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Spectral band selection 
and ANIMR‑GAN 
for high‑performance multispectral 
coal gangue classification
Qingya Wang 1,2,4*, Huaitian Hua 3*, Liangliang Tao 1, Yage Liang 1, Xiaozheng Deng 1 & 
Fen Yu 1

Low-energy and efficient coal gangue sorting is crucial for environmental protection. Multispectral 
imaging (MSI) has emerged as a promising technology in this domain. This work addresses the 
challenge of low resolution and poor recognition performance in underground MSI equipment. 
We propose an attention-based multi-level residual network (ANIMR) within a super-resolution 
reconstruction model (ANIMR-GAN) inspired by CycleGAN. This model incorporates improvements to 
the discriminator and loss function. We trained the model on 600 coal and gangue MSI samples and 
validated it on an independent set of 120 samples. The ANIMR-GAN, combined with a random forest 
classifier, achieved a maximum accuracy of 97.78% and an average accuracy of 93.72%. Furthermore, 
the study identifies the 959.37 nm band as optimal for coal and gangue classification. Compared to 
existing super-resolution methods, ANIMR-GAN offers advantages, paving the way for intelligent and 
efficient coal gangue sorting, ultimately promoting advancements in sustainable mineral processing.
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SR	� Image super-resolution reconstruction
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SRCNN	� Super resolution convolution neural network
SCN	� Sparse coding based network
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RF	� Random forest
GAN	� Generative adversarial network
RG	� Residual group
RP	� Residual polymer
RB	� Residual block
CAB	� Channel attention block
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SAB	� Spatial attention block
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MAE	� Mean absolute error
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Coal remains a cornerstone of industry and a primary energy source, despite the environmental challenges posed 
by the production of coal gangue, a low-value byproduct necessitating efficient separation during beneficiation1. 
Traditional wet separation methods, while effective, contribute to significant water resource depletion and envi-
ronmental pollution2. In contrast, dry coal separation methods prevalent in arid regions, like northwestern 
China, offer a less water-intensive alternative but often entail higher energy consumption and potentially reduced 
separation efficiency.

Non-destructive testing methods can be used to distinguish coal and gangue, and then remove gangue on the 
high-speed conveyor. Examples of these methods include dual-energy gamma-ray detection, X-ray detection3, 
spectral detection4, laser detection, and image detection. Radiation-based detection technology (gamma-ray and 
X-ray detection) yields good results, but the radiation risk severely limits its widespread application. Spectral 
detection yields good results, but the moisture on the surface has a significant impact on the detection results4. 
Based on image processing, coal gangue is not affected by moisture and has no radiation pollution. This has 
become one of the main research directions for coal gangue separation5.

Compared with the complexity of hyperspectral imaging, multispectral imaging equipment is relatively simple 
and reliable, the multispectral imaging (MSI) is based on fewer bands, which can achieve faster image acquisition 
speed and relatively lower costs. It has been successfully applied in various fields, such as agriculture6, food7, 
medicine8, and archaeology9. Research on the identification of coal and gangue using MSI has been extensively 
conducted. Yan et al.10 proposed an improved YOLOv5 structure for the spectral-based coal and gangue sorting, 
which selected five highly recognizable and correlated bands from 25 bands, thereby improving the recogni-
tion rate and detection speed. Hu et al.11 developed a new framework of Convolutional Neural Network (CNN) 
and used Bayesian optimization algorithm to optimize the parameters of CNN, which increased the accuracy 
of coal and gangue classification. These studies have developed some new classification algorithms. However, 
many research results have shown that MSI collected on conveyor belts is affected by factors such as high dust 
concentration, humidity, and temperature, which lead to low imaging resolution, distortion, and degradation, and 
thus affect the practical application effect of classification algorithms. Therefore, improving the image resolution 
is also one of the ways to solve the problem of coal and gangue identification technology12. However, there are 
currently few studies on super-resolution reconstruction of MSI for coal and gangue classification.

