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Enhanced read resolution 
in reconfigurable memristive 
synapses for Spiking Neural 
Networks
Hritom Das *, Catherine Schuman , Nishith N. Chakraborty  & Garrett S. Rose 

The synapse is a key element circuit in any memristor-based neuromorphic computing system. 
A memristor is a two-terminal analog memory device. Memristive synapses suffer from various 
challenges including high voltage, SET or RESET failure, and READ margin issues that can degrade 
the distinguishability of stored weights. Enhancing READ resolution is very important to improving 
the reliability of memristive synapses. Usually, the READ resolution is very small for a memristive 
synapse with a 4-bit data precision. This work considers a step-by-step analysis to enhance the READ 
current resolution or the read current difference between two resistance levels for a current-controlled 
memristor-based synapse. An empirical model is used to characterize the HfO

2
 based memristive 

device. 1st and 2nd stage device of our proposed synapse design can be scaled to enhance the READ 
current margin up to ∼ 4.3× and ∼ 21%, respectively. Moreover, READ current resolution can be 
enhanced with run-time adaptation techniques such as READ voltage scaling and body biasing. The 
READ voltage scaling and body biasing can improve the READ current resolution by about 46% and 
15%, respectively. TENNLab’s neuromorphic computing framework is leveraged to evaluate the effect 
of READ current resolution on classification, control, and reservoir computing applications. Higher 
READ current resolution shows better accuracy than lower resolution even when facing different levels 
of read noise.

Keywords  Current-controlled, Low power, Stochastic computing, Approximate computing, Spiking Neural 
Network

The development of Artificial Neural Networks (ANNs) and Deep Neural Networks (DNNs) is inspired by the 
remarkable information processing abilities of mammalian brains, while also achieving low power consumption 
and minimal latency. Due to their exceptional classification accuracy, DNNs are attracting considerable interest 
as the preferred classifier in numerous machine learning and computer vision applications1. However, DNNs are 
typically executed on Von Neumann machines and are hence limited by the separation of memory and process-
ing units, also known as the von Neumann bottleneck2. Besides that, the extensive computational requirements, 
high power consumption, and memory bandwidth associated with DNNs make them less attractive for mobile 
applications, where limitations in area and power are significant constraints3.

In order to address the limitations in power and memory capacities of traditional computing architectures 
mentioned above, coupled with further inspiration drawn from the efficiency of the biological nervous system, a 
novel concept of neuromorphic architectures has emerged. These architectures typically employ Spiking Neural 
Networks (SNNs), which aim to mimic the intricacies of the biological nervous system with greater fidelity by 
employing binary pulses as a means of communication. These architectures represent a distinct paradigm from 
the conventional Von Neumann architecture in terms of the co-location of memory and processing unit, dem-
onstrating promising results in specific application domains4–6. Neuromorphic architectures not only offer better 
energy efficiency, but also promise parallel signal processing, fault tolerance, and reconfigurability. Furthermore, 
they can be implemented using diverse silicon-based technologies, large-scale architectures, and computational 
models of neural components7–10.

Neuromorphic systems, also referred to as Neuroprocessors, leverage the co-location of memory and process-
ing units, where neurons act as the computational units, interconnected by synaptic memory elements. Synapses 
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contain the weighted connections between neurons and can be implemented using digital11,12 or analog13–19 
circuits. Nevertheless, incorporating a multitude of synapses presents several obstacles, including the efficient 
handling of storage space needed for weighted connections and the accommodation of diverse synaptic learn-
ing techniques that demand adaptable weight storage9,20. Memristors are potential candidates to address these 
issues. Memristors have proven to be more compact and power efficient for synaptic implementation compared 
to SRAM21 and capacitor-based implementations of the same resolutions9,22. Memristive synapses have also been 
shown to have extended memory retention time22–24.

First postulated by Leon Chua, the memristor is described as the fourth fundamental passive circuit element25. 
A memristor is a two-terminal device with analog memory properties that originate from its ability to switch 
resistance levels. When a voltage beyond a certain threshold is applied to its terminals, the resistance is modi-
fied. A memristor resistance state is also non-volatile making it a promising candidate for weight storage. Due 
to their compatibility with CMOS technology and non-volatile properties, memristors are well-suited for analog 
computation18,26.

