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Utilizing ultra‑early continuous 
physiologic data to develop 
automated measures of clinical 
severity in a traumatic brain injury 
population
Shiming Yang 1,2, Peter Hu 1,2, Konstantinos Kalpakis 3, Bradford Burdette 1,2, Hegang Chen 4, 
Gunjan Parikh 1,5, Ryan Felix 6, Jamie Podell 1,5 & Neeraj Badjatia 1,5*

Determination of prognosis in the triage process after traumatic brain injury (TBI) is difficult to 
achieve. Current severity measures like the Trauma and injury severity score (TRISS) and revised 
trauma score (RTS) rely on additional information from the Glasgow Coma Scale (GCS) and the Injury 
Severity Score (ISS) which may be inaccurate or delayed, limiting their usefulness in the rapid triage 
setting. We hypothesized that machine learning based estimations of GCS and ISS obtained through 
modeling of continuous vital sign features could be used to rapidly derive an automated RTS and 
TRISS. We derived variables from electrocardiograms (ECG), photoplethysmography (PPG), and blood 
pressure using continuous data obtained in the first 15 min of admission to build machine learning 
models of GCS and ISS (ML‑GCS and ML‑ISS). We compared the TRISS and RTS using ML‑ISS and 
ML‑GCS and its value using the actual ISS and GCS in predicting in‑hospital mortality. Models were 
tested in TBI with systemic injury (head abbreviated injury scale (AIS) ≥ 1), and isolated TBI (head 
AIS ≥ 1 and other AIS ≤ 1). The area under the receiver operating characteristic curve (AUROC) was 
used to evaluate model performance. A total of 21,077 cases (2009–2015) were in the training set. 
6057 cases from 2016 to 2017 were used for testing, with 472 (7.8%) severe TBI (GCS 3–8), 223 (3.7%) 
moderate TBI (GCS 9–12), and 5913 (88.5%) mild TBI (GCS 13–15). In the TBI with systemic injury 
group, ML‑TRISS had similar AUROC (0.963) to TRISS (0.965) in predicting mortality. ML‑RTS had 
AUROC (0.823) and RTS had AUROC 0.928. In the isolated TBI group, ML‑TRISS had AUROC 0.977, and 
TRISS had AUROC 0.983. ML‑RTS had AUROC 0.790 and RTS had AUROC 0.957. Estimation of ISS and 
GCS from machine learning based modeling of vital sign features can be utilized to provide accurate 
assessments of the RTS and TRISS in a population of TBI patients. Automation of these scores could be 
utilized to enhance triage and resource allocation during the ultra‑early phase of resuscitation.
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A central challenge in the early management of traumatic brain injury (TBI) is the lack of accurate and timely 
systems for triage and  prognostication1. Though the Glasgow coma scale (GCS) is widely considered a robust 
measure of injury severity in isolated TBI (isoTBI), there are significant limitations to its  accuracy2. The pupillary 
light reflex (PLR) is a well-validated biomarker in pre-hospital settings; however, the PLR can be confounded by 
factors such as  age3, concomitant facial trauma or administration of pharmacological  agents4. Additional injury 
specificity provided by CT imaging may be delayed or limited in resource challenged environments.
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By contrast, continuous vital sign monitoring with electrocardiogram (ECG), photoplethysmography (PPG), 
and blood pressure monitoring is universally applied and can provide a wealth of useful information. Time and 
frequency domain features of PPG and ECG-based heart rate variability (HRV) have been identified as early 
indicators of secondary injury in  TBI5,6. These features are highly sensitive markers of autonomic nervous sys-
tem dysfunction and are understandably dynamic during the early resuscitation phase after injury. We believe 
a composite of these features can approximate the clinical phenotype expressed as the GCS in TBI patients and 
can provide an estimation of the constellation of injuries that account for the injury severity score (ISS). The GCS 
and ISS are integral features used for calculating the revised trauma score (RTS) and trauma injury severity score 
(TRISS), both of which have been shown to be accurate assessments of in-hospital mortality after  TBI7. In this 
study we sought to analyze the first 15 min of continuous vital sign data obtained from the time of admission 
to the hospital to develop an automated calculation of the RTS and TRISS based on machine-learning derived 
assessments of the GCS and ISS.

Methods
Study population
This is a single-center, retrospective study conducted at the R Adams Cowley Shock Trauma Center (STC) at the 
University of Maryland Medical Center. This study was approved by the Institutional Review Board (IRB) of the 
University of Maryland School of Medicine.

