure in the layer is consistent with the single-layer network. However, due to the heterogeneity 
of the two nodes that make up the connecting edges between layers, the traditional method compresses the two-
layer network and puts all edges on the single-layer network, which cannot reflect the heterogeneity of nodes 
in different layers and the heterogeneity of edges in the network. Therefore, we redefine the motif structure of 
multilayer networks with heterogeneous nodes and edges.

Triangles are a more classical higher-order structure that is often used for community detection research45,48,49. 
In 2016 Benson et al.37 proposed a variety of triangular subgraphs with orientations (only two structures, closed 
triangles and open triangles, are applicable to undirected networks) and experimentally demonstrated that trian-
gular subgraphs are very important for social networks. In the study, we consider the three-node motif structure.

Motifs refers to subgraphs that have a much higher probability of occurring in a real network than in a 
random network, and for the three-node subgraph, the number of closed triangles occurring in the network 
is much higher than in a random network. Therefore, for the intra-layer motifs, we chose the structure shown 
in Fig. 1b. For the interlayer modal of the heterogeneous multilayer network, since the composition of closed 
triangles requires intra-layer edges, the interlayer motif chooses an open triangle structure, which means that 
both edges composing the motif are heterogeneous edges, which is able to show the heterogeneity of the edges. 
If the structure of Fig. 1b is chosen as the interlayer modifiers, the heterogeneity of the interlayer edges cannot 
be represented. The structure of the intralayer motif is shown in Fig. 1b, and the interlayer motif of the network 
comes in two forms, as shown in Fig. 1c,d. Because the nodes of the multilayer network are heterogeneous, nodes 
of different layers refer to different individuals, so the layer where the fixed node of the motif is selected has an 
impact on the structure of the motif. The network layer to which the fixed node belongs is different, and the 
motif structure is inconsistent. We take the red nodes in the figure as fixed nodes, in Fig. 1c structure 17-2-9 (or 
in Fig. 1d structure 2-17-1) is defined as a regular triplet. For the structure 17-2-9 in Fig. 1c, the fixed-node 17 
and node 9 belong to layer L2 and they have the same properties. The fixed-node 17 and node 2 belong to differ-
ent layers and have different properties. Therefore, the connection structure that includes a fixed node, a node 
that is homogeneous to the fixed node, and a node that is heterogeneous to the fixed node is called the regular 
triplet (the structure 2-17-1 in Fig. 1d also applies). Besides, the structure consisting of nodes 5-15-7 in Fig. 1c 
(or structure 9-2-10 in Fig. 1d) is defined as an inverted triplet, in which the connection structure that includes 
a fixed node, two nodes that are heterogeneous to the fixed node.

In addition, for different fixed nodes, the number of nodes that can form regular triples and have heterogene-
ity with them is different. For example, in Fig. 1a, node 12 as a fixed node can form regular triplets with node 3 
and node 4. Among them, there are two regular triples with node 3 (12-3-11, 12-3-13), and one regular triplet 
with node 4 (12-4-13). However, for any fixed node, the other two nodes which can form an inverted triple with 
the fixed node belong to different layers. For any node that has a different property from the fixed node, the 
number of inverted triples that can be formed with the fixed node is the same. For example, in Fig. 1a, node 12 as 
a fixed node can form inverted triples with node 3, node 4 and node 5. For any of them, the number of inverted 
triples that can be formed with a fixed node is 3 (3-12-4, 3-12-5, 4-12-5). Compared with the regular triple, the 

(1)
Q =

T∑

t=1

∑

i,j∈Nt

(

At
ij − γt

dti d
t
j

2mt

)

δ(gti , g
t
j )

︸ ︷︷ ︸

intralayer modularity

+ω

T∑

t=2

∑

i∈Nt

δ(gt−1

π t
i
, gti )

︸ ︷︷ ︸

interlayer modularity

,
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function of nodes is not discriminative, so the inverted triple is not considered in the experiment. This paper 
studies the community structure of multilayer networks based on the above motif structure.