Image super-resolution reconstruction (SR) involves generating high-resolution images (HR) from multiple 
low-resolution images (LR)13. This technology finds significant applications in fields such as satellite remote 
sensing images, digital high definition, microscopy, video coding, and video surveillance. Deep learning is still 
the most commonly used method for image super resolution reconstruction. It is based on convolutional neural 
networks, residual networks, and sub-pixel convolution layers, and improves algorithm speed and accuracy by 
modifying network structures14, such as Super-resolution convolution neural network (SRCNN), Sparse coding 
based network (SCN), and Very deep networks for super-resolution (VDSR)15. However, these methods face chal-
lenges in terms of computational resource consumption, which may not align with engineering implementation 
needs. Additionally, the reconstructed images often exhibit excessive smoothness and lack texture information, 
which is crucial for coal and gangue identification16. Balancing image detail preservation and computational 
resource optimization is essential for cyclic network implementation, particularly when aiming to improve rec-
ognition accuracy and deploy the model in production environments with limited computing power. Generative 
Adversarial Networks (GANs) are a class of deep learning models that have gained significant attention in recent 
years due to their ability to generate realistic images, videos and other types of data17. Image super-resolution 
using GANs is a relatively new approach, but it has show promising results. Image super-resolution using GANs 
has a wide range of applications, including: medical imaging18, Security19, Entertainment. So GANs make them 
ideal for applications where high-quality images are essential.

In order to facilitate deployment on embedded devices, images are subjected to SR and then classified using 
mature and stable machine learning algorithms20. Random forest (RF) is a classical machine learning algorithm 
with advantages such as few parameter adjustments, ability to classify high-dimensional data, and parallel pro-
cessing. There are many relevant research papers21 and some scholars have used RF for MSI recognition of coal 
and gangue, with experimental results showing that the RF achieves good classification effects22. Therefore, 
this paper plans to perform SR on actual coal and gangue MSI, and then use RF for classification, studying the 
modeling process and its effectiveness.

This paper contributes to coal gangue sorting by proposing a novel super-resolution reconstruction method 
based on an attention-enhanced, multi-level residual network (ANIMR-GAN). Our method significantly 
improves feature extraction and reconstruction, surpassing baseline methods in image quality and classifica-
tion accuracy. We demonstrate the practical significance of our method using a real-world dataset of coal and 
gangue images.

Materials and methods
Multispectral data acquisition
Shaanxi is an important coal-producing province in China, with areas such as Yan’an, Jingbian, and Yulin being 
the main coal mining regions23. 300 coal samples and 300 gangue samples were selected from the CM1–CM5 
mining areas, as shown in Fig. 1. After collecting MSI, 300 images of coal samples and 300 images of gangue 
samples were obtained. These images were used for modeling and analyzing the performance of algorithms. In 
addition, 60 coal samples and 60 gangue samples were collected separately from the CM6 mining area, and MSI 
of the coal and gangue were obtained. These images were not used for modeling, but only for the validation of the 
final model. The size of the selected coal and gangue is 50–300 mm, mainly non-stick coal and long flame coal.

The MSI system for coal and gangue recognition is illustrated in Fig. 2, which consists of a light source and a 
spectrometer. The light source device is LS-LHA produced by SUMITA OPTICAL GLASS, Inc., with a maximum 
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power of 150W and the corresponding average illumination is 406 k lx. The filtering device consists of two fil-
ters manufactured by Edmund Optics (United States), which allows only light with a wavelength in the range 
of [675 nm 975 nm] to pass. The multispectral imager is an MQ022HG-IM-SM5X5-NIR produced by XIMEA, 
Germany. It can obtain 25 spectral images in the wavelength range of [675 nm 975 nm], with a resolution of 
409 × 216 Pixel for each image. For more detailed information, please refer to the References26,27.

The focal length and exposure time of the spectrometer were set to 3.2 mm and 85.03 ms, respectively. A total 
of 600 coal and gangue spectral imaging data were used for modeling, including 300 coal samples and 300 gangue 
samples. Due to the limited sample size, data augmentation techniques such as flipping and adding Gaussian 
noise were applied to the spectral images, resulting in a total of 3000 multispectral data. Among them, there were 
1500 coal images and 1500 gangue images, with each multispectral data containing 25 spectral images. Figure 3 
displays the spectral images of coal and gangue, where (01)–(25) represent the different wavelength bands of the 
spectral images in HSImager software.

The grayscale images are converted to three-channel thermodynamic diagrams, ranging from red to white 
for enhanced visualization. To standardize analysis, the images are resized to 400 × 400 pixels using quadratic 
interpolation. Figure 4 showcases the results—although visual differences between coal and gangue are more 
pronounced after processing, direct visual classification remains challenging. This highlights the need for super-
resolution (SR) techniques combined with a suitable classification algorithm to optimize the mineral sorting 
process.

Method
This paper proposes a SR method that integrates attention network and improved multi-level residual (ANIMR). 
This method introduces attention mechanism and utilizes the improved residual network to enhance the feature 
extraction ability. It has the dual advantages of low response time and high reconstruction image quality. The 
model consists of a generator and a discriminator, where the generator includes a reconstruction network G and 
a degradation network F, while the discriminator includes DLR and DHR. G is responsible for reconstructing LR 
to HR, F is responsible for downsampling HR image into LR image, DLR is responsible for distinguishing real 
LR images from degraded images, and DHR is responsible for distinguishing real HR images from HR images 
obtained through reconstruction. The overall ANIMR-GAN system architecture is shown in Fig. 5.

