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Classification of laryngeal diseases 
including laryngeal cancer, benign 
mucosal disease, and vocal cord 
paralysis by artificial intelligence 
using voice analysis
Hyun‑Bum Kim 1,3, Jaemin Song 2,3, Seho Park 2 & Yong Oh Lee 2*

Voice change is often the first sign of laryngeal cancer, leading to diagnosis through hospital 
laryngoscopy. Screening for laryngeal cancer solely based on voice could enhance early detection. 
However, identifying voice indicators specific to laryngeal cancer is challenging, especially when 
differentiating it from other laryngeal ailments. This study presents an artificial intelligence model 
designed to distinguish between healthy voices, laryngeal cancer voices, and those of the other 
laryngeal conditions. We gathered voice samples of individuals with laryngeal cancer, vocal cord 
paralysis, benign mucosal diseases, and healthy participants. Comprehensive testing was conducted 
to determine the best mel-frequency cepstral coefficient conversion and machine learning techniques, 
with results analyzed in-depth. In our tests, laryngeal diseases distinguishing from healthy voices 
achieved an accuracy of 0.85–0.97. However, when multiclass classification, accuracy ranged from 0.75 
to 0.83. These findings highlight the challenges of artificial intelligence-driven voice-based diagnosis 
due to overlaps with benign conditions but also underscore its potential.
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The occurrence of laryngeal cancer has decreased alongside a decline in smoking populations, but it still affects 
over 10,000 people annually in the United States1,2 and more than 1000 people in South Korea3. The laryngo-
scope, which must be used by a specialist in a well-equipped hospital, still remains the most critical diagnostic. 
The most common, and sometimes the sole symptom of laryngeal cancer is voice change, however, the voice is 
not yet widely used to diagnose the laryngeal cancer. First of all, studying voice is very challenging due to the 
uniqueness of each individual and the wide diversity in the normal range of voice. Speech production involves 
airflow from the lungs passing through the larynx, enveloping the vocal cords, and reaching the oral cavity. 
During this process, a number of factors affect voice quality, including lung capacity, vocal cord size, vocal cord 
mass, and vocal cord length, which vary depending on variables such as gender, age, hormonal fluctuations, and 
other determinants4,5. Furthermore, the voice can change due to factors such as vocalization technique, personal 
habits, and environmental conditions, and it also changes when expressing emotions6. Furthermore, from a 
disease perspective, voice changes occur not only in laryngeal cancer, but also in benign mucosal diseases, such 
as vocal polyp, vocal nodule, and reinke’s edema. Despite the plethora of research endeavors concerning voice 
as a non-invasive human biomarker7–9, discernible distinctions between laryngeal cancer and other laryngeal 
diseases exist, yet an accurate biomarker has not been identified.

Despite of the limitation of voice-based laryngeal disease diagnosis, voice-based laryngeal cancer diagnostic 
technology is important and becoming a reality for the following reasons. Through the experience of COVID-19, 
with an increasing number of patients hesitating to visit hospitals, the necessity of remote medical consultant has 
been heightened, extending beyond telemedicine. In this process, study on voice using artificial intelligence (AI) 
has become essential, and this is expanding to encompass not only voice changes caused by laryngeal disease, 
but also arising from psychological factors such as depression10, parkinson’s disease11, and more.
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There have been some attempts to diagnose laryngeal cancer by AI. Kim et al.12 distinguished laryngeal 
cancer and healthy controls with 0.85 accuracy in one-dimensional convolutional neural network (1D-CNN) 
using voice data. Kwon et al.13 acquired 0.95 of accuracy in the fusion of the laryngeal image and voice data by 
ensemble learning of two CNN models for the same task, but the accuracy was limited to 0.71, when classify-
ing with only voice data. These voice-based AI laryngeal cancer diagnosis models have the limitation of simply 
classifying laryngeal cancer and healthy condition.

In this study, we hypothesized that AI could distinguish laryngeal cancer from not only healthy voice but also 
several laryngeal pathologic voices. Our contributions are following. (1) This study represents the first attempt 
to develop a classification model exclusively utilizing negative samples from a dataset encompassing various 
laryngeal disorders, with a specific focus on laryngeal cancer. While previous attempts have been made to clas-
sify various laryngeal disorders using only voice data, it is worth noting that laryngeal cancer was not present 
in this dataset14,15. Otherwise, studies have primarily utilized image data to classify various laryngeal disorders, 
including laryngeal cancer16–18. (2) We analyze the differences in signal characteristics between laryngeal cancer, 
vocal cord paralysis, benign mucosal diseases, and healthy data and provide comprehensive experimental results 
for all combinations of the four classes for laryngeal cancer diagnosis based on these characteristics.