In more general multilayer networks, different from the multiplexing network, the network individuals in 
different layers are different, there are multiple nodes in neighboring layers connected to the same node. There-
fore, considering the motif can reflect the heterogeneity of the network, a calculation method of motif-based 
modularity for more general multilayer networks is designed. The modularity obtained based on the motif can 
be calculated as:

where µ1 =
∑T

t=1

∑

i,j∈Nt
Wt

ij , µ2 =
∑T

t=1

∑

i∈Nt
wiπ t

i
 , Wt

ij represents the adjacency matrix based on the number 
of the intralayer motif of t layer network, t represents the layer of the network, wt is the motif number of intralayer 
that can be formed in layer t, wt

i  represents the motif number of intralayer that node i can form in layer t. δ(gti , g
t
j ) 

determines whether node i in layer t and node j in layer t belong to the same community. If so, δ(gti , g
t
j ) = 1 , and 

if not, δ(gti , g
t
j ) = 0 . π t

i  refers to the set of nodes in other layers that can form the motif with nodes i in t layer. 
δ(gt+1

π t
i
, gti ) determines whether node i in layer t and its parent node (the set of nodes in layer t + 1 that can form 

the interlayer motif with node i) belong to the same community. wiπ t
i
 refers to the number of the interlayer motif 

that can be formed by node i and its parent node. For example, as shown in Fig. 1a, for node 9 in layer L2 , nodes 
2 and 5 can form regular triplets with it. For node 5, only one regular triplet can be formed. For node 2, there 
are two regular triplets can be formed. Set node 9 as fixed node i, for the interlayer edge(2-9), wiπ t

i
= 2 , for the 

interlayer edge(5-9), wiπ t
i
= 1.

Community detection algorithm by motif‑based modularity for heterogeneous multilayer 
networks
Next, based on the modularity function of the motifs, we design a community detection algorithm for hetero-
geneous multilayer networks. For a multilayer network with t layers, the network structure is represented by a 

matrix G =








AL1 CL1L2 · · · CL1Lt

CT
L1L2

AL2 · · · CL2Lt

.

.

.
.
.
.

. . .
.
.
.

CT
L1Lt

CT
L2Lt

· · · ALt







 . In the process of research, we use the two-layer network for research, 

and the matrix of the two-layer network can be expressed as G =

[
AL1 CL1L2

CT
L1L2

BL2

]

 , where AL1 and BL2 represent 

the information matrix of the intralayer structure of the network in the different layer. The number of nodes in 
the network at layer L1 is n1 , the number of nodes in the network at layer L2 is n2 . And there is no self-loop 
between nodes. The matrix CL1L2 is used to represent interlayer edges of a multilayer network. Take CL1L2 for 
example,

, where ca1b1 represents whether the node a1 at layer L1 and the node b1 at layer L2 have edge. If there is, ca1b1 = 1 , 
otherwise ca1b1 = 0 . On the basis of the edge matrix, the intralayer and interlayer motif in the network are cal-
culated respectively, so as to obtain the network motif matrix W (the intralayer and interlayer motif with three 

nodes). W =






WL1
motif WL1L2

motif

WL2L1
motif WL2

motif




 , where WL1

motif  and WL2
motif  both represent the intralayer motif matrix. Take WL1

motif  

for example,

represents the intralayer motif matrix obtained from the network at layer L1 , where, wa1a2 represents the number 
of intralayer motif obtained from the node a1 and the node a2 at layer L1 . For the interlayer network, take WL1L2

motif  
for example,

(2)
Qmotif =

1

2µ1

[ T∑

t=1

∑

i,j∈Nt

(

Wt
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i w

t
j

2wt

)
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t
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1

2µ2
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π t
i
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interlayer modularity

]

,
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



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.
.
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.
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refers to the number matrix of interlayer motif obtained from L1-based network, where wL1
a1b1

 refers to node a1 in 
the network of layer L1 as the fixed-node, the number of interlayer motifs that can be formed by an edge of the 
node a1 in the network at layer L1 and the node b1 in the network at layer L2 . WL2L1

motif  refers to the number matrix 
of interlayer motif obtained from L2-based network.