CM1 CM2 CM3

CM6

CM5

CM4

Carboniferous
Triassic
Coalfield

Jurassic Coalfield

Carboniferous
Permian coal

field

Figure 1.   Select the location of the sample mining area, by selecting sampling areas from different geological 
regions and representing a wide range of coal and gangue types, including Carboniferous Triassic Coalfield, 
Jurassic Coalfield, Carboniferous Permian coal, CM1–CM6 is different coal mining. Data and reprinted from 
Refs.24,25, the DataV.GeoAtlas platform. Copyright (2022) (http://​datav.​aliyun.​com/​portal/​school/​atlas/​area_​
gener​ator, last access: 19 July 2022).

http://datav.aliyun.com/portal/school/atlas/area_generator
http://datav.aliyun.com/portal/school/atlas/area_generator


4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:7777  | https://doi.org/10.1038/s41598-024-58379-y

www.nature.com/scientificreports/

Reconstruction network
The task of G is to reconstruct the LR images into the HR images, which includes a low-level feature extraction 
module, a residual set, and an upsampling reconstruction module. The low-level feature extraction module 
extracts extremely low-level features from the three-channel image as the input for the subsequent network. The 
up-sampling and reconstruction module uses sub-pixel convolutional layers to reconstruct the LR images into 
the HR images, and uses one convolutional layer to restore the image to a three-channel image. The residual set 
consists of several residual groups (RG), which are used to learn the non-linear mapping relationship between 
LR and HR images. Each RG in the residual set has a structure shown in Fig. 6A, which consists of 4 residual 
blocks (RB), a channel attention block (CAB), and 2 convolution layers (ConCat) used to adjust channel num-
bers. Since low-level networks typically have more bottom-level information, to fully utilize this information, 
this paper proposes the concept of residual polymer(RP), which concatenates the output channels of the four 
RB, passes them through the channel attention block, and outputs them. This approach resolves the issue of the 
huge number of parameters caused by feature extraction in existing networks. For each input of the residual set, 
the output can be represented as shown in Eq. (1).

where KRG1, KRG2, KRG3, and KRG4 are the outputs of the four RB, Ic represents the concatenation of the outputs 
of the four RB, ICAB represents the channel attention module, and IRG is a 1 × 1 convolutional layer used to adjust 
the number of output channels.

In ANIMR, RB architecture is augmented with a spatial attention block (SAB) placed at the end of the 
block, while removing the BN layer, as illustrated in Fig. 6B. This study builds on the RB structure designed 
in SRResnet and VDSR (as shown in Fig. 6C,D)28 and introduces both channel attention module and SAB to 
enable the residual network to learn channel and spatial weights respectively, thereby enhancing the feature 
extraction capability of the network in different channel and spatial regions. The channel attention mechanism 
assigns higher weights to important channels, thus enhancing the feature extraction capability of the network 
without increasing the network width. The spatial attention mechanism assigns more attention to important 
high-frequency information such as texture and edges when allocating internal attention resources in the feature 

(1)X̃RG = XRG + IRGICAB[Ic(KRG1,KRG2,KRG3,KRG4)],

Figure 2.   MSI acquisition system, the acquisition system includes the host, PC, light source, filter and some 
necessary accessories. The acquisition system is arranged on the conveyor belt of coal and gangue. There is a 
dust removal system arranged on the belt. The dust removal system realizes the dustless work equipment by 
suction pipe, centrifugal machine and filter, the separation of coal and gangue is realized by the function of 
automatic air compressor.
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Figure 3.   Multispectral data for coal and gangue, the spectral images of coal and gangue are displayed, where 
(01)–(25) represent the different wavelength bands of the spectral images in HSImager software. (A) Coal, (B) 
gangue.

Figure 4.   Spectral data of coal and gangue after treatment, the spectral images of coal and gangue are displayed, 
where (01)–(25) represent the different wavelength bands of the spectral images. (A) Coal, (B) Gangue.
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map. The addition of both channel attention and spatial attention modules results in reconstruction results that 
are more similar to the real image.

Degenerate network
The task of the degenerate network is to degrade the HR image to the LR image, which is the reverse process of 
the reconstruction network. As shown in Fig. 7, where Interpolate is an interpolation downsampling operation, 
the degenerate network first downsamples the HR image to the low-resolution space, then uses the residual set 
extracted in ANIMR to learn the mapping relationship between HR and LR, and finally reconstructs the predicted 
LR image through a convolutional layer.