Methods
Study subjects
A retrospective review of medical records and voice samples was performed at a single university center from 
January 2015 to December 2022. We identified patients with voice change over three weeks who underwent 
voice assessment during their initial visit to our clinic. Only preoperative or pre-procedure results were col-
lected. Patients under 19 years of age, pregnant women, and those who had previously undergone surgery or 
radiotherapy on their vocal cords were excluded. Furthermore, all women were excluded because voice is affected 
by sex significantly and the appearance of laryngeal disease varies depending on sex. All healthy voice samples 
were collected during voice assessment prior to general anesthesia surgery for another site such as thyroid, and 
lung. All healthy subjects reported having no voice-related issues, and were confirmed through the laryngoscope 
performed by two otorhinolaryngologists that there was no lesion on vocal cords. All abnormal voices were clas-
sified by the clinical purposes considering pathologic results: laryngeal cancer, benign mucosal disease, and vocal 
cord paralysis. Laryngeal cancer includes all malignant changes in the larynx. Benign mucosal disease includes 
several diseases such as vocal polyp, vocal nodule, granuloma, and reinke’s edema Vocal cord paralysis includes 
decreased mobility of uni or bilateral vocal cords regardless of complete closure. The treatment after diagnosis 
differs significantly among these diseases: Laryngeal cancer typically necessitates radiotherapy or surgery, while 
benign mucosal disease is usually managed with voice therapy or microlaryngeal surgery

Data collection
The voice samples were recorded with a Kay Computer Speech Lab (CSL) (Model 5121; KayPentax, Lincoln Park, 
NJ, USA) supported by a personal computer, including a Shure-Prolog SM48 microphone with Shure digital 
amplifier, located at a distance of 10–15 cm from the mouth and an angle of 90 degree. Although recording was 
not done in soundproof room, background noise was controlled below 45 dB HL. Analysis of a voice sample, 
directly recorded using digital technology and with a sampling frequency of 50,000 Hz, was carried out using 
MDVP 5121 (version 3.3.0). Participants phonated vowel sound/a :/for over 4 seconds at a comfortable level of 
loudness (about 55–65 dB HL). And we also measured aerodynamic parameters using phonatory aerodynamic 
system (PAS) (Model 6600; KayPentax, Lincoln Park, NJ, USA). An intraoral tube with an inner diameter of 
1.651 mm and an outer diameter of 2.413 mm was inserted into the adult mask and then attached to the face 
so that the mask completely covered the subject’s nose and mouth. Subsequently, /pa/ was produced a total of 5 
times, once per second, at a comfortable voice height and volume similar to normal conversation. The average 
value of the middle 3 utterances was analyzed.

The study was approved by Yeouido St. Mary Hospital of the Catholic University of Korea institutional review 
board (IRB) (Development of Artificial Intelligence Platform for an Early Diagnosis of Laryngeal Cancer by 
Combining Speech and Image, XC23RIDI0042, approved July 25, 2023). This is a retrospective study that ana-
lyzed the participants’ past clinical history and recording files. There were no disadvantages to the participants 
or infringement on their personal information. Although informed consent was not directly obtained from 
participants due to the retrospective nature of the study, the IRB provided a waiver for informed consent. All 
procedures were in accordance with IRB ethical standards and the Helsinki Declaration of 1975.

Feature extraction
Mel-Frequency Cepstral Coefficients (MFCCs) were utilized as the chosen technique for obtaining transformed 
representations of the speech data. To enhance the dataset, the full speech signals were partitioned into discrete 
intervals of 0.5 s. Subsequently, each individual interval was subjected to the conversion process.

During the MFCC transformation process, the segmented speech intervals were analyzed using a sliding 
window approach. The window duration was established at 0.02 s, with an overlap of 0.01 s, and the conversion 
was achieved by advancing the window by 0.01 s incrementally. This method led to the extraction of a total of 
thirteen MFCC coefficients from the given speech data. Figure 1 is an example of MFCC conversion.

Machine learning and deep learning algorithms
Three distinct algorithms were employed in this study: Support Vector Machine (SVM), LightGBM, and Artificial 
Neural Network (ANN).
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SVM19, a renowned classification algorithm, was applied to categorize data by identifying the optimal hyper-
plane for segregation in high-dimensional or infinite-dimensional spaces. In the context of our experiments, 
we addressed data imbalance by configuring the ‘class_weight’ parameter as ‘balanced’. This adjustment aimed 
to alleviate the impact of data distribution disparities, potentially bolstering accuracy through the imposition 
of penalties on prediction errors committed within underrepresented classes. The input for SVM comprised 
MFCC image data.