In this work, we use a current-controlled synapse designed using a TiN TE (TE = Top Electrode)/HfO2/TiN 
BE(BE = Bottom Electrode) memristor27. To use this synapse, several operations need to be performed on the 
memristor, such as FORMING, RESET, SET, and READ. This memristor can vary its resistance in a range of a few 
k � to over 150 k �13,14. However, for our design, we exclusively use the low resistance states (LRS) of the memris-
tors due to improved reliability in this operating region, and to avoid a high degree of variability encountered 
near the high resistance states (HRS)28. The memristor can be programmed into different low-resistance states 
by precisely controlling the compliance current during the SET operation that overcomes the issues of variability 
and limited resolution29.

Although the synapse is designed while taking the reliability concerns into consideration, the synapse is 
vulnerable to limited resolution due to the use of a narrow resistance range in the low-resistance regions30. This 
occurs when the current generated by the different resistance states is not easily differentiable. This limitation can 
cause a reduction in the learning performance of SNNs9,30. Overlapping synaptic currents also make the synapse 
susceptible to noise and process variation9. Another disadvantage of the small difference between synaptic states 
is that it complicates the analog-to-digital converter (ADC) design significantly9. For the ADC to recognize dif-
ferent resistance states for digital conversion, the current output difference between the resistance states needs 
to be high enough for a compact, yet power efficient design9. This work aims at improving the current resolution 
of the memristive synaptic circuit using several techniques.

The key contributions of this paper are as follows. 

1.	 READ current resolution of a current compliance memristive synapse is enhanced,
2.	 READ current resolution is enhanced with proper device scaling,
3.	 READ current resolution is made re-configurable at run time with READ voltage scaling,
4.	 READ current resolution is adaptable at run time with body biasing, and
5.	 the TENNLab neuromorphic software framework31 is utilized to observe the effect of READ current resolu-

tion on SNNs. Higher READ current resolution illustrates better accuracy with a lower possibility of a read 
error.

The remainder of this paper is organized as follows. The following section briefly describes a Verilog-A model 
for the hafnium oxide-based memristor device, the synaptic circuit built from this memristor, and a description 
of its READ operation. The next section shows the proper device sizing to enhance the READ current resolu-
tion. After that, a section illustrates two techniques for improving READ current resolution re-configurable at 
run time. The next section will evaluate the design performance based on different test cases. The next section 
exhibits the effect of the READ current resolution or weight resolution on Spiking Neural Networks (SNNs). 
A detailed comparison with prior works is analyzed in the next section. Finally, the paper is concluded with 
prospective future work.

Current‑controlled memristive synapse
HfO

2
 based device modeling

A Verilog-A model is utilized to simulate the HfO2 based memristive devices32. In this model, mathematical equa-
tions are derived based on the memristance state and the required time to switch the states between HRS to LRS 
or LRS to HRS. The I–V characteristics of this device are taken under consideration to derive the empirical model 
of the memristor. The threshold voltage and switching time are two sets of important measured parameters for 
this model. There are some fitting constants in the model, which are utilized to fit the device’s I–V characteristics 
to observe the simulation behavior as closely as measured data. The sigmoid window function is also considered 
to be incorporated with different patterns of switching time between HRS to LRS and vice versa. This Verilog-A 
model is also capable of detecting the RESET failure if the RESET voltage has crossed its functional window. All 
mathematical equations, I–V curves, measured, and simulation details are available in a prior work32.

Proposed synapse
Memristors are widely used to construct brain-inspired synapses, which is the key element for neuromorphic 
computing. There are different synapse flavors based on the memristor’s recipe (combination of materials). 
Various materials are utilized to build the memristors such as HfO2 , Ta2O5 , NbO2 , and so on. Our proposed 
architecture is designed using a TiN TE/HfO2/TiN BE memristor. Figure 1a and b show the proposed synapse 
with READ devices and a simple SNN based on our synapse respectively. The first step of this synapse is the one-
time FORM operation. Thick-oxide transistors are used for this design to take care of high voltage around 3.3 V 
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for forming. A thick oxide transistor is also useful to reduce flicker noise. Unformed memristors usually exhibit 
resistance in the range of ∼ 8 to ∼ 10 M � . After forming, the memristor’s resistance level will be in a few k � . 
Hence, the synapse needs to RESET to a higher resistance state (HRS), which is typically hundreds of k � . Finally, 
our device is ready to SET /write /program to a specific low resistance state from an HRS. Due to less variability, 
the programming region is selected in the LRS region. The targeted LRS for this design is from 5 to 20 k � . Here, 
the LRS region is considered to program the synapse with a low inherent variation of HfO2-based memristor. 
At the same time, we are sacrificing the low-power operation by eliminating the HRS region for programming. 
Here, we are targeting 4-bit precision with ∼ 1 k � resistance resolution. This design needs a set of RESET and 
SET to program in a new LRS value. After a successful SET operation, the synapse is ready for a READ operation.