DLR and DHR discriminator
The discriminator used in the algorithm is based on the structure proposed in Ref.29, as shown in Fig. 8. The 
relative discriminator network is essentially a binary classifier, as shown in Eq. (2).

where HRr represents the original HR image, HRf represents the SR image obtained by the reconstruction net-
work, σ denotes the sigmoid activation function, ID represents the parameters of the convolutional layers in the 
discriminator network, E represents the mean value of all samples in the current dataset. Assuming that the input 
to the discriminator is a reconstructed image HRf, the improved output is no longer the probability of HRr being 

(2)
D(HRr,HRf) = σ(ID(HRr)− E[ID(HRf)])
D(HRf, HRr) = σ(ID(HRf)− E[ID(HRr)])

}

,

Figure 5.   The overall ANIMR-GAN system architecture, RG residual group, The large heat maps represent 
the high-resolution images, the small heat maps represent the low-resolution images, a solid line represents a 
generative network, and a dashed line represents a reconstructed network, including a generator G, a degenerate 
network F, a low-resolution discriminator DLR, and a high-resolution discriminator DHR.
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the original image, but the probability of HRf being more realistic than the original image. This enables the HR 
image to play a more active role in training.

Loss function design
During the reconstruction process, there is always inherent uncertainty in the details of the image from LR to 
HR. In ANIMR-GAN, the loss function of the reconstruction network G is designed to consist of four parts: 
pixel-level loss, perceptual loss, adversarial loss, and cycle consistency loss, as shown in Eq. (3).

(3)LANIMR-GAN = LMAE + Lp + LG + Lc ,

Figure 6.   Structure of RG and RB. (A) ANIMR RG structure, (B) ANIMR RB structure, (C) SRResnet RB 
structure, (D) EDSR RB structure.

Figure 7.   Degenerate network structure, HR is high resolution images, RG is Residual Group, the degenerate 
network first downsamples the HR image to the low-resolution space, then uses the residual set extracted in 
ANIMR to learn the mapping relationship between HR and LR.
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where the average absolute error loss (LMAE) was used to optimize the difference between the reconstructed 
network and the original image pixel-level loss. Perceptual loss Lp is used to optimize the perceptual difference 
between the reconstructed image and the original image, to make the reconstructed image look more realistic. 
The adversarial loss LG is optimized by generating the faction results of discriminator in the course of the coun-
termeasure network training. Cyclic consistency loss Lc is to ensure the authenticity of the results generated by 
the reconstructed network and the degraded network in the double cyclic structure.

Pixel‑wise loss.  The algorithm uses mean absolute error (MAE) loss instead of mean square error loss as the 
training target to obtain the ideal Peak Signal to Noise Ratio (PSNR), as shown in Eq. (4).

where the variables H and W represent the size of the feature map, i and j represent the coordinates of the pixel. 
Fi,j represents the pixel grayscale value of the SR image at that point, and Yi,j represents the pixel grayscale value 
of the original HR image at that point. The calculation error is modified from calculating the square of the differ-
ence to calculating the absolute difference, reducing the computational complexity during iteration, improving 
the convergence speed of the model, and alleviating the problem of over-blurring in the SR image.

Perceptual loss.  Perceptual loss originally from Stanford university Li Fei team30, specifically for SR task. The 
perceptual loss function uses the VGG19 network for feature extraction. Since the perception gap between the 
two images can be measured more comprehensively by using the inactive feature map, the feature map before the 
ReLU activation layer is selected to calculate the loss. The perceived loss function is shown in Eq. (5).

where H and W is the size of image, subscript i,j represent the coordinates of pixel points; φ represent the VGG19 
network; Fi,j is the pixel gray value of the reconstructed image at the point; Yi,j is the pixel gray value of the HR 
original image at the point.

Adversarial loss.  The training process of generating adversarial network is the iterative learning process of 
generator and discriminator in game adversarial. The adversarial loss function of relative discriminator is shown 
in the Eq. (6).

(4)MAE =
1
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Figure 8.   Discriminator structure. (A) The overall structure of the discriminator. (B) The structure of the Conv 
block.
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where E represents taking the average of all the images in the current batch, D represents the discriminator net-
work, xr represents the real image, and xf represents the SR image. The adversarial loss function of the generator 
is shown in Eq. (7).