LightGBM20, another algorithm employed, features a unique leaf-wise tree splitting approach. This entails 
prioritizing the division of nodes with the greatest prediction error among the leaf nodes. Notably, for the aug-
mentation of the laryngeal cancer voice data-a category with the least representation within the experiment-the 
‘class_weight’ for laryngeal cancer voice was set to 5, while the remaining categories were assigned a weight of 
1. The input for LightGBM consisted of the vector values derived from the computation of MFCC coefficients.

Lastly, the Artificial Neural Network (ANN)21 architecture was composed of multiple fully connected layers. 
Within the experiment, the configuration for hidden layer sizes was set as (32,8).

The use of ResNet5022, denoted as a CNN algorithm, was integral to the execution of this investigation. The 
Resnet50 model underwent preliminary pre-training on the image-net dataset. Following the application of the 
Resnet50 model, a pivotal step involved the incorporation of a Global Average Pooling layer. This architectural 
element was adeptly employed to orchestrate the conversion of the initial 3D feature map into a singular 1D 
vector representation.

A strategic emphasis on mitigating overfitting was evident through the strategic integration of a dropout layer, 
the operational configuration of which featured a dropout ratio set at 0.5. This strategic decision materialized in 
the execution of two distinct dropout procedures, subsequently applied to the ensuing dense layer.

The framework of the model entailed two fully connected (Dense) layers, each distinguished by a composi-
tion of 64 and 16 nodes, respectively. This architectural structure was fortified by the prudent incorporation of 
batch normalization and the ReLu activation function. Additionally, meticulous attention was directed towards 
configuring the terminal layer’s node arrangement, ens uring alignment with the discrete count of classes germane 
to the classification conundrum.

Model performance evaluatation
In pursuit of effective data validation, the dataset was bifurcated into two distinct subsets: training data and test-
ing data. Notably, the validation dataset was primarily leveraged to validate the efficacy of the training procedure. 
Consequently, its influence on weight updates remained marginal, and the computation of performance metrics 
was exclusively limited to the test dataset.

To address the inherent limitation in data availability, a 5-fold cross-validation approach was adopted. This 
strategy involved partitioning the complete dataset into five discrete segments. Subsequently, one-fifth of the data 
was allocated for validation purposes, leaving the remaining four-fifths as training data. This iterative process 
was executed five times, yielding five distinct sets of performance metrics. The composite performance metric 
was then derived from the average of these computed outcomes.

A comprehensive suite of evaluation metrics was employed to assess the models’ performance. These metrics 
encompassed accuracy, precision, recall, and f1-score.

Results
We enrolled a total of 363 patients and analyzed their /a/ vocal samples. The average age of all patients was 52 
years, and a significant difference was observed between the laryngeal cancer group and the other diseases. The 
rate of heavy smokers was also significantly higher in the laryngeal cancer group. Interestingly, there was no 
significant difference in alcohol intake among all the groups. All 30 cases of laryngeal cancer were confirmed 
pathologically as squamous cell carcinoma. 23 had lesions located on a unilateral vocal cord. 17 patients, includ-
ing 7 patients who had bilateral vocal cord lesions were confirmed by the stroboscopy to affect the anterior 
commissure. 25 cases were limited to glottis and the others were diagnosed as transglottic cancer. 26 cases were 
classified as early stage according to the eighth edition of the AJCC TNM classification. Among 97 cases of vocal 
cord paralysis, only one case was diagnosed as bilateral vocal cord paralysis, who underwent the tracheostomy 
later. 27 patients had lesions located on bilateral vocal cords, including reactive nodules and reinke‘s edema 
among 81 benign mucosal diseases. 18 patients were confirmed by the stroboscopy to affect the anterior com-
missure. The detail information about participants is given in Table 1.

Figure 1.   Example of converting voice signal (laryngeal cancer) to MFCC.
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In our study, we utilized data from 363 participants, comprising 30, 97, 81, and 155 patients individuals each 
diagnosed with laryngeal cancer, vocal cord paralysis, benign mucosal diseases, and those without any conditions.

The /a/ vocal samples were transformed into MFCC. We subsequently trained these using various machine 
learning models, including Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), 
Artificial Neural Networks (ANN), and Convolutional Neural Networks (CNN).

Voice signal analysis
There are two ways to measure similarity of two signals: distance measurement method and the similarity 
function23. Commonly used distance measure methods are Euclidean distance, Minkowsky distance. Similarity 
function is divided into binary vector similarity function method and the general vector similarity function. 
Commonly used general vector similarity function is cosine and correlation coefficient.

Let vector x = (x1, x2 . . . xn), y = (y1, y2 . . . yn) , the similarity measurements between x and y are defined 
as follows.