This study screened adult trauma patients (age between 18 and 90 years old) directly admitted to STC from 
the scene of injury between 2009 and 2017. Baseline demographic and clinical data was obtained from the insti-
tutional trauma registry. Injury severity score (ISS) was calculated on every patient after the primary survey and 
information from initial imaging studies were compiled. In our hospital trauma registry, patients discharged 
between 2009 and 2013 were coded in AIS-2005, while those discharged after 2013 were coded in AIS-1990. 
Patients were excluded if they died within 15 min after TRU admission, if there were less than 5 min of con-
tinuous VS recorded, if their GCS/ISS values were unavailable, or if their mortality outcome was missing. For 
the dataset used for testing, patients were excluded if they did not sustain either blunt or penetrating injuries 
because the TRISS model is calculated only for those two types of injuries. Figure 1 shows the flow diagram for 
patient selection. Within the general trauma population, we specifically focused on TBI with systemic trauma 
(polyTBI: head abbreviated injury scale (AIS) ≥ 1) and isolated TBI (isoTBI: head AIS ≥ 1 and other AIS ≤ 1) 
subgroups (Fig. 2).

Physiologic data collection and processing
Continuous vital sign (VS) data were collected in the 13-bay Trauma Resuscitation Unit (TRU) from the net-
worked patient monitors (GE-Marquette-Solar-7000/8000, GE Healthcare, Fairfield, CT). Each monitor collects 
240 Hz waveforms (e.g., ECG and PPG) and 0.5 Hz numeric data, including heart rate (HR), oxygen saturation 
(SpO2), blood pressures (BP), and among  others8.

During resuscitation, outliers and noise are added to data due to patient movement or loose attachment of 
sensors. We filtered our extreme values that are outside of the sensors’ measurement ranges or reasonable physi-
ologic ranges (HR > 200 bpm, SBP > 250 mmHg, DBP > 200 mmHg). We used a median filter with 30 s window 
length to smooth numeric VS. For waveforms, we applied a robust smoothing algorithm to reduce noise, which 
is based on a penalized least squares method and allows fast smoothing of data by means of a discrete cosine 
 transform9.

Model development
We built separate models for estimating GCS and ISS using the variables derived from the first 15 min of 
continuous VS in TRU. Considering the cardinalities of GCS and ISS, we modeled GCS as a multi-class clas-
sification problem and ISS as a regression problem for their exact values instead of coarse categories. To achieve 
autonomous prediction, we primarily used variables derived from the continuous VS. VS variables included 
descriptive statistics of numeric VS within 15 min after TRU admission, such as mean, standard deviation (SD), 
median, and interquartile range (IQR)10. Dose (integrated area normalized by time duration) of VS above or 
below normal thresholds for heart rate (HR > 120 bpm or HR < 60 bpm), SpO2 < 88%, mean arterial blood pres-
sure (MBP < 50 mmHg), and shock index (SI = SBP/HR > 1)11. PPG and ECG-based heart rate variability (HRV) 
time and frequency domain features were calculated using standard definitions based on the Task Force of the 
European Society of Pacing and  Electrophysiology12. Frequency domain features were calculated using three 
distinct popular methods, including Welch’s method of averaging periodograms from overlapping intervals, 
analysis of least-squares based Lomb periodograms, and parametric autoregressive  modeling13–15. Non-linear 
dynamics HRV features included measures of entropy, Poincare plots, and fractal  analyses16.

The modeling outcomes are on TRU admission GCS and ISS. These are discrete integer values, with imbal-
anced classes for each value in our dataset. Mild TBI (GCS 13–15) was about 30 times more frequent than 
moderate TBI (GCS 9–12) and 15 times more frequent than severe TBI (GCS 3–8). Similarly, mild ISS (1–8) 
was about twice as frequent as moderate ISS (9–15) and severe ISS and above (> 15). To reduce the effects of 
class imbalance, we inversely weighted each case proportional to its class’s frequency. When calculating their 
frequencies, we coarsened GCS into mild, moderate, and severe TBI categories. For ISS, we used mild, moderate, 
severe, and profound (ISS > 24) categories (Table 1).