The adversarial loss of the generator not only includes the reconstructed image but also the HR original image, 
thus promoting the training of the reconstruction network. In SRGAN, since there is a lack of real HR images for 
training, only reconstructed images can be used for training. As a result, traditional GAN models are not effective 
because there are no real images for the discriminator to compare with. Therefore, using a relative discriminator 
is a more appropriate choice. The relative discriminator can not only distinguish between reconstructed images 
and HR original images but also help the generator to better learn the mapping relationship between them. In 
this way, the generator can learn how to generate more realistic images, thereby improving the learning ability 
of the reconstruction network.

Cycle consistency loss.  Through adversarial loss, the reconstruction network, degradation network, and dis-
criminator can be trained separately. However, in the process of reconstruction, the network may generate differ-
ent outputs based on the fixed input of MSI, leading to a one-to-many mapping between the LR and HR images. 
To ensure that the input image’s feature information is not lost, cycle consistency loss is introduced in the cyclic 
structure. This loss can ensure that the input X remains close to the output y after passing through a cycle, as 
shown in Eq. (8).

The cycle consistency loss is obtained by summing the average absolute error between the inputs and outputs 
of the two cycle structures, as shown in Eq. (9).

where MAE represents mean absolute error, G represents the reconstruction network, and F represents the 
degradation network.

Evalution index
This article uses two evaluation parameters, namely, structural similarity (SSIM) and peak signal-to-noise ratio 
(PSNR), to assess the super-resolution reconstruction algorithm31. SSIM is a subjective measure based on three 
relatively independent factors: luminance, contrast, and structure. It is used to quantify the structural similarity 
of the generated image, and its value ranges from 0 to 1. A higher value indicates a smaller error between the 
reconstructed image and the original image. The definition of SSIM is as follows Eq. (10).

PSNR, a sensitive error-based image evaluation metric, is mainly calculated based on the mean square error 
(MSE) between the original and reconstructed images. It is commonly used to measure the similarity between 
the original and reconstructed images, with higher values indicating smaller errors between them. The formula 
for calculating PSNR is as follows in Eq. (11).

where n represents the number of bits per pixel, which is typically 8. l and m represent the dimensions of the 
image, and ISR(i,j) and IHR(i,j) denote the pixel values of the SR image and HR image at position (i,j). µISR and µIHR 
are the mean values of the pixels in the SR and HR images, while σISR and σIHR are the standard deviations of 
the pixels in SR and HR images. σISRIHR represents the covariance between the SR and HR images, c1 and c2 are 
constants.

Random forest modeling
Random forest (RF) is an improved variant of the bagging integration algorithm. Based on the decision tree, the 
random forest model is constructed by integrating multiple decision trees. In particular, the random selection 
of feature attributes is introduced in the training process of the random forest. Therefore, for the same data set, 
the double randomness of random forest provides better generalization ability and anti-fitting ability.

After using the ANIMR-GAN method to reconstruct coal and gangue images, we plan to use the RF method 
to classify the reconstructed images. To achieve this, we need to determine two important parameters. Firstly, we 
need to set the number of decision trees in the RF, which is crucial for balancing computational resources and 
model performance. Secondly, we need to select the feature wavelengths of the coal and gangue MSI, identify-
ing the key spectral lines that are relevant to coal and gangue recognition, which is essential for reducing model 
input and improving model robustness.
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Experimental results and analysis
This section presents a comprehensive validation of the proposed algorithm using real-world coal and gangue 
multispectral images (MSI). We perform a comparative analysis against various existing algorithms to assess its 
effectiveness. To facilitate this comparison, we down-sample the original high-resolution (HR) images by fac-
tors of 2, 4, and 8, generating corresponding low-resolution (LR) counterparts. The validation experiments are 
conducted on a well-equipped computational platform comprising a 64-bit Ubuntu 20.04 operating system, an 
Intel Core i7 processor, and an Nvidia GeForce RTX 3090 graphics card. The algorithm implementation leverages 
Python 3.8 and the PyTorch deep learning framework.

Experimental steps are as follows: Firstly, all the data is divided into three data sets, namely training set, test 
set and independent verification set. The ratio is 7:3:2. The independent validation set samples are taken from 
CM6 mining area. Since the selection of the training set can affect the accuracy of the model, we repeated the 
recognition of spectral images at different wavelengths 100 times, with each training dataset being randomly 
selected. Secondly, the original grayscale image is mapped to a heatmap and resized to 400 × 400 pixels. Thirdly, 
the image is downsampled to obtain LR images at 2×, 4×, and 8× downsampling rates, resulting in image sizes 
of 200 × 200, 100 × 100, and 50 × 50, respectively. During training, the L1 loss function and Adam optimizer are 
used, with β1 = 0.8, β2 = 0.999, and ε = 10−7. The learning rate is set to 10−4. At the beginning of training, the recon-
struction network and degradation network are separately pre-trained for 10 rounds. Then, the trained model 
and discriminator are used for alternate training for 30,000 iterations. The total training time for the model is 
about 48 h. The specific parameters of the model are shown in Table 1.