•	 Minkowski distance d(x, y) =
{

∑n
j=1 |xj − yj|p

}1/p

•	 Euclidean distance d(x, y) =
[

(x − y)(x − y)′
]1/2

•	 Cosine distance d(x, y) = 1− xy′/(x′x)1/2(y′y)1/2

•	 Correlation distance d(x, y) = 1− r(x, y) 

where r(x, y) = cov(x,y)√
cov(x,x)·cov(y,y)

 and cov(x, y) = 1

n−1

n
∑

i=1
(xi − x)

(

yi − y
)

The four metrics for the similarity of laryngeal disease data to healthy voice data are summarized in Table 2. 
When assessing the Minkowski distance with p = 1 (Manhattan distance) and Euclidean distance with p = 2, 
we observed that the distances from the healthy voice data were shorter in order of benign mucosal diseases, 

Table 1.   Clinical characteristics of the 363 male participants. *Percentage of the each of the groups. **pyrs, an 
abbreviation for pack years, denotes the consumption of one pack of cigarettes daily over a period of 1 year. ‡
8th Edition of the AJCC TNM classification (2016).

Characteristics

Classification‡

p-value

N ( % )* or Mean ± SD

Laryngeal Cancer Vocal cord paralysis Benign mucosal disease Healthy

(N = 30) (N = 97) (N = 81) (N = 155)

Age (years) 66 ± 11 55 ± 18 54 ± 14 46 ± 13 <0.01

Smoking ( %)
< 30 pyrs** 6 (20) 75 (77) 68 (84) 144 (92)

<0.01
≥ 30 pyrs 24 (80) 22 (23) 13 (16) 11 (7)

Alcohol intake
< 7 glasses/week 22 (73) 85 (87) 63 (78) 131 (85)

0.2
≥ 7 glasses/week 8 (27) 12 (13) 18 (22) 24 (15)

Lesion
Unilateral 23 (77) 96 (99) 54 (67)

Bilateral 7 (23) 1 (1) 27(33)

Anterior commissure involve-
ment

Yes 17 (57) 18 (22)

No 13 (43) 63 (78)

Malignancy lesion
Glottis 25 (83)

Transglottis 5 (17)

Malignancy T stage

1 24 (80)

2 2 (7)

3 3 (10)

4 1 (3)

Table 2.   Similarity and distance of laryngeal cancer (cancer), vocal cord paralysis (paralysis) and benign 
mucosal disease (benign) vocalizations to healthy vocalizations.

Compared signals

Minkowski distance Euclidean distance

Cosine distance Correlation distance(p = 1) (p = 2)

Cancer and healthy 8968.71 455.29 0.60 0.23

Paralysis and healthy 8619.53 434.41 0.57 0.12

Benign and healthy 8004.90 406.75 0.49 0.06
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vocal cord paralysis, and laryngeal cancer. Meanwhile, for measures representing similarity, such as cosine 
distance and correlation distance (with values ranging between 0 and 1, where values closer to 0 indicate higher 
similarity), the sequence of resemblance to healthy voice data is: benign mucosal diseases, followed by vocal 
cord paralysis, and then laryngeal cancer. This experiment represents the results of measuring the distance and 
similarity between MFCC-transformed signals, rather than the raw waveform of the audio data, to be used in 
the Convolutional Neural Network. From the perspective of healthy vocal signals, it is observed that there is a 
high degree of similarity between vocal cord paralysis and benign mucosal diseases signals when compared to 
healthy voice signals. This indicates that in binary classification tasks differentiating between healthy data and 
specific laryngeal disorders, distinguishing laryngeal cancer from healthy voice is a more challenging task than 
discriminating vocal cord paralysis, and distinguishing vocal cord paralysis is more challenging than distinguish-
ing benign mucosal diseases.

Next, the an analysis of the similarity of laryngeal cancer to other benign conditions is shown in Table 3. 
“Regarding laryngeal cancer vocal signals, it can be observed that they exhibit a high degree of similarity with 
vocal cord paralysis and benign mucosal disease signals when compared to healthy vocal signals. It can be 
anticipated that in multi-class classification tasks, such as three-class or four-class classification involving not 
only distinguishing healthy from laryngeal cancer but also including other laryngeal disorders, the similarity in 
signal characteristics among classes increases, making the classification task more challenging.

Binary classification: healthy vs Laryngeal cancer and other laryngeal diseases
First, we conducted experiments on binary classification tasks, where the goal was to classify healthy vocal signals 
against each individual vocal disorder.

Healthy vs laryngeal cancer
The result of the binary classification between healthy and laryngeal cancer vocalizations are shown in Table 4 
and Fig. 2. ANN and CNN showed better performance than SVM and LightGBM in this task. The features of 
the MFCCs of healthy and laryngeal cancer speech are quite distinct in Table 2, so there is no performance 
improvement in applying the CNN after image conversion. These results demonstrate a significant improvement 
in accuracy by more than 0.25 compared to prior studies12,13. This improvement is attributed to the effect of seg-
menting the audio signals into fine-grained MFCC data, which enhances data augmentation while preserving key 
features. Additionally, the adoption of a deep-resnet architecture in the CNN model’s hidden layers led to these 
results. Moreover, the AUC performance exceeded that evaluated by experts for the same binary classification 
data, showing an improvement of 0.23 based on the AUC metric.