For the machine learning algorithms, we compared the Extreme Gradient Boosting Tree (XGBoost), Random 
Forest (RF), and linear regression (LR with ElasticNet penalty). XGBoost is an efficient implementation of boost-
ing tree, for both GCS classification and ISS regression. In the following, we refer to the two models ML-GCS and 
ML-ISS17. Boosting tree is a machine learning method that often achieves superior prediction performance on 
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tabular data. It can account for complex non-linearity and high-order interactions. It is robust to outliers in and 
multicollinearity among variables. It can perform variable selection through tree pruning and regularization. We 
split the dataset into two major parts. The cases from 2009 to 2015 were used for model training, and the cases 
from 2016–2017 were used for testing the models’ performance on unseen new data. During training, we tuned 
XGBoost model hyperparameters including the total number of trees, maximum tree depth, learning rate, and 
percentage of sampled variables. For the ElasticNet model, we tuned the hyperparameters the weight of penalty 
terms, and the ratio between L1 and L2  penalties18. Optimal hyperparameters were identified via randomized 
search using five-fold cross-validation with 10 replicates.

Evaluation
First, we evaluated the ML-GCS and ML-ISS against the ground truth in the testing dataset for polyTBI and 
isoTBI subgroups. For ML-GCS, we used receiver operating characteristic (ROC) areas under the curve (AUC) 
for each class (3–15). We also used the macro-averaged and micro-averaged AUCs. Confusion matrices were 
used to show the accuracy of ML-GCS and ML-ISS in different categories. For model interpretation, we ana-
lyzed the variables’ contribution to the models’ prediction to gain insights. The SHapley Additive exPlanations 
(SHAP) values were used to calculate variable importance by comparing model predictions with and without 
the  variable19. The variable importance at a global level is given by adding the absolute value of the SHAP values 
for each individual data point. SHAP values were calculated and displayed graphically in order to describe each 
variable’s contribution to the outcome prediction and improve model interpretability. Positive SHAP values 
indicate that a variable increases the model output relative to its expected value, while negative SHAP values 
indicate that a variable decreases the model output relative to its expected value.

Next, we plugged the estimated GCS and ISS into TRISS and RTS scoring systems as surrogate values and 
evaluated the scores’ prediction performance for in-hospital mortality. Specifically, we calculated ML-RTS by 

Figure 1.  Flow Diagram for patient selection.
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using ML-GCS. We calculated ML-TRISS by using ML-ISS and real GCS. In addition, we compared a similar 
ML-TRISS2 by using ML-ISS and ML-GCS. ROC curves, AUROCs, and their 95% confidence intervals (CIs) 
were used to compare scores’ prediction performance. True positive rate (TPR), true negative rate (TNR), posi-
tive predictive value (PPV), negative predictive value (NPV), accuracy, and F-1 score were reported based on 
the threshold that maximized the Youden  index20.

Results
Study population
A total of 29,329 patients from 2009 to 2017 were assessed for eligibility. There were 1,853 cases that did not 
meet the inclusion criteria. 21,077 cases from 2009 to 2015 were used for model training, including internal 
cross-validation for hyperparameter tuning. Among them, 30.5% were female. The mean age was 42.7 years old 
(SD = 18.7). The majority (90.2%) had mild TBI (GCS 13–15). The median ISS was 5 and the IQR was 5–14, 
with 54.1% being mild.

There were 6,399 cases from 2016–2017 that satisfied the overall inclusion criteria. Since we also evaluated the 
ML-GCS in the TRISS score, which is defined for patients with blunt or penetrating injuries, we further removed 

Figure 2.  Mortality prediction using GCS, ISS, TRISS, RTS.

Table 1.  Clinical characteristics.

Characteristics Training (N = 21,077)

Testing

All (N = 6057) Poly-TBI (N = 3278) Isolated TBI (N = 1760)

Age mean (SD) 42.7 (18.7) 43.4 (19.0) 45.1 (19.4) 45.4 (19.5)

Female 6420 (30.5%) 1696 (28.0%) 950 (29.0%) 561 (31.9%)

Mechanism of Injury

 Blunt 17,169 (81.5%) 3561 (58.8%) 2004 (61.1%) 1108 (63.0%)

 Penetrating 3173 (15.1%) 2496 (41.2%) 1274 (38.9%) 652 (37.0%)

Admission GCS (Median[IQR]) 15 [15] 15 [14, 15] 15 [14, 15] 15 [14, 15]

 Mild (13–15) 19,013 (90.2%) 5362 (88.5%) 2734 (83.4%) 1543 (87.7%)

 Moderate (9–12) 726 (3.4%) 223 (3.7%) 162 (4.9%) 90 (5.1%)