Determination of the number of residuals
ANIMR-GAN uses a residual set to learn the mapping from LR images to HR images. The number of RG affects 
the overall network parameters and results. We trained different numbers of RG and tested 4 × SR on the dataset. 
The number of RG was set to 8, 16, 32, 48, and 64. Figure 9 shows the relationship between the number of RG 
and the reconstruction results. When the number of RG is 8, the SSIM and PSNR values are 0.8894 and 32.54, 
respectively. When the number of RG is increased from 8 to 16, the SSIM and PSNR values continue to improve, 
with an increase of 5.959‰ and 7.068‰ to reach 0.8947 and 32.77, respectively, indicating an improvement in 
the reconstruction quality. When the number of RG is increased from 16 to 48, the SSIM value shows a slight 

Table 1.   Test parameter setting.

Test parameter Value

Image input type RGB of heat map

size of input 200 × 200, 100 × 100, 50 × 50

Number of images per batch 32

The exponential decay rate of Adam β1 0.8

The exponential decay rate of Adam β2 0.999

Adam parameters ε 10–7

learning rate 10–4

Number of pre-trained rounds 10

8 16 32 48 64
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Figure 9.   Experimental results for different numbers of RG, the optimal number of RGs for the ANIMR-GAN 
model was determined to be 32 based on a balance between reconstruction quality and computational efficiency. 
This configuration provides a good balance of performance and resource utilization, making it suitable for real-
time applications where both accuracy and speed are important.
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decrease, but the PSNR continues to increase, reaching 0.8911 and 32.82, respectively. When the number of 
RG is increased from 48 to 64, both SSIM and PSNR values increase to 0.8934 and 32.94, respectively, and 
the reconstruction quality reaches its best. Increasing the number of RG from 8 to 64 increases the number of 
parameters from 1,765,021 to 11,940,358. However, this substantial increase in the number of parameters does 
not significantly improve the reconstruction quality and instead wastes computational resources. Therefore, 
we determine the number of RG to be 32. This ensures reconstruction quality while reducing the number of 
parameters and improving computational speed.

Comparison of different SR methods
In this section, we compare ANIMR with commonly used SR methods, including super resolution convolutional 
neural network (SRCNN), sparse coding-based network (SCN), and very deep networks for SR (VDSR). The 
evaluation is based on existing MSI of coal and gangue, and various metrics such as PSNR and SSIM are used to 
comprehensively assess the performance of each model.

The main idea of SRCNN is to divide the image into three stages: image block extraction, non-linear mapping, 
and image reconstruction, based on the relationship between deep learning and traditional sparse coding. These 
stages are then combined into a single deep convolutional neural network framework.

The VDSR is based on the SRCNN approach. However, it incorporates a VGG network structure for image 
classification and introduces a deeper neural network with 20 weight layers. This approach aims to establish a 
mapping model from low-resolution to HR images using a more profound network architecture.

The sparse coding based network (SCN) is a method that borrows from the idea of sparse representation SR. 
It combines the independent optimization modules of sparse representation, mapping, and sparse reconstruction 
into a sparse network and collaboratively optimizes these modules to obtain a globally optimal solution. SCN 
first obtains the sparse prior information of the image through the feature extraction layer, and then establishes 
a feedforward neural network SCN based on the learned iterative shrinkage and thresholding algorithm (LISTA) 
to realize the sparse encoding and decoding of the image. Finally, image enlargement is achieved through a 
cascaded network.

All of the above three methods, including the Super Resolution Convolution Neural Network (SRCNN), 
Very Deep Networks for super-resolution (VDSR), and SCN, are commonly used SR algorithms. The following 
section will compare ANIMR with these three methods, using evaluation metrics such as PSNR and SSIM to 
comprehensively evaluate each model.

Different models of ANIMR, SRCNN, VDSR, and SCN were established and their reconstruction results 
under different iterations are shown in Fig. 10. The horizontal axis represents the iteration number of the algo-
rithm, while the vertical axis shows the PSNR and SSIM indicators obtained from the validation dataset. The 
results indicate that the reconstruction results of ANIMR-GAN are significantly better than those of the simpler 
SRCNN and VDSR, and slightly better than those of SCN.