Figure 1a shows the proposed current-controlled synapse with READ circuitry. V_READ and V_READB sig-
nals are utilized to access the memristor (R) during a READ operation. VDD_READ and V_READ are 1.2 V and 
0.6 V respectively during a READ operation. In addition, 0 V is provided to the the V_READB node to access the 
memristor for a read operation. Due to the READ signal assertion, there will be a small 1st stage current through 
the memristor. This current will create a voltage to operate transistor MN2 . Finally, a READ Current is sensed from 
the drain of the MN2 . The body of this MOSFET is utilized as a separated signal to control the threshold voltage 
of MN2 . READ is a very sensitive operation for memristor-based synapses. Especially, the READ margin between 
two resistance levels (e.g. 5 k � and 6 k � ) needs to be good enough to read the data or weight properly. Most of 
the time the difference between the two resistance levels is a few nA for low-power design, which is very hard to 
sense properly. A research paper shows the READ current between 5 and 6 k � is 20 nA28. A few techniques can 
be utilized to overcome this low READ margin /resolution between two resistance levels. All the techniques are 
explained below with proper analysis.

READ current resolution enhancement with proper device scaling
At first, READ device sizing is considered to observe the effect on READ current resolution. A 65 nm 10LPe 
CMOS process from IBM is utilized to construct and conduct Cadence Spectre simulations. A Verilog-A model is 
utilized to characterize the HfO2 based memristor device32. Here, 9% of memristive variation is considered for the 
simulation, which is based on the testing results of memristive devices28. Figure 2a shows effect on READ current 
resolution with the sizing of MP1 and MN1 . Here, the width and length of MN2 are set at 0.5 µ m. In addition, the 
width of the MP1 is varied from 0.5 to 4 µ m and the width of the MN1 is varied from 1 to 4 µ m. In addition, the 
length of MP1 and MN1 (both are thick oxide transistor) are set at 0.5µ m. When the width of both MN1 and MP1 
is minimal, the READ current resolution (one memristive level to another, e.g. 5–6 k � ) is at least 19 nA. Due to 
an optimized read procedure, the READ current shows very stable resolutions compared to prior work28. In this 
work, a regular pfet is utilized to control the read voltage at the drain of MN2 . Whereas a diode-connected pfet 
was connected in prior work. Hence, the width of the MP1 set at 0.5 µ m and the width of the MN1 varies from 
2 to 4 µ m. The READ current resolution is 64 nA, when the width of the MN1 and MP1 are 4 µ m and 0.5 µ m 
respectively. The larger size of MN1 and smaller size of MP1 allow suitable gate voltage for the MN2 to provide a 
high-resolution READ current. Twelve different sizing combinations are observed for READ current resolution. 
When the width of the MP1 and MN1 are 1 µ m and 4 µ m, the READ current resolution is about 81 nA for 4-bit 
data precision. According to the last test case, if the width of MP1 increases significantly and its size becomes 
the same as MN1 , then the READ current resolution does not show significant benefit on sizing. A better sizing 
combination is observed, when the MN1 and MP1 are not the same and MP1 is smaller than MN1 . According to 

V_READB

VDD_READ

V_READ

gnd!
1s

t
st
ag
e
cu
rr
en

t

RE
AD

Cu
rr
en

t

MN1 MN2

MP1

R

gnd!

MN2_Bias

V_READB

VDD_READ

V_READ

gnd!
1s

t
st
ag
e
cu
rr
en

t

MN1

MP1

R

RE
AD

Cu
rr
en

t

MN2

gnd!