 Severe (3–8) 1338 (6.4%) 472 (7.8%) 382 (11.7%) 127 (7.2%)

ISS (Median [IQR]) 5 [5, 14] 5 [2, 14] 9 [5, 17] 5 [2, 5]

 Mild (1–8) 11,394 (54.1%) 3322 (54.8%) 1626 (49.6%) 1456 (82.7%)

 Moderate (9–15) 4743 (22.5%) 1517 (25.0%) 808 (24.6%) 180 (10.2%)

 Severe (16–24) 2644 (12.5%) 682 (11.3%) 458 (14.0%) 46 (2.6%)

 Profound (> 24) 2296 (10.9%) 536 (8.9%) 386 (11.8%) 78 (4.5%)

Mortality 716 (3.4%) 264 (4.4%) 186 (5.7%) 58 (3.3%)

Time to death (hours, Median[IQR]) 17.1 [1.9, 105.3] 10.6 [2.7, 80.3] 27.0 [3.2, 91.7] 30.1 [5.8, 79.6]
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cases that were not blunt or penetrating in the testing dataset. A total of 6,057 cases were used for testing. Among 
them, 28.0% were female. The mean age was 43.4 years old (SD = 19.0). There were 88.5% mild TBI category and 
54.8% mild ISS. The testing set had a higher percentage of penetrating injury (41.2%) than those in the training 
set (15.1%). In the testing dataset, there were 3,278 polyTBI and 1,760 isoTBI cases. The polyTBI group had a 
higher proportion of moderate (4.9%) and severe (11.7%) TBI those in the training set (3.4% and 6.3%). It also 
had a higher mortality rate (5.7%) than those in the training set (3.4%).

Evaluation with ground truth GCS/ISS
With the trained models for estimating GCS and ISS, we evaluated their performance in the testing datasets 
against the ground truth. Figure 3b shows ROC curves for the ML-GCS model in estimating classes for the testing 
dataset (N = 6057). The curves were generated by comparing each class to all the others. A macro-average will 
compute the metric independently for each class and then take the average (hence treating all classes equally), 
whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a 
multi-class classification setup, micro-average is preferable for class imbalance. For ML-GCS, it performed 
relatively better in distinguishing GCS = 3 or not (AUC = 0.88). It performed poorly in discriminating GCS = 12 
or not (AUC = 0.61). The micro-average AUC is 0.87. Using the confusion matrix, we aggregated GCS into five 
categories, which followed the GCS points definition in RTS (Figure S2). The ML-GCS had a TPR of 58.16% for 
category 0 (GCS = 3). It also had a high TPR of 71.15% for category 4 (GCS = 13–15).

For linear regression ML-ISS, the model tends to underestimate real ISS (Fig. 4b). We aggregated ISS into 
four categories, mild, moderate, severe, and profound. The ML-ISS had a TPR of 86.24% for the mild. However, 
it tended to underestimate other categories as mild. For example, 73.37% of moderate cases were estimated as 
mild (Figure S2).

Evaluation with mortality prediction
We evaluated ML-GCS and ML-ISS in scoring systems that use GCS and ISS as components. For the polyTBI 
group, the ML-RTS had AUC 0.823 (95%CI 0.788–0.859). The real RTS had AUC 0.928 (95%CI 0.906–0.950). 
ML-TRISS had AUC 0.963 (95%CI 0.953–0.973), while the real TRISS had AUC 0.965 (95%CI 0.955–0.975) 
(Fig. 5). For the isoTBI group, the ML-RTS had AUC 0.79 (95%CI 0.72–0.86). The real RTS had AUC 0.957 

Figure 3.  (a) SHAP output for GCS. (b) ROC for multi-class GCS prediction.
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(95%CI 0.927–0.986). ML-TRISS had AUC 0.977 (95%CI 0.963–0.990), while the real TRISS had AUC 0.983 
(95%CI 0.970–0.995) (Fig. 6).

Model interpretation
Variable importance analysis was performed to show the variable contributions to the prediction. Figure 3a 
shows the variable importance for the XGBoost model of predicting GCS = 3. Figure 3b shows the variables for 
the XGBoost model of ISS. Each dot represents a variable’s value for a patient. The color spectrum from red to 
blue stands for the variable’s value ranging from high to low. The x-axis is the SHAP value, which represents 
how greatly knowing that variable’s value influences the log-odds. In this plot we can see that lower minimum 
mean blood pressure (MBP) had the highest impact to increase the model’s prediction of ISS, followed with SI 
standard deviation, inter-quartiles of HR, and age (Fig. 3b).