To compare the SR performance of the four methods (SRCNN, VDSR, SCN, ANIMR-GAN) at different 
magnification factors, we used each method with 2×, 4×, and 8×, and calculated the SSIM and PSNR values. 
Figure 11 provides detailed comparison results. Overall, the SSIM and PSNR values of the reconstruction mod-
els decrease with increasing magnification factors, indicating a decrease in reconstruction performance. For 
the × 2 magnification model, ANIMR-GAN achieved the best PSNR of 38.61 and an SSIM of 0.957. For the × 4 
magnification model, ANIMR-GAN achieved the highest SSIM and PSNR values, which were 32.97 and 0.906, 
respectively. SCN also performed well, with SSIM and PSNR values of 32.9 and 0.902, respectively. For the × 8 
magnification model, ANIMR-GAN still performed the best, with PSNR and SSIM values of 27.56 and 0.780, 
respectively. To balance the computational resources and reconstruction performance, we chose a magnification 
factor of × 4, which ensures the reconstruction performance without a dramatic increase in the input volume of 
the classification model.

Based on the experimental results mentioned above, it can be concluded that the ANIMR-GAN method 
performs well in identifying coal and gangue images under different iteration numbers and reconstruction ratios. 
Compared with SRCNN, VDSR, and EDSR, it shows higher SSIM and PSNR values.

Random forest classification method based on ANIMR‑GAN
Firstly, the number of decision trees in the RF needs to be determined. Previous research has shown that the more 
decision trees in a RF, the better the learning performance. However, we cannot set too many decision trees, as 
this would be a waste of computer resources and time. We selected five typical bands, including the maximum 
value, minimum value, and three intermediate values at 682.92 nm, 736.25 nm, 851.48 nm, 900.95 nm, and 
959.37 nm, to study the relationship between the number of decision trees in RF and accuracy.

In RF, the more decision trees there are, the better the learning performance, but we cannot set too many 
decision trees as this would be wasteful in terms of computer resources and time. Figure 12 shows the average 
recognition accuracy for the selected bands at different numbers of decision trees. As the number of decision 
trees increases, the average accuracy also increases. However, once the number of decision trees exceeds 50, 
the increase in average accuracy becomes minimal, and the accuracy stabilizes. Therefore, we set the number 
of decision trees to 50. Additionally, we observed that the average accuracy of different spectral bands was not 
consistent, with 736.25 nm having a relatively large fluctuation in average recognition rate for coal and gangue, 
which may be related to the light source.

Figure 13 illustrates the range and average accuracy of identification obtained by inputting MSI of different 
wavelengths into the RF model. The maximum and minimum values are marked with dotted lines and labels 
in the figure. The trend of average accuracy is positively correlated with wavelength, i.e., higher wavelengths 
tend to have higher accuracy rates. The maximum average accuracy appears at 959.37 nm, while the minimum 
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appears at 872.87 nm. This experimental result is very close to previous research22. Since there is a one-to-one 
correspondence between wavelength and functional groups of substances, 872.87 nm corresponds to the stretch-
ing and vibration of the C–O chemical bond in alcohols or phenols. We speculate that the poor accuracy at this 
wavelength may be due to the presence of certain alcohol-like substances in both coal and gangue.
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Comparison of classification methods for coal gangue with SR
After conducting experiments to determine the optimal number of decision trees in the RF model, it has been 
confirmed that the combination of ANIMR-GAN and RF can be used for identifying coal and gangue in MSI. 
To compare the performance of different classification methods, commonly used machine learning methods 
such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Least Squares Support Vector Machines 
(LSSVM), and eXtreme Gradient Boosting (XGBoost) will be compared to RF. The parameter settings for each 
method are listed in Table S1, the parameter optimization method mainly employs grid search.

Figure 14 shows the comparison results of recognition accuracy, and the following experimental conclusions 
are obtained.

(1)	 To compare the classification performance of different machine learning models on the coal and gangue 
images reconstructed by ANIMR-GAN, KNN, SVM, LSSVM, XGBoost, and RF algorithms were used. The 
accuracy of each band image is different, and overall, the accuracy tends to increase with the increase in 
wavelength.

(2)	 Based on the experimental results, the classification accuracy of KNN, SVM, and LSSVM was not as 
good as that of RF in the wavelength range of 682.92 nm to 882.95 nm. However, for wavelengths beyond 
882.95 nm, the five methods showed similar classification performance. XGBoost’s classification accuracy 
was not significantly different from that of RF across all 25 wavelength bands, but its average accuracy was 
slightly lower.

(3)	 Compared to KNN, SVM, and LSSVM, RF has a lower standard deviation, resulting in smaller fluctuations 
in accuracy. Although XGBoost has a similar average recognition rate to RF, its standard deviation is still 
larger.