We use motif-based modularity to detect communities in heterogeneous multilayer networks, the implemen-
tation process of the algorithm is shown in algorithm 1. Firstly, the motif matrix of the network W is obtained 
according to the structure matrix G. In the design, in order to improve the efficiency of the algorithm, we use 
the community detection algorithm for a single-layer network to divide the community of the network with 
fewer nodes (default n1 < n2 ), the community ids obtained is denoted as gL1 , gL2 can be obtained according to 
the relationship between the number of motifs among layers, but considering that there are few edges between 
layers, it is not possible to obtain the belonging community of all nodes in the L2 layer. So we consider using 
the community detection algorithm for a single-layer network to get the initial community ids of nodes in the 
network of layer L2 , integrating all community ids in the initial community gt = (gL1 , g

L2) . Using the original 
community to calculate modularity, and then transforming the community ids of nodes, updated community id 
and modularity (Step6 in algorithm 1). In the process of Step7 in algorithm 1, we need to reach the final result 
of the conditions if the modularity reaches its maximum value or the number of communities in different layers 
is the same. The final output Qnew and gnew meet the conditions. In the process, it should be noted that the com-
munity of nodes at different layers should be unified to ensure the correctness of the community results and the 
correlation between nodes at different layers.

Algorithm 1.   Community Detection by Motif-Based Modularity for Heterogeneous Two-layer Networks.

In the processing, there are two aspects need to be noticed. First, in the iteration, the calculation of the modu-
larity of heterogeneous multilayer networks contains two parts, intralayer modularity and interlayer modularity. 
The community detection of nodes in different layers can be realized by calculating the intralayer modularity, the 
calculation of interlayer modularity is to unify the community of nodes of different layers, to realize the integra-
tion of multilayer information. Take a two-layer network as an example, the intralayer modularity includes the 
modularity calculation of the layer L1 and the modularity calculation of the layer L2 . For the two-layer network, 
interlayer modularity includes modularity calculation that takes layer L1 as the base network, changes the com-
munity number of nodes in layer L2 , and takes layer L2 as the base network, change the community number of 
nodes in layer L1 . Second, because there are few edges between layers in multilayer networks, the community 
ids of two nodes in different layers can be obtained in the following three ways: 1) When two nodes can form 
the interlayer motif, these two nodes are likely to the same community. 2) When two nodes cannot form the 
interlayer motif, but there is an edge between them, these two nodes are likely to the same community. 3) When 
two nodes cannot form the interlayer motif and they are not connected, the community id of the node should 
be obtained according to the community ids of other nodes in the layer to which the node belongs that can form 
the motif with it.

Experiment
In this section, the benchmark model is constructed for more general multilayer networks with community and 
we verify the algorithm on the multilayer networks. Besides, the evaluation index NMI and R_Inter are used to 
measure the accuracy of the community detection results.

Synthetic networks
Based on the relationship between the community structure and the degree of density between nodes, this paper 
constructs a synthetic heterogeneous two-layer network model with a community structure. The edge density 
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inside and outside the community within the layer as well as the effect of the specificity of fewer inter-edges 
on the multilayer network structure are also considered. The generation algorithm for the artificial two-layer 
network is shown in algorithm 2, and the network generation model is controlled by the following parameters: 
c,n1,n2,z,z1,pin,player , where c is the number of communities in the two-layer network, n1 and n2 indicates 
the number of nodes at different layers in the two-layer network, z represents the average degree of nodes in the 
whole network, z1 represents the average interlayer degree of nodes in the network, pin represents the probability 
that two nodes belong to the same community, 1− pin represents the probability that two nodes are in different 
communities, and player represents the probability that two nodes belong to the same layer.

Algorithm 2.   Building a benchmark model of heterogeneous multilayer networks with community structure.