MN2_Bias

1st Stage 2nd Stage

Input
Layer

Hidden
Layer

Output
Layer

Input
Spikes
Input
Spikes

Input
Layer

Hidden
Layer

Output
Layer

Output
Spike

(a) Proposed synapse (b) A SNN with our proposed Synapse

Figure 1.   Memristor with READ circuitry is illustrated. (a) READ operation requires 1-PMOS and 2-NMOS. 
READ operation folded into two parts. 1st stage current is generated with MP1 and MN1 . This current initiates a 
voltage to operate MN2 in the linear region. Finally, the READ current will be sensed from the drain of MN2 . The 
body of the MN2 is considered as a dedicated signal to control the threshold of this device. (b) A spiking neural 
network (SNN) is constructed with our proposed synaptic circuitry. Input spikes are fed into the input layer of 
neurons. Finally, the output spike indicates the class which is determined by the network.
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our sizing analysis, the READ resolution provides best performance when the width of MN1 and MP1 are 4 µ m 
and 1 µ m respectively. According to Fig. 2b, there is about 11.47% READ current overhead to improve only 1 
nA current resolution. Next, the effect of length and width of the MN2 is observed, with the width of the MN1 
and MP1 transistors are set at 4 µ m and 1 µ m respectively.

The length and width of MN2 are varied to observe the effect on READ current resolution. Figure 3a illustrates 
the READ current resolutions, when the width of the device is varied from 0.5 to 4 µ m and the length is fixed at 
0.5 µ m. When the length and width of the device are set at a minimal size, the READ current resolution is about 
81 nA. The first test case shows better READ current resolutions with lower power consumption.

Next, the width of the MN2 is set at 0.5 µ m and the length is varied from 0.5 to 4 µ m. According to Fig. 3b, the 
READ current resolution is decreased with the increment of length. At this point, the overall READ current will 
be decreased by up-sizing the length of MN2 , with higher latency. Finally, both length and width are increased 
simultaneously. Figure 3c shows the READ current resolutions when both length and width are increased. READ 
current resolutions are increased as the length and width are up-scaled at the same time. About 21% improve-
ment in READ current resolutions can be achieved by up-sizing the length and width of MN2 simultaneously. 
Figure 3d shows the READ current level with different sizing combinations. READ current resolution can be 
increased with the overhead of area and READ current. Figure 3d shows, at 5 k � memristive weight, the READ 
current is 21.8 µ A with minimal length and width of the MN2 . On the other hand, when both length and width 
of MN2 are increased to 4 µ m, the READ current is increased by 22.48%. At the same time, the READ current 
resolution is increased by 21%. There is a clear trade-off between READ current resolution and READ current 
overhead. In addition, the overall design area is also influenced by a larger length of MN2.

Table 1 shows the optimized sizing configuration to enhance the READ current resolution. The width of 
MP1 and MN1 are set at 1 µ m and 4 µ m respectively. Both MOSFET’s length are fixed at 0.5 µ m. In addition, the 
length and width of MN2 is considered as 4 µ m. The READ current resolution is about 98 nA with this opti-
mized sizing. In the next section, the READ current resolution will be adapted dynamically with V_READ and 
MN2_Bias signals.

Reconfigurable READ current resolution
READ current resolution can be adapted at run time. Various applications can perform better at enhanced READ 
current or weight resolution. To enhance the application’s performance, a reconfigurable or run-time adaptation 
of READ current resolution is proposed with different circuit techniques. Specifically, READ voltage (V_READ) 
scaling is a useful technique to influence the READ current resolution at run time.