Healthy vs vocal cord paralysis
The result of the binary classification between healthy and vocal cord paralysis vocalizations are shown in Table 5 
and Fig. 3. As the difference between the voice MFCCs of healthy and vocal cord paralysis is smaller than that of 
healthy and laryngeal cancer cases as seen in Table 2, the accuracy of the classification is decreased. However, it 
should be noted that the performance of the ANN and CNN models exhibited a degradation compared to SVM 
and LightGBM, yet overall, the models still achieved a performance level exceeding 0.9. The signal similarity 
distance between vocal cord paralysis and healthy voice is closer than that with laryngeal cancer, indicating that 
vocal cord paralysis more closely resembles healthy voice signals. Consequently, this similarity results in lower 
classification performance of ANNs and CNNs for vocal cord paralysis compared to laryngeal cancer.

Table 3.   Similarity and distance of vocal cord paralysis and benign mucosal disease vocalizations to laryngeal 
cancer.

Comparison signals

Minkowski distance Euclidean distance

Cosine distance Correlation distance(p = 1) (p = 2)

Cancer and healthy 8968.71 455.29 0.60 0.23

Cancer and paralysis 8844.99 447.75 0.61 0.08

Cancer and benign 8510.98 433.24 0.52 0.07

Table 4.   Results of classification between laryngeal cancer and healthy (mean ± standard deviation of five-fold 
cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.9425 ± 0.0170 0.8732 ± 0.0338 0.9322 ± 0.0086 0.8973 ± 0.0246

LightGBM 0.9302 ± 0.0116 0.8464 ± 0.0174 0.9158 ± 0.0308 0.8754 ± 0.0219

ANN 0.9651 ± 0.0156 0.9578 ± 0.0297 0.9024 ± 0.0400 0.9267 ± 0.0336

CNN 0.9651 ± 0.0152 0.9394 ± 0.0431 0.9330 ± 0.0329 0.9326 ± 0.0258
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Healthy vs benign mucosal disease
The result of the binary classification between healthy and vocal cord paralysis vocalizations are shown in Table 6 
and Fig. 4. For benign mucosal diseases, the classification accuracy tends to decrease as the similarity to healthy 
data increases compared to laryngeal cancer and vocal cord paralysis. In this task, the CNN exhibits superior 
performance. Moreover, when there’s an increase in voice signal similarity between standard data and the disease, 
the CNN excels over the ANN. This can be attributed to the extraction of MFCC features via the convolutional 
layers. By transforming the voice signal, inherently time series data, into MFCC and subsequently visualizing the 
converted MFCC, it becomes evident that the application of CNN enables the identification of laryngeal cancer 
characteristics within the MFCC. These characteristics, typically challenging to detect, are effectively captured 
owing to the robust feature extraction capabilities of CNN. This process underscores the potential of CNN in 
enhancing the detection and analysis of subtle yet critical features in voice signal data, particularly those associ-
ated with laryngeal cancer, through the utilization of MFCC.

Multiclass classification: healthy, laryngeal cancer, and vocal cord paralysis
We also evaluated the classification accuracy of AI models on a dataset that includes not only healthy and 
laryngeal cancer data but also 1–2 additional laryngeal disorders. The performance deterioration in multi-class 
classification with 3–4 classes compared to binary classification can be attributed to the increased complexity 
and overlap among multiple classes, making it more challenging for the AI model to distinguish and classify 
each class accurately. Furthermore, as indicated by the results of signal analysis, the addition of extra classes is 
expected to render the extraction of distinctive feature characteristics among classes more challenging, resulting 
in a lower classification accuracy. However, this will serve as an experiment to assess whether the proposed deep 
learning models are proficient in feature extraction for classification and how robust they are in this context.

Figure 2.   AUROC of classification between laryngeal cancer and healthy.

Table 5.   Results of classification between laryngeal paralysis and healthy (mean ± standard deviation of five-
fold cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.8782 ± 0.0140 0.8714 ± 0.0137 0.8675 ± 0.0178 0.8692 ± 0.0158

LightGBM 0.8674 ± 0.0209 0.8597 ± 0.0232 0.8571 ± 0.0223 0.8581 ± 0.0222

ANN 0.9097 ± 0.0206 0.9142 ± 0.0187 0.8922 ± 0.0258 0.9009 ± 0.0235

CNN 0.9105 ± 0.0204 0.9101 ± 0.0227 0.8991 ± 0.0219 0.9033 ± 0.0219
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Classification of healthy, laryngeal cancer, and vocal cord paralysis
The classification task were performed involving healthy vocalizations, vocal cord paralysis vocalizations, and 
laryngeal cancer vocalizations, and the results are shown in Table 7. The classification outcomes from this task 
are not as high as those from binary classifications like laryngeal cancer vs. healthy and vocal cord paralysis vs. 
healthy. Notably, the CNN surpasses both SVM and LightGBM across all measures and exhibits better perfor-
mance than ANN, barring a slight variation in accuracy.