D ur ing  t he  exp er iment ,  we  generate d  random b enchmark  ne t works  w it h  t he 
number of  communit ies  of  3 ,  4 ,  5  and 6,  the parameter  sett ings  are  as  fol lows: 
c = 3,n1 = 60,n2 = 90,player = 0.8;c = 4,n1 = 80,n2 = 100,player = 0.8;c = 5,n1 = 75,n2 = 105,player = 0.8  a n d 
c = 6,n1 = 90,n2 = 120,player = 0.8 . The community to which each node belongs is fixed, and the layer to 
which each node belongs is determined. Once the parameter c,n1,n2,player is determined, the structure of the 
two-layer network only depends on the pin,z,z1.

The average degree in the network includes two parts: intra-community degree (zin) and inter-community 
degree (zout) , where, zin = pin ∗ ((n1 + n2)/c − 1)/2,zout = (1− pin) ∗ ((n1 + n2)/c ∗ 2)/2 , the average degree 
z of the network is the sum of zin and zout . The degree of interlayer includes two parts: the degree of interlayer 
within the community and the degree between the communities of interlayer. Among them, the degree of intra-
layer within the community is zinlayer = player ∗ ((n1 + n2)/c)/2 , and the degree of interlayer within the same 
community is zin − zinlayer ; the degree of interlayer between the communities is zout ∗ (1− player) ; the average 
degree of the interlayer network (z1) is the sum of the degree of interlayer within the community and the degree 
between the communities of interlayer. During the experiment, we also considered the different numbers of 
communities in different layers, and the parameters were set as c1 = 3,c2 = 4,n1 = 60,n2 = 80,player = 0.8 , 
where c1 and c2 represent the number of communities in different layers.

The advantage of the constructed network in this way is that we can know the community id of each 
node in the network, which can be compared with the partition result obtained by the algorithm, so as to 
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determine the effectiveness of the algorithm and the correctness of the partition result. According to the model 
of network construction, Fig. 2a is one of the network structure diagrams constructed when the parameters 
were c1 = 3,c2 = 3,n1 = 60,n2 = 90,player = 0.8,pin = 0.9, Fig. 2b is one of the network structure diagrams 
constructed when the parameters were c1 = 3,c2 = 4,n1 = 60,n2 = 80,player = 0.8,pin = 0.9.

To access the code and supplementary data used in this research, please contact the corresponding author.

Algorithm performance
To evaluate the accuracy of the community detection results on the synthetic networks, NMI (Normalized Mutual 
Information) was used to measure the results. This metric is one of the commonly used measures of partition 
similarity50, and it can measure the accuracy of community detection as a whole. NMI is calculated as follows:

where, X refers to the real category. Y refers to the category obtained by clustering algorithm, and H(.) refers to 
the cross entropy, which is calculated as follows:

I(X; Y) is the mutual information, I(X;Y) = H(X)−H(X|Y) . NMI is obtained by normalizing mutual infor-
mation, so the range of NMI is [0,1]. The more similar the two vectors are, the closer the similarity is to 1. If 
NMI = 1 , the result of community detection obtained by the algorithm is exactly the same as the real community 
IDs.

In addition, to measure the accuracy of community correspondence between individuals of different layers, 
we designed an evaluation index R_Inter . By comparing the community ids of individuals in different layers, 
an interlayer correspondence matrix C is obtained to determine whether two nodes belong to the same com-
munity. If two nodes belong to the same community, Cij = 1 , otherwise Cij = 0 . R_Inter is calculated as follows:

where Cij
real represents the real interlayer correspondence matrix of the network, Cij

alg represents the correspond-
ence matrix obtained by the detection algorithm, n1 represents the number of nodes at Layer L1 , n2 represents the 
number of nodes at Layer L2 , and R_Inter represents the ratio of correct detection in the interlayer relationship. 
|C

ij
real − C

ij
alg | is used to determine whether node i belonging to layer L1 and node j belonging to layer L2 belong 

to the same community is correctly identified. When |Cij
real − C

ij
alg | = 1 , it indicateds detecting errors. There-

fore, the value range of R_Inter is [0, 1]. When the interlayer community correspondence is completely correct, 
R_Inter = 1 , when the interlayer community correspondence is completely incorrect, R_Inter = 0.

