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Genomic wide association study 
and selective sweep analysis 
identify genes associated 
with improved yield under drought 
in Turkish winter wheat germplasm
Deepmala Sehgal 1,2*, Nagenahalli Dharmegowda Rathan 3, Fatih Özdemir 4, Mesut Keser 5, 
Beyhan Akin 6, Abdelfattah A. Dababat 6, Emrah Koc 6, Susanne Dreisigacker 1 & 
Alexey Morgounov 7*

A panel comprising of 84 Turkish winter wheat landraces (LR) and 73 modern varieties (MV) was 
analyzed with genome wide association study (GWAS) to identify genes/genomic regions associated 
with increased yield under favorable and drought conditions. In