Classification of healthy, laryngeal cancer, and benign mucosal diseases
The classification task were performed involving healthy vocalizations, benign mucosalvocalizations, and laryn-
geal cancer vocalizations, and the results are shown in Table 8. For the given task, its performance is not as robust 
as when classifying between healthy and the combined categories of laryngeal cancer and vocal cord paralysis. The 
heightened similarity observed between healthy and benign mucosal disease, as well as between benign mucosal 
disease and laryngeal cancer in Tables 2 and 3, is likely contributing to the misclassifications. The performance 
gap between ANN (and other machine learning models) and CNN is especially evident in the binary classifica-
tion of benign mucosal disease versus healthy.

Classification of healthy, laryngeal cancer, vocal cord paralysis and benign mucosal disease
Moreover, experiments were conducted to classify healthy vocalizations, benign mucosal disease vocalizations, 
and laryngeal cancer vocalizations. (Table 9) The performance declines in classification models that incorporate 
multiple benign mucosal conditions. Nonetheless, the CNN surpasses other models in all performance measures.
ResNet results pertaining to specific conditions, for the 7 individuals with bilateral laryngeal cancer, a recall value 
of 0.75 was observed. For the 17 individuals with anterior commissure involvement laryngeal cancer, the recall 

Figure 3.   AUROC of classification between vocal cord paralysis and healthy.

Table 6.   Results of classification between benign mucosal disease and healthy (mean ± standard deviation of 
five-fold cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.8033 ± 0.0247 0.7870 ± 0.0265 0.7829 ± 0.0334 0.7839 ± 0.0294

LightGBM 0.8032 ± 0.0214 0.7864 ± 0.0238 0.7833 ± 0.0249 0.7845 ± 0.0241

ANN 0.8297 ± 0.0228 0.8414 ± 0.0244 0.7827 ± 0.0279 0.7991 ± 0.0286

CNN 0.8475 ± 0.0352 0.8524 ± 0.0291 0.8129 ± 0.0511 0.8235 ± 0.0478
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Figure 4.   AUROC of classification between benign mucosal disease and healthy.

Table 7.   Results of classification among healthy condition, laryngeal cancer, and vocal cord paralysis (mean ± 
standard deviation of five-fold cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.8090 ± 0.0269 0.7540 ± 0.0353 0.8161 ± 0.0270 0.7690 ± 0.0331

LightGBM 0.8231 ± 0.0158 0.7686 ± 0.0120 0.7625 ± 0.0225 0.7647 ± 0.0166

ANN 0.8261 ± 0.0273 0.7294 ± 0.1180 0.6886 ± 0.0758 0.7010 ± 0.0933

CNN 0.8254 ± 0.0312 0.7779 ± 0.0544 0.7842 ± 0.0587 0.7768 ± 0.0525

Table 8.   Results of classification among healthy, laryngeal cancer, and benign mucosal diseases (mean ± 
standard deviation of five-fold cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.7529 ± 0.0152 0.6994 ± 0.0219 0.7530 ± 0.0216 0.7133 ± 0.0193

LightGBM 0.7521 ± 0.0215 0.6896 ± 0.0246 0.7029 ± 0.0061 0.6924 ± 0.0149

ANN 0.7353 ± 0.0192 0.7239 ± 0.0727 0.5597 ± 0.0453 0.5657 ± 0.0607

CNN 0.8202 ± 0.0026 0.8087 ± 0.0228 0.7572 ± 0.0222 0.7751 ± 0.0153

Table 9.   Results of classification among healthy, laryngeal cancer, vocal cord paralysis and benign mucosal 
diseases (mean ± standard deviation of five-fold cross validation). Maximum values are in [bold].

Model Accuracy Precision Recall F1-score

SVM 0.6828 ± 0.0224 0.6451 ± 0.0299 0.6905 ± 0.0310 0.6511 ± 0.0317

LightGBM 0.7152 ± 0.0309 0.6790 ± 0.0317 0.6769 ± 0.0388 0.6761 ± 0.0351

ANN 0.6407 ± 0.0284 0.6577 ± 0.0607 0.5192 ± 0.0530 0.5159 ± 0.0555

CNN 0.7530 ± 0.0544 0.7515 ± 0.0445 0.7264 ± 0.0676 0.7253 ± 0.0699
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was 0.69. Additionally, for those with anterior commissure involvement in benign mucosal disease, a recall of 
0.67 was measured.