Figure 2.   READ simulation results are illustrated based on the sizing of MP1 and MN1 . The length and width of 
MN2 are fixed at 0.5 µ m. (a) MP1 is varied from 0.5 to 4 µ m. In addition, MN1 is varied from 1 to 4 µ m. Larger 
MN1 shows a higher impact on the READ current resolution. (b) Shows the READ current scale with different 
size of MP1 , when the width of the MN1 is fixed at 4 µm.
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Figure 3.   Cadence simulation results for READ current resolutions with different width and length of MN2 
device. (a) Shows the READ current resolution when the length of the MN2 is fixed at 0.5 µ m and the width is 
varied from 0.5 to 4 µ m. The current resolution is drastically decreased with the increment of MN2 ’s width. (b) 
shows the READ current resolution when the width of the MN2 is fixed at 0.5 µ m and the length is varied from 
0.5 to 4 µ m. The READ current resolution is also decreased with the increment of length of MN2 . Finally (c) 
Shows the READ current resolution when the length and width of MN2 change simultaneously. READ current 
resolution is increased when the length and width of the MN2 are increased at the same time. (d) Shows the 
READ current level with different MN2 sizing. About 22.48% READ current overhead is observed to improve 
21% READ current resolution.
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READ voltage scaling
Figure 1 shows V_READ is the gate voltage of MN1 . Initially, the applied amplitude of this signal was 0.6 V. Fig-
ure 4a shows the READ current resolution at 0.6V is 98 nA for 4-bit data. Here, the optimized sizing is utilized 
from Table 1. The READ current resolution is about 143 nA at 0.63 V as V_READ. About 46% of READ current 
resolution can be enhanced with V_READ scaling at run time. If the V_READ is increased more than 0.63 V for 
this particular sizing or configuration, then the resolution is decreased. A stronger turn-on of MN1 influences 
the final READ current negatively. As a result, the resolution is decreased with excessive V_READ. Figure 4b 
shows READ current with different gate voltages of MN1 . When the READ voltage is 0.6 V, the READ current is 
about 26.8 µ A at 5 k � . On the other hand, if the READ voltage is scaled up to 0.63 V, the READ current will be 
decreased to about 19.1 µ A. About 29% READ current can be optimized when the READ voltage is scaled from 
0.6 to 0.63 V. READ current shows a significantly lower value at 0.64 V. However, at 0.64 V the READ current 
resolution is reduced significantly compared to the value at 0.63 V. In addition, at 0.64 V the std. dev. of READ 
current is ∼ 7% higher than std. dev. at 0.63 V. Thus, the READ current at 0.63 V is more reliable than at 0.64 
V. According to our design optimization, the READ current resolution is higher at 0.63 V among all the READ 
voltages. In addition, the READ current resolution can be varied from 98 to 143 nA with V_READ signal scaling. 
In the next sub-section, another device technique is utilized to enhance the READ current resolution at run time.

READ device M
N2

 biasing
READ device MN2 biasing is another technique to manage synaptic READ current at run time. Here, the READ 
voltage V_READ is set at 0.63V with optimized sizing. Figure 5a shows the READ current resolution at differ-
ent bias voltages at the body of MN2 . As we know, body biasing can change the threshold voltage of a MOSFET 

Table 1.   Transistor scaling to enhance READ current resolution.

Transistor name Width ( µm) Length ( µm)

MP1 1 0.5

MN1 4 0.5

MN2 4 4

Figure 4.   READ voltage (V_READ) has a significant effect on READ current resolution. (a) Shows the READ 
current resolution at different V_READ voltage. READ current resolution is increased with the increment of the 
gate voltage of MN1 . After a certain level of gate voltage increment, the READ resolution starts decreasing. (b) 
Exhibits the READ current level at different READ voltages. As we increase the READ voltage at the gate of MN1 , 
the READ current level starts decreasing. Due to a weak turn-on of MN2 , the READ current level is decreased. 
Here is an interesting thing to notice, as we increase the gate voltage of MN1 the overall READ current level is 
decreased. As a result, the READ current resolution is increased with overall READ current optimization.
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to control the current flowing through it. Here, a positive body voltage is applied on MN2 to improve the READ 
current resolution. When the body voltage is 0 V, the READ current resolution of our proposed synapse is about 
143 nA. If the body voltage is scaled up to 0.3 V, then the READ current resolution is further up to 15%. In addi-
tion, if the body biasing voltage is increased more, then a reverse phenomenon is observed with READ current 
resolution. Due to the channel effect of the NMOS, the reverse phenomenon is observed with higher body bias 
voltage. At 0.4 V the READ current resolution is decreased to 88 nA. As a result 0.3 V is an optimized body bias 
voltage for this design scenario. Figure 5b exhibits the READ current of our synapse at different body biasing 
scenarios. Overall READ current is increased with the increment of body biasing voltage. About 47% READ 
current is increased with body biasing to enhance the READ current resolution at run time. Finally, it can be 
said that the READ current resolution of our proposed synapse can be adapted at run time with different body 
biasing voltages.