(4)	 It is worth noting that the maximum recognition rates for SVM, LSSVM, and XGBoost all correspond to 
the 932.08 nm wavelength, which is associated with the stretching and vibration of C–O–C chemical bonds 
in lipid substances. This suggests that the chemical substances at this wavelength may be of significant 
importance in distinguishing between coal and gangue. However, due to the precision limitations of the 
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multispectral equipment, further research is needed to determine the specific wavelengths and correspond-
ing chemical substances.

Validation on independent dataset
An independent dataset consisting of 50 samples collected from the CM6 mining area was used to validate the 
classification performance of ANIMR-GAN combined with different modeling methods. The spectral acquisi-
tion and processing of the independent dataset followed the same procedures as the modeling dataset. Table 2 
shows the classification results of the MSI dataset using five methods, including KNN, SVM, LSSVM, XGBoost, 
and RF. The wavelength corresponding to the highest and lowest accuracy is similar to that in Fig. 14. The aver-
age accuracy is slightly lower. RF achieves the highest average accuracy of 93.72%, which is higher than KNN, 
SVM, and LSSVM, and slightly higher than XGBoost’s 93.59%. This result indicates a good reconstruction and 
classification performance. Additionally, XGBoost’s wavelength corresponding to the lowest accuracy is also 
872.87 nm, which is consistent with that of RF. The reconstruction performance varies with the magnification 
rate and decreases with the increase of the magnification rate.
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XGBoost.

Table 2.   The validation results on the independent dataset.

Method

Max accuracy Min accuracy

Mean accuracy (%)Wavelength (nm) Accuracy (%) Wavelength (nm) Accuracy (%)

KNN 959.37 95.78 697.42 77.35 87.52

SVM 932.08 96.19 697.42 78.07 88.19

LSSVM 946.45 96.37 736.25 82.76 88.63

XGBoost 959.37 95.46 872.87 91.49 93.59

RF 959.37 97.78 872.87 91.96 93.72
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Conclusion
The separation of coal and gangue is a crucial step in the coal mining and selection process. The use of MSI 
combined with ore sorting equipment for gangue separation can greatly improve mining efficiency and save 
on the consumption of ore sorting reagents and water resources. SR can address the problem of LR caused by 
equipment limitations and dust interference. In this paper, an attention mechanism is introduced to construct 
a multi-level residual network and a cyclic generative adversarial network structure, forming a new reconstruc-
tion method called ANIMR-GAN. This is of significant importance in accelerating the application of MSI in 
coal and gangue identification.

We collected 60 coal samples and 60 gangue samples from six mining areas, with samples from five of the min-
ing areas used for model construction and research, and samples from the remaining mining area used for inde-
pendent data set validation after modeling. We employed a MSI device to capture images in the 682.92–959.37 nm 
wavelength range. The impact of different residual combinations on the SSIM and PSNR values of the recon-
struction model was compared, and 32 RB were ultimately chosen to balance computation and reconstruction 
efficacy. ANIMR-GAN was compared to three commonly used reconstruction algorithms, SRCNN, VDSR, and 
SCN, under different iteration numbers and reconstruction magnifications. The results showed that as the itera-
tion number increased, the reconstruction performance improved. ANIMR-GAN’s reconstruction results were 
significantly superior to those of the simpler SRCNN and VDSR models and slightly better than SCN. In the 
4× reconstruction, ANIMR-GAN had the highest SSIM and PSNR values, which were 32.97 and 0.906, respec-
tively. To balance classification and reconstruction performance, a reconstruction magnification of 4 was chosen.

Next, we compared the multispectral RF classification models with different numbers of decision trees and 
different spectral bands. The results showed that the accuracy of the RF models varied depending on the spectral 
band used, with generally better performance observed at longer wavelengths. However, the model built using 
872.87 nm had the lowest accuracy. Further analysis revealed that both coal and gangue contain certain alcohols 
that may have affected the modeling results. Nonetheless, further investigation is needed to confirm this finding.

Finally, we combined ANIMR-GAN with the RF algorithm and compared it with KNN, SVM, LSSVM, 
and XGBoost, achieving good classification performance on both the modeling and independent datasets. The 
highest accuracy reached 97.78%, corresponding to a wavelength of 959.37 nm, with an average accuracy of 
93.72%. The results show that using the 959.37 nm band for modeling is more effective than using all 25 bands. 
Compared to previous studies on coal and gangue classification without SR, this approach improved accuracy 
by approximately 2%11.

Certainly, there is always room for improvement. In the next step, we will study feature extraction from the 
images reconstructed by ANIMR-GAN, and select combinations of bands for modeling analysis, to continuously 
improve the accuracy of the models we build.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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