Discussion

•	 Analysis of laryngeal cancer detection in multi-class classification

Significant advancements have been made in voice-based laryngeal cancer diagnosis. In binary classifications 
distinguishing between healthy voices and those with laryngeal cancer, accuracy rates have shown substantial 
improvement. For instance, Kim et al.12 reported an accuracy rate of 85% . However, in our study, all models 
consistently achieved at least 93% accuracy. This remarkable improvement can be attributed to model develop-
ment, an increased number of participants, and more precise participant classification. In the realm of multi-
class classification, various approaches have been studied. For instance, Peng et al.24 categorized voices into four 
distinct classes: hyperkinetic dysphonia, hypokinetic dysphonia, flux laryngitis, and healthy, based on the SIFEL 
clinical standards proposed by the Italian Society of Phoniatrics and Logopaedics25. They achieved an impressive 
accuracy range of 97% to 99% . While this classification method excels in distinguishing vocal fold movement, 
it may face challenges in distinguishing malignancy among voices. For this reason, there was no description 
about malignancy or laryngeal cancer. Hung et al.15 categorized voices into five classes: neoplasm, functional 
dysphonia, vocal palsy, phonotrauma, and healthy. The study did not provide a specific description of why it 
was divided into five categories. However, this system included neoplasm as one of the categories and reported 
an accuracy rate of 77.5% . Hu et al.14 categorized voices into five classes: unilateral vocal paralysis, adductor 
spasmodic dysphonia, vocal atrophy, organic vocal fold lesions, and healthy voice. They also described no clas-
sification criteria for dividing it into five categories and reported 66.9 % of the accuracy. However, the types of 
voice disorders are very diverse, and the categorization systems for classifying voice disorders also vary among 
clinicians. Some voice disorders, although diagnosed differently, exhibit similar characteristics and treatment 
approaches, and thus can be classified under the same category. For example, vocal nodules and vocal polyps, 
despite their different mechanisms of development, can be classified as benign mucosal diseases because their 
treatments involve either voice therapy or microlaryngeal surgery. For these reasons, in contrast to previous 
studies, we have classified abnormal voices based on clinical treatment approaches and contact of the vocal cords, 
considering pathological results. Representative examples include laryngeal cancer, benign mucosal disease, vocal 
cord paralysis, and functional dysphonia. The treatment approaches for these diseases differ: laryngeal cancer 
must require radiotherapy or surgery, benign mucosal disease is managed with voice therapy or microlaryngeal 
surgery, vocal cord paralysis needs voice therapy or surgical approach including injection laryngoplasty, and 
functional dysphonia may be treated with voice therapy or botox injections. In this study, there were no patients 
with functional dysphonia because comprehensive sentence analysis is crucial to diagnose functional dysphonia 
such as spasmodic dysphonia and severe muscle tension dysphonia. With more data on sentence patterns and 
more development of AI technique, it may become possible for AI to detect functional dysphonia as well. In 
aspect of vocal cords contact, there are also notable distinctions among these diseases. Laryngeal cancer and 
benign mucosal disease usually exhibit stronger and rougher contacts between the vocal cords.26–28 The roughness 
of vocal cord contact is influenced not only by the size and location of the lesion but also by the hardness of the 
lesion. The hardness of the lesion varies depending on the contents, and the lesion of laryngeal cancer is gener-
ally harder than that of benign mucosal disease because malignancy lesion invades the basement membrane of 
vocal cord. In contrast, there was weaker or absent contact in vocal paralysis. Comprehensively, we prioritized 
the early detection of laryngeal cancer, focusing on clinical treatments that requires further treatment as soon as 
possible. To distinguish laryngeal cancer from other voice disorders in voice-based laryngeal cancer diagnosis, 
we considered the extent of vocal cord contact and whether a diagnosis could be determined through simple /a : / 
phonation. Consequently, we classified abnormal voices into laryngeal cancer, benign mucosal disease, and vocal 
cord paralysis. Because the ability to recognize laryngeal cancer is the most important performance indicator, 
we would like to analyze the laryngeal cancer detection rate based on the results of multi-class classification. For 
this purpose, we derived the average value of 5-fold cross validation of sensitivity and specificity values based on 
laryngeal cancer in multi-class classification. The confusion matrix for the individual multi-class classification 
validation results using CNN is shown in Fig. 5. When classifying laryngeal cancer, vocal cord paralysis, and 
healthy voices, the outcomes were: sensitivity at 0.7128, specificity at 0.9594, and AUC at 0.9347. For laryngeal 
cancer, benign disease, and healthy classification: sensitivity was 0.6162, specificity 0.9830, and AUC 0.9155. 
When all classes, including laryngeal cancer, vocal cord paralysis, benign disease, and healthy, were classified 
together, sensitivity stood at 0.6627, specificity at 0.9711, and AUC at 0.8742. Sensitivity is pivotal in medical 
diagnosis, and our results show a notable decline in sensitivity as benign diseases are incorporated. This limitation 
is attributed to the complexities arising from signal similarities and data imbalances. The current patient ratio 
across classes is 27:97:80:162 for Laryngeal cancer, vocal cord paralysis, benign mucusal disease, and healthy 
participants respectively. Post-MFCC voice data conversion, the distribution stands at 133:452:419:755 for the 
same categories. Enhancing model performance, especially sensitivity, may be achievable by addressing data 
imbalances, potentially via oversampling strategies29,30.