READ current resolution and design performance evaluation
Table 2 shows an evaluation of device sizing, READ current resolution, and READ power. There are five test 
cases considered for the evaluation. The first test case is constructed with base device sizing. Here, the V_READ 
and body bias (MN2_Bias) are 0.6 V and 0 V respectively for first three test cases. The first test case shows 19 
nA READ current resolution with 18.87 µ W as a max READ power. Here, both stages’ power ( 1st and 2nd ) are 
considered for the max READ power. The second test case is the 1st stage device sizing. Here, the READ current 
resolution is 81 nA with 4-bit precision which is about 4.3× higher than the base sizing test case. Only 5% of 
power overhead is observed compared to the base test case. The next test case is focused on 2nd stage device 
sizing with 1st stage sizing. Here, the READ current resolution is 98 nA, which is 5.16× more improved than 
the base test case (Base sizing). Here, the READ power improvement is only 0.16% compared to the base test 
case. When the 2nd stage device is scaled the overall READ current is optimized slightly compared to the base 
test case. The fourth test case is to increase the V_READ to 0.63 V from 0.6 V. In this scenario, the READ cur-
rent resolution is 143 nA, which is 7.53× enhanced than the base test case. In addition, the max READ power 
shows 1.43% overhead compared to the base test case. Finally, the body biasing is applied to the body of MN2 . 
After applying 0.3 V, the READ current resolution is about 165 nA, which is 8.68x improved compared to the 
base test case. Here, the max READ power overhead is about 3.60% compared to the base test case. The READ 
voltage on the source of the MN2 is automatically adjusted based on the gate voltage of the MN2 . Due to that, the 
READ power is quite stable in this design. Here, the Monte Carlo simulation is observed with 1000 samples in 
a Cadence Spectre environment to analyze the READ current variation. The READ current shows about 0.65× 
variations with 8.68× resolution improvement.

Figure 5.   READ device MN2 plays an important role to make READ current resolution adaptable at run time. 
The body of MN2 is scaled to enhance the resolution with READ power overhead. (a) Shows the body biasing 
effect on READ current resolution. About 15% resolution can be enhanced with body biasing. (b) Illustrates 
the READ current level at different biasing voltages. The READ current is increased with the increment of body 
biasing of MN2.
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Impact of READ current resolution on applications
To specifically investigate the impact of READ current resolution, we assessed the performance of spiking 
neural networks under varying probabilities of synapse read failures. Our hypothesis is that when the current 
resolution is higher, there will be fewer or no read errors, while when the current resolution is lower, read errors 
are significantly more likely. To perform this evaluation, we leveraged the TENNLab neuromorphic computing 
framework 31, which allows for evaluation of neuromorphic processors using different applications and algo-
rithms. Within the framework, we used the RISP neuromorphic simulator 33, with integrate and fire neurons 
and synapses with 4-bit weight resolution.

To specifically study the impact of READ current resolution, we evaluated how spiking neural networks 
with different likelihoods of read failures for each synapse. In particular, for a particular network evaluation, we 
defined a likelihood of read failures for each synapse read, wherein the weight read would be one level off (either 
the level above or level below), which would be more likely to happen for low current resolution. We trained 
the networks with these read failures using an evolutionary optimization training approach for spiking neural 
networks and neuromorphic system called EONS 34. EONS evolves the parameters and topology of the network 
simultaneously. We trained for the iris dataset, the wine dataset, and the breast cancer dataset, three commonly 
used toy datasets in machine learning that are available in the UCI machine learning repository 35, as well as the 
EEG motion dataset, a timeseries dataset 36,37. We trained 100 networks for each of six different likelihoods of 
read errors for the synaptic weight values: 0, 10, 20, 30, 40, and 50 percent for each dataset. Figure 6 shows the 
results for these simple datasets on both training and testing performance. This figure shows that, in general, the 
best overall testing performance was achieved by no read errors at all; however, on average, some noise on the 
read errors does not necessarily hurt performance significantly, either in training or testing. For the results in 
Fig. 6, it is worth noting that the networks were trained and tested using read errors. Figure 7 shows the results 
for when networks are trained without read errors and then tested with varying likelihoods of read errors per 
synapse, which would likely be the case for networks trained in simulation and then deployed to hardware. In 
this case, we can see that read errors cause a decrease in testing performance for each dataset.