Discussion
In this study of over 27,000 consecutively admitted trauma patients we leveraged physiologic information 
obtained from continuous monitoring to develop machine learning-based estimates of GCS and ISS. In testing 
the ability of the ML-ISS values to replace actual ISS values, the ML-TRISS was noted to perform as well as the 
TRISS in the prediction of in-hospital mortality (Figs. 5b, 6b) for both isoTBI and polyTBI patients. The ML-
RTS, which utilized ML-GCS in place of actual GCS did not perform as well as RTS or TRISS in the prediction of 
in-patient mortality, though the overall accuracy for ML-RTS and ML-TRISS2 was still relatively high (Table 3). 
Importantly, all these models were built on PPG, ECG, and blood pressure data obtained during the first 15 min 
after arrival to the hospital, prior to the availability of any additional laboratory or imaging data, illustrating the 
ability to develop an automated severity scoring system during the ultra-early resuscitation stages after injury.

We compared three different learning algorithms, XGBoost, random forest, and linear regression (with an 
ElasticNet penalty), to estimate GCS and ISS. The results showed that XGBoost and RF had similar performance 
and were significantly better than the linear model when predicting mortality for the polyTBI and isoTBI patients.

This work has significant clinical implications for the field or early in-hospital care of TBI patients. Advances 
in sensing and computational techniques make it possible for continuous vital signs to be collected and processed 
without human intervention. By automating the calculation of established mortality risk scores with the addition 

Figure 4.  (a) SHAP output for ISS. (b) Regression plot for ISS prediction.



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:7618  | https://doi.org/10.1038/s41598-024-57538-5

www.nature.com/scientificreports/

of ML-GCS and ML-ISS variables, clinicians may be able to identify patients at risk for poor outcomes during 
the early resuscitation phase. Rapid recognition can prompt targeted lifesaving interventions and appropriate 
resource allocation. This is particularly important in the remote field or in mass casualty events where clinical 
expertise and resources are scarce.

Previous studies have identified the utility of machine learning algorithms to enhance the ability to predict 
mortality early after injury. Many have combined hemodynamic measurements with laboratory data or addi-
tional clinical information gathered within hours of arrival. One recent analysis found the GCS and ISS among 
the features that were the most important in predicting in-hospital mortality among severe TBI patients. Our 
analyses differ from these reports in that we attempted to replicate only the amount of information available at 
the time of initial triage (within 15 min of arrival) and so intentionally did not utilize information from electronic 
medical records, laboratory data, or imaging findings. This allows for better interpretation in a real-world triage 
scenario where these data will not be immediately available or attainable.

Our modeling of ISS and GCS also highlights a method of domain adaptation as an alternative method for 
developing predictive  algorithms21–24. Domain adaptation is the task of developing machine learning algorithms 
that can be easily transferred from one domain to another. This problem arises when there is a large collection 
of labeled data in one source domain but the task at hand requires developing a model that performs well in a 

Figure 5.  (a) Mortality prediction for RTS vs ML-RTS in Poly-TBI, (b) Mortality Prediction for TRISS vs 
ML-TRISS in Poly-TBI.
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separate target domain. The goal is to adapt the model to the target domain using as little labeled data as pos-
sible. The approach proposed in this paper is based on the idea of transforming the domain adaptation learning 
problem into a standard supervised learning  problem25. The transformation is done by augmenting the feature 
space of both the source and target data and using the result as input to a standard learning algorithm. This 
transformation allows any standard algorithm to be applied to the problem, making it easy to implement and use.

Model performance was less accurate with the RTS than TRISS. The RTS score is comprised of the GCS, 
respiratory rate, and systolic blood pressure, with the greatest weight given to the GCS (Table 2). Because the 
accuracy of the ML-GCS models varied depending on the GCS score, it is not surprising that the ML-RTS score 
did not perform as well as the actual RTS score in predicting in-patient mortality. A similar result was noted when 
using the ML-GCS alongside the ML-ISS in the TRISS estimation (Supplemental Fig. 4). Regardless of these limi-
tations, the NPV for metrics utilizing ML-GCS was no different than those metrics that utilized measured GCS 
(Table 3). It is also important to recognize that we chose to predict the value of ML-ISS and ML-GCS specific to 
in-patient mortality. Given this study included all severities of TBI at arrival with a very high preponderance of 
mild TBI, the mortality rate was lower than previous predictive algorithms of in-patient mortality that focused 
more narrowly on severe TBI.