To verify the effectiveness of the community detection algorithm in multilayer networks based on motifs, 
we conducted experiments on synthetic networks. At the same time, to confirm the role of heterogeneity in 
community detection, the two-layer network was compressed into a single-layer network, in other words, all 
nodes (nodes in different layers) and edges (intralayer edges and interlayer edges) were input into a network. The 
intralayer motif in multilayer networks is regarded as the motif of a single-layer network, which is then divided 
based on the motif of a single-layer network. The community detection algorithm that considers heterogeneity 
is compared with the algorithm that does not consider heterogeneity. To avoid the specificity of the results, we 
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Figure 2.   Structure diagram of a two-layer network with a known community structure. (a) shows a two-layer 
network with the same numbers of communities at different layers, and (b) shows a two-layer network with 
different numbers of communities at different layers.
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randomly generated 100 synthetic networks for the same parameters, and the results are shown in Fig. 3. The 
figure shows the mean and standard deviation of the accuracy of community detection for multiple experiments. 
Q_motif  denotes the result obtained based on algorithm 1, and single denotes the result of partitioning the two-
layer network by compressing it into a single-layer network without considering heterogeneity. QM_GN36 and 
QM_louvain36 denote the results obtained by other algorithms. Figure 3a,b provide a comparison of the overall 
network partition obtained with different probabilities of edges within the community, and Fig. 3c,d compare the 
community correspondence between nodes of different layers of the network under different edge connectivity 
probabilities within the community. As seen from the figure, the more obvious the community structure is, the 
more accurate the detected community structure is, and the nodes of different layers can be effectively unified 
when considering heterogeneity.

In Fig. 3, we evaluated the accuracy of the community detection results for members of a heterogeneous 
multilayer network, but did not account for the accuracy of the number of communities detected by the network 
as a whole. Therefore, in Fig. 4, the number of communities obtained by community detection algorithms with 
the real number of communities are compared. The graph shows the number of communities for different 
probabilities of edges within a community and for different numbers of communities. In the figure, num_real 
represents the number of real communities in the network, Q_motif  represents the number of communities 
detected based on Algorithm 1, num_single represents the number of communities obtained when the network 
is compressed to a single layer, and QM_GN and QM_louvain represent the number of communities obtained 
by other algorithms. As seen from the figure, with the increase in the probability of edges within a community, 
that is, the more obvious the community structure is, the closer the number of detected communities is to the 
real number of communities, and the number of communities obtained based on the algorithm is closer to the 
real number of communities than that obtained without considering the heterogeneity.

Relationship between the intralayer motif and community
In order to prove the validity of community detection using intra-motifs, we identify whether each fixed node in 
the layer belongs to the same community as the nodes that can form the maximum number of intralayer motifs 

Figure 3.   Performance of different detection algorithms in identifying community members. (a) and (c) depict 
the NMI and R_Inter values obtained based on the following parameters: pin = 0.8 and player = 0.8. (b) and (d) 
present the NMI and R_Inter values obtained based on the following parameters: pin = 0.9andplayer = 0.8 . 
The first number in the abscissa is c1 (the number of communities at layer L1 ), and the second number is c2 (the 
number of communities at layer L2).
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with it and calculate the probability that the fixed node belongs to the same community as these nodes that can 
form the intralayer motif with it. We randomly selected one of the networks constructed based on the following 
parameters: pin = 0.9,c1 = 3,c2 = 3,n1 = 60,n2 = 90,andplayer = 0.8 . The results are shown in Fig. 5a,b. The 
brown line shows the proportion of fixed nodes that belong to the same community as other nodes in the same 
network that can form more than one intralayer motif, and the red line indicates the proportion of fixed nodes 
that belong to the same community as the other nodes in the same network that can form the largest number 
intralayer motifs. As seen from the figure, in this network, the fixed node must be in the same community as the 
nodes that can form the intralayer motif with it, and the node that has the largest number of intra-motifs must 
be in the same community.

In addition, we calculated the number of motifs that can be formed by nodes that belong to the same com-
munity as the fixed node and the number that are not in the same community. Taking Fig. 1a as an example, for 

Figure 4.   Performance of the detection algorithm in terms of identifying the number of communities. The 
purple triangle represents the real number of communities in the network, the yellow circle represents the 
number of communities detected in the single-layer network, and the blue star represents the number of 
communities obtained based on Algorithm 1. The red and orange colors indicate the results obtained by other 
algorithms.