•	 t-SNE analysis of multi-label classification

To delve deeper into the performance decline of the classification model when multiple benign diseases are 
incorporated with laryngeal cancer, we examined the feature map of the CNN classifier tailored for the dataset 
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inclusive of laryngeal cancer. We utilized t-Distributed Stochastic Neighbor Embedding (t-SNE)31, a dimension-
ality reduction technique, to visualize high-dimensional data by preserving local data structures within a lower-
dimensional space. This method effectively reveals patterns or clusters by converting data similarities into joint 
probabilities and minimizing their divergence between high and low dimensions, making t-SNE a popular tool 
for exploratory data analysis. Using t-SNE, we processed the CNN model’s feature maps by pooling global aver-
ages. As illustrated in Fig. 6, the introduction of benign diseases leads to closer or overlapping features between 
classes, which in turn compromises the classification accuracy.

•	 Limitations

There are several limitations in this study. First, this study was done by only the voice of men. As voice is affected 
by sex significantly, there had to be differences in study direction and methods according to sex. Furthermore, 
the types of laryngeal disease also vary depending on sex. In Korea, approximately 90% of laryngeal cancer cases 
occur in men3, and in the United States, approximately 84% of cases occur in men32. In contrast, the occurrence 
of benign mucosal diseases has very different sex ratios across studies. Some studies report a male-to-female 
ratio of 2:133–35, but others report a higher female-to-male ratio36 For these reasons, analysis of women’s voices 
will be conducted in different method from that of men. Second, the number of the laryngeal cancer patients 
is insufficient. The occurrence rate of the laryngeal cancer in the United States was 2.26 per 100,000 people in 
201837. In Korea, about 1200 people were diagnosed as laryngeal cancer in 2020. For these reasons, the number of 
laryngeal cancer cases in our study is smaller compared to other laryngeal diseases. Increasing the enrollment of 
laryngeal cancer patients would likely yield more accurate results. Third, our classification criteria require further 
elaborations. Notably, functional dysphonia is not included in our study due to its complex diagnostic nature, for 
which we believe sentence analysis is crucial. Additionally, the number of functional dysphonia cases in our study 
was limited. We included sulcus vocalis without voice discomfort in the healthy group, as it typically does not 
require treatment, while we excluded cases with sulcus vocalis with voice discomfort. Similarly, granuloma cases 
discovered incidentally were excluded, whereas those with voice discomfort were included as benign mucosal 

Figure 5.   Confusion matrix of multi-class classification.
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disease based on the principle that clinical symptoms warranted inclusion. In this study, supraglottic cancer case 
was not involved, because laryngeal cancer limited only on supraglottis affects rarely to voice. However, transglot-
tic cancer cases were included. Phonetically, supraglottic cancer is thought to only affect the vocal tract, similar 
to oropharynx cancer such as tongue base cancer, and this should be studied in more detail in follow-up studies. 
Fourth, all data in this study were obtained in single center, and our study needs validation by other institution.

Conclusion
The study focuses on classifying laryngeal cancer, vocal cord paralysis, benign mucosal diseases, and healthy cases 
by transforming speech into MFCCs and employing various classification approaches. Utilizing our proposed 
parameters for MFCC transformation and analyzing the transformed MFCCs through ResNet for diagnosing 
laryngeal cancer showed the highest detection rates in both binary and multi-class classifications. These findings 
indicate a slight improvement in performance over previously published papers, demonstrating the efficacy of 
our methodology in enhancing the accuracy of laryngeal cancer detection. Building on this findings, we plan 
to develop a more effective model for screening laryngeal cancer from sentence-level voice files containing a 
variety of phonemes, not limited to the /a/ phoneme. Additionally, we aim to address the data imbalance issue 
prevalent in laryngeal cancer datasets through data augmentation methods using generative models, potentially 
improving the robustness and performance of our diagnostic model.

Figure 6.   feature analysis using t-SNE of classification for laryngeal cancer.
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