We conducted similar tests for four test applications: two from the OpenAI gym control environments 
(BipedalWalker-v3 and LunarLander-v2) 38 and two from the TENNlab suite of control applications (bowman 
and polebalance) 39. The results for different likelihoods of read errors for these control tasks are shown in Fig. 8. 
In this case, we do see a significant downward trend in performance for most of the applications when training 
and testing with noise.

Finally, in Fig. 9, we see the results of a reservoir computing approach when encountering read errors on 
synapses. We use reservoirs of 100 neurons with 10% randomly initialized connectivity. We once again evaluate 
the three toy classification datasets, but we omit the timeseries EEG dataset. In this case, we see a significant 
downward trend, more pronounced and more consistent than in the other cases. As such, this indicates that the 
reservoir approach may not handle noise well.

Because this work enables higher-precision weights to be used on synapses with more reliability, we investi-
gated the impact of precision on performance. Figure 10 shows the results for different levels of bit-precision (2, 
3, and 4) on the synaptic weights. Here, we can see that 2-bit weight synapses perform significantly worse across 
all three datasets than 3- and 4-bit precision synapses, as expected. We see similar results for the control tasks 
(Fig. 11) and the reservoir computing tasks (Fig. 12).

Comparison with prior works
Reliable READ current resolution is a big challenge for the memristive-based synapse or memory design. Usu-
ally, the minimum current resolution is a few nA. Due to that, it is challenging for the circuit designer to sense 
the current level properly with ADC or CMOS neurons. In our neural network analysis, we consider a CMOS 
neuron to observe the charge accumulation and fire46. In this work, a memristor-based synapse is optimized 
to enhance the READ current resolutions. At first, the device sizing is considered to optimize the resolution. 
Hence, READ voltage and body bias are considered to enhance the resolution at run time. Here, the optimal 
size is adopted from Table 1. In addition, the READ voltage and body bias voltages are selected to 0.63 V and 0.3 

Table 2.   READ current resolution enhancement and design evaluation.

Test case Device size READ current resolution
READ current resolution 
evaluation

Max READ power [both 
stage power]

Max READ power 
evaluation

Base sizing
MP1 = (0.5/0.5) µ m MN1 = 
(1/0.5) µ m MN2 = (0.5/0.5) 
µm

19 nA – 18.87 µW –

1st stage device sizing
MP1 = (1/0.5) µ m MN1 = 
(4/0.5) µ m MN2 = (0.5/0.5) 
µm

81 nA 4.26× improved compared to 
base sizing 19.82 µW 5% overhead compared to 

base sizing

2nd stage device sizing MP1 = (1/0.5) µ m MN1 = 
(4/0.5) µ m MN2 = (4/4) µm 98 nA 5.16× improved compared to 

base sizing 18.84 µW 0.16% improved compared to 
base sizing

V_READ @0.63V MP1 = (1/0.5) µ m MN1 = 
(4/0.5) µ m MN2 = (4/4) µm 143 nA 7.53× improved compared to 

base sizing 19.6 µW 1.43% overhead compared to 
base sizing

Body bias @0.3 V MP1 = (1/0.5) µ m MN1 = 
(4/0.5) µ m MN2 = (4/4) µm 165 nA 8.68× improved compared to 

base sizing 18.19 µW 3.60% improved compared to 
base sizing
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Figure 6.   Training and testing accuracy for iris, wine, and breast cancer datasets. In these results, the networks 
were trained and tested with read errors.

Figure 7.   Testing accuracies for networks trained without read errors and tested with read errors.
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V from 0.6 and 0 V respectively. According to Table 3, the minimum READ current resolution is 165 nA with 
4-bit data precision. As we know, the larger resistance level shows a lower current resolution. In our case, the 
current level difference between 19 and 20 k � is considered to determine the minimum current resolution. At 
room temperature the value is at least 165 nA. The maximum READ current ∼ 28 µ A is captured at 5 k � . Our 
synapse is programmed at LRS to avoid inherent process variations.

Another research article shows the minimum READ current resolution of a 3T1R synapse is 20 nA for 4-bit 
data precision. Our proposed design shows 8.25× resolution improvement compared to their work28. Energy-
efficient and high-performance synapse is presented in another research paper, where the minimum READ 
current resolution is 20 nA30. This design is also based on HfO2 based memristor and 65 nm CMOS process. 
The programming region is between 3 to 18 k � , which provides low inherent process variation with 4-bit data 

Figure 8.   Results for control with read errors on synapses.