Figure 5.   Statistical analysis of intralayer motifs and experimental results of an intralayer motif for a 
benchmark network with three communities.The horizontal coordinate represents each node in the 
corresponding network. (a) and (b) show the ratio in which motifs can be formed in layers L1and L2 , 
respectively, and (c) and (d) show the number of motifs that can be formed in the same community in the same 
layer L1and L2 , respectively, compared with the number of motifs that can be formed between the communities 
in the same layer.
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layer L2 , the nodes that can compose the motif structure with the fixed node 11 are: 12, 14, 13, and 15. Node 11 
and nodes 12, 13, and 14 are in the same community, and node 15 is not in the same community. The number 
of the intralayer motifs that nodes 12, 13, 14, and 15 can form is 1, 1, 3, and 1, respectively. Thus, the number 
of motifs that belong to the same community is 5, and the number of motifs that do not belong to the same 
community is 1. The statistical results are shown in Fig. 5c,d. The abscissa represents nodes, and the ordinate 
represents the number of motifs. The orange line is the number of motifs that can be formed within a commu-
nity, and the blue line is the number of motifs that can be formed between communities. The number of motifs 
belonging to the same community is far greater than the number of motifs formed between nodes that are not 
in the same community.

Relationship between the interlayer motif and community
In order to prove the validity of community detection using inter-motifs, we calculated the formation of regular 
triplets. We used layer L1 and layer L2 as the base layer, assumed that each node in the layer was a fixed node, and 
then calculated the probability that the fixed node belongs to the same community as the nodes that can form 
the motif with it, and the probability that the nodes that have interlayer edges with the fixed node belonging to 
the same community. As shown in Fig. 1a, with layer L2 as the base layer and node 9 as the fixed node, there are 
two nodes (2 and 5) belonging to layer L1 and connected to fixed node 9, one of which (node 2) is in the same 
community as node 9. Therefore, among the nodes with which node 9 can form an interlayer edge, the prob-
ability that node 9 belongs to the same community is 0.5. Nodes 2 and 5 form the motif with node 9. Nodes 2 
and 9 can form two interlayer motifs, and node 5 can form one interlayer motif. Therefore, node 9 tends to be 
in the same community as node 2.

In a heterogeneous multilayer network, there are few edges between layers. Therefore, we analyze the statistics 
of the edges between layers in the whole network, and the results are shown in Table 1. The results in the table 
are based on one of the networks with c1 = c2 = 3,n1 = 60,n2 = 90,player = 0.8,and pin = 0.9 . It can be 
seen that fixed nodes and nodes that can form interlayer modules with them are essentially in the same cluster, 
and most of the nodes with which they have interlayer edges belong to the same community.  Table 2 shows the 
mean values of the metric ratio in Table 1, which obtained based on multiple networks, and it can be seen that 
this phenomenon exists in all networks.

Applications in empirical networks
Finally, the algorithm is applyed to the empirical network. For an example of scientist-research topic two-layer 
networks, we looked at the network surrounding HQL, an academician with the Chinese Academy of Sciences 
(CAS). He is mainly engaged in condensed matter theory and related computational physics research, and his 
main research interests include the following aspects: strongly correlated systems, quantum entanglement and 
quantum phase transitions, and numerical methods for many-body systems. Based on the journal data (1893-
2010) provided by the American Physical Society, we collected the (1984) papers published by Haiqing Lin’s 
collaborators as well as the PACS codes of each paper, where each PACS code corresponds to a specific research 
topic in physics.