Additional limitations to our analyses include our single center dataset, which may have been influenced by 
institutional practice and patient characteristics specific to our local region. Further evaluation and training with 

Figure 6.  (a) Mortality prediction for RTS vs ML-RTS in isolated TBI. (b) Mortality Prediction for TRISS vs 
ML-TRISS in isolated TBI.
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data from other institutions might be necessary to generalize the model. The GCS is a subjective assessment, 
based on the opinion of the clinicians and could have variability in the  scores26. Therefore, the trained models 
may be subject to inaccurate labeling of the outcomes. In addition, the dataset spans 9 years, and it is possible 
that the data has drifted over time. Patients discharged between 2009 and 2013 were coded in AIS-2005, while 
those discharged after 2013 were coded in AIS-1990. The Injury Severity Score (ISS), which relies on AIS, may 
be calculated based on varied definitions. AIS was initially defined in 1990 and has since evolved into multiple 
versions, including those released in 2005 and  201527. A comparison of 145 patients’ AIS-1998 and AIS-2005 
revealed that AIS-2005 coded the same injuries with lower severity scores (p < 0.01) and decreased mean and 
maximum AIS-head scores (p < 0.01)28. The AIS-Head section underwent specific changes in 2005 to capture 
more detailed information about head injuries, such as hematoma size, to better reflect their clinical severity. 
The changes also aimed to improve the accuracy of coding concussive TBI and allowed for coding of hypoxic or 
ischemic traumatic brain injury, which was not codable in AIS-1998. These revisions may have introduced major 
changes in coding the severity of the same traumatic brain injuries and may have changed the types of injuries 
captured by AIS codes. However, the changes in AIS versions may have limited impact on TRISS calculation. Li 
et al. compared AIS1998 and AIS2015 in a study of 739 cases. In predicting mortality, TRISS (AIS1998) had an 
AUROC of 0.936, which was not significantly different from the AUROC of TRISS (AIS2015) 0.94229. However, 
given the large size of the training sample, we still expect that the model could learn useful information from 
the single center’s clinicians.

Conclusion
In this large retrospective cohort study of TBI patients we demonstrate the ability to develop ML-GCS and 
ML-ISS estimations that can be utilized to automate the RTS and TRISS score during the ultra-early phase of 
resuscitation. These findings support the concept of utilizing transfer learning as a technique in machine learning 
(ML) to boost predictive algorithm performance.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.

Code availability
The underlying code for this study [and training/validation datasets] is not publicly available for proprietary 
reasons.
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Table 2.  Equations and calculations for RTS, TRISS (blunt), TRISS (penetrating).

Formulas

RTS 0.9368*GCS points + 0.7326*SBP points + 0.2908*RR points

TRISS blunt 1 – 1/(1 + EXP(− 0.4499 + RTS*0.8085 + ISS*-0.0835 + (IF(age >  = 55,1,0)* − 1.743)))

TRISS penetrating 1 – 1/(1 + EXP(− 2.5355 + RTS*0.9934 + ISS* − 0.0651 + (IF(age >  = 55,1,0)* − 1.136)))

Points conversion in RTS Glasgow coma scale Systolic blood pressure Respiratory rate

GCS Points SBP Points RR Points

3 0 0 0 0 0

4–5 1 1–49 1 1–5 1

6–8 2 50–75 2 6–9 2

9–12 3 76–89 3  > 29 3

13–15 4  > 89 4 10–29 4

Table 3.  Accuracy, sensitivity, specificity of ISS, GCS, TRISS, ML-TRISS, RTS, ML-RTS for in-hospital 
mortality.

AUROC AUC 95%CI Sensitivity Specificity PPV NPV Accuracy F1

ISS 0.867 0.843–0.892 0.769 0.825 0.167 0.987 0.822 0.274

GCS 0.912 0.890–0.934 0.799 0.940 0.377 0.990 0.934 0.513

TRISS 0.966 0.957–0.975 0.894 0.920 0.336 0.995 0.919 0.489

RTS 0.925 0.905–0.945 0.812 0.940 0.379 0.991 0.935 0.517

ML-TRISS 0.961 0.950–0.972 0.920 0.894 0.282 0.996 0.900 0.432

ML-RTS 0.855 0.828–0.883 0.722 0.880 0.215 0.986 0.873 0.331
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