Figure 9.   Results for reservoir computing with read errors on synapses.

Figure 10.   Results for reduced precision on the synaptic weights.
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density. Our proposed design also illustrated 8.25× current resolution improvement compared to their work30. 
A TiO2 based memristive memory is presented in40, which is programmed from 1 k � to 1 G � . Due to the 
utilization of HRS, the inherent process variation is higher for this design compared to our proposed design. 
This design only covers four programming states. As a result, our proposed design shows a 4 × more dense data 
storage capacity compared to their design40. The max READ current is about 3.21× higher than our proposed 
design. The minimum READ current resolution is about 90 nA, which is 1.83× lower than our proposed design.

A research group is presented a TiO2 based multi-level resistive memory, which is programmed from 10 k � to 
100 M �41. Due to programming in HRS, the inherent process variation is higher than our design. Their design is 
only programmed in six different states, which exhibits 2.67× lower memory density compared to our proposed 
design. The maximum READ current of their design is 100 µ A, which is 3.57× higher than our proposed design. 
Moreover, the minimum READ current resolution of their design is ∼ 17 nA, whereas our proposed design shows 
∼ 9.7× enhanced resolution compared to their design41. A HfO2 based multi-level cell is presented with 2-bit 
memory density, which is 4 × lower memory density than our proposed synapse42. Their device is programmed 
from 10 k � to 1 M � , which shows higher inherent process variation compared to our design. Their device draws 
lower maximum READ current than our design. However, the minimum READ current resolution is 2.04× lower 
than our proposed design.

Another multi-level resistive memory is presented using a-ZnO material, which is programmed between 
24 and 176 M �43. Their design shows higher process variation and 3.2× lower memory density than our pro-
posed design. Their maximum READ current is lower than our design. However, the minimum READ current 
resolution is extremely low compared to our proposed design. A HfO2 based multi-level RRAM is presented in 
a research article, where authors programmed their device between 0.8 k � and 100 M � with 8 programming 
states44. Our proposed design shows lower process variation and 2 × higher memory density than their design. 
The maximum READ current of their design is extremely higher than our proposed design. Our proposed 
design also shows a 3.67× improved minimum READ current resolution than their design44. Another research 
group presented their device with TiO2 , which is programmed between 1 M � and 10 G � with six programming 
states45. This design shows a 2.67× lower memory density than our proposed design. Due to their HRS program-
ming region, the process variation is higher than our design. The maximum READ current of their design is 
lower than our proposed design. However, their minimum READ current resolution is extremely lower than 
our proposed design. Moreover, our design shows power savings compare to prior works40,41,44. In addition, our 
proposed design shows more linear READ current compared to other designs40–45. Due to a compact program-
ming range, our design shows better linearity compared to prior works. A wide programming range causes 
non-linear behavior of READ current.

Figure 11.   Results for control with reduced precision on the synaptic weights.

Figure 12.   Results for reservoir computing with reduced precision on the synaptic weights.
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After comparing our proposed design with prior works from different research groups, it can be said that our 
proposed design shows lower inherent process variation with higher memory density. In addition, our proposed 
design shows an enhanced READ current resolution compared to others’ designs.

Conclusions and future work
In this paper, a HfO2 based current-controlled memristive synapse is optimized for READ operation. At first, 
the READ devices are optimized to enhance the READ current resolution. About 4.3× and 21% READ current 
resolution is enhanced with 1st and 2nd stage device sizing respectively. READ voltage scaling and body biasing 
are applied to enhance the READ current resolution at run time. About 46% and 15% READ current resolution 
is improved with READ voltage scaling and body biasing. A neuromorphic framework EONS shows that a higher 
READ current resolution exhibits better accuracy compared to a lower resolution on classification and control 
applications. Lower resolutions are more likely to be affected by reading failures with higher noise. As a result, 
a higher READ current resolution makes the neuromorphic system more reliable.

Data availability
The datasets (circuit simulation) generated during this study are available from the corresponding author (H.D.) 
upon reasonable request.

Code availability
The codes for application evaluation are available from the author (C.S.) upon reasonable request.
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