Based on the above data, we constructed a collaborative network of scientists with Haiqing Lin’s collaborators 
as nodes at the scientist level. We also constructed a co-occurrence network between the PACS codes of the papers 
published by these scientists at the research topic level. In the scientist collaboration network we constructed, 
there are 844 nodes and 146817 edges, the nodes in the network represent Haiqing Lin’s collaborators, and the 

Table 1.   Statistical analysis of interlayer edges and motif based on a network. 1 It refers to the number 
of objects that can be made up. 2 The number of nodes that make up the motif that belong to the same 
community as the consent community. 3 It refers to the number of edges that exist between layers. 4 It refers 
to the number of nodes in the same community of two nodes with edges between layers. 5 ratio=same 
community/edge.

Network

Interlayer motif Interlayer edges

Motif1 Same community2 ration Edge3 Same community4 Ration5

L1 3 3 1.0 22 20 0.9

L2 6 6 1.0 22 20 0.9

Table 2.   Statistical analysis of interlayer edges and motif of different structural networks. 1 c1 = c2 = 3. 2 
c1 = c2 = 4. 3 c1 = c2 = 5. 4 c1 = c2 = 6. 5 c1 = 3, c2 = 4.

Network pin (3,3)1 (4,4)2 (5,5)3 (6,6)4 (3,4)5

L1 0.9 0.957/0.961 0.966/0.967 0.975/0.976 0.975/0.984 0.960/0.972

L1 0.8 0.893/0.895 0.887/0.912 0.923/0.945 0.912/0.961 0.898/0.931

L2 0.9 0.958/1.000 0.968/0.995 0.976/1.000 0.981/1.000 0.964/1.000

L2 0.8 0.890/0.995 0.905/0.959 0.938/0.986 0.954/1.000 0.916/0.996
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edges represent the two scientists who have coauthored at least one APS journal paper. In the research topic 
co-occurrence network, which contains 78 nodes and 241 edges, the nodes in the network represent the PACS 
codes included in the APS journal papers published by the above scientists, and the edges represent that the two 
PACS codes have co-occurred at least once in the APS journal papers published by these scientists. At the same 
time, based on the information that a scientist has published a paper in a particular PACS code, we built an edge 
between the scientist layer and the research topic layer. Finally, we obtained a scientist-research topic two-layer 
network with heterogeneous nodes and edges. Based on algorithm 1, we performed community detection on 
this heterogeneous scientist collaboration network, and the whole network was divided into 4 groups, which 
allowed us to determine in what research areas scientists mainly collaborate with each other.

If community detection for single-layer networks is performed on the scientist cooperation network and the 
research topic co-occurrence network, we can determine which scientists cooperate more closely with each other 
and which research fields are more closely connected, but we cannot integrate the scientist groups and research 
fields. To fuse information about scientists and research fields on top of the above two single-layer networks, it 
is also necessary to add information about which papers scientists collaborated on and in which papers research 
fields co-occur, i.e., to construct a bipartite network between scientists and papers, and a bipartite network 
between research fields and papers. Our approach is able to directly relate scientists and research fields together 
to achieve a more rational division of scientists and their research topics.

Conclusion and future work
In this paper, the community detection algorithm of more general multilayer networks in which both nodes and 
edges contain heterogeneity are proposed. Among, the motif structure are used to calculate the modularity of 
multilayer networks, which can distinguish the intralayer and interlayer edges of networks well. We used two 
metrics ( NMI ,R_Index ) to measure the accuracy of community detection in terms of the overall distribution of 
communities and the integration of communities between different layers. The results of proposed algorithm in 
synthetic networks showed the more accurate community structure (the number of communities and the com-
munity to which members belong), comparing with other community detection algorithms.

We applied algorithm 1 on an empirical network, which enables the problem of detecting communities uni-
formly between different types of individuals. Finally, this paper analyzed the relationship between the intralayer 
motifs (interlayer motifs) and communities and further explains the feasibility of the algorithm.

This study provides an understanding of the community structure of more general multilayer networks, 
and our algorithm mainly addresses the problem of community detection in undirected multilayer networks. 
In the following research, we hope to conduct more in-depth research in more multi-level empirical networks. 
Moreover, there are many unequal relationships in real networks, such as directed networks. In the future, we 
will conduct an in-depth study of community detection in multilayer-directed networks.

Data availibility
The APS data can be downloaded at https://​journ​als.​aps.​org/​datas​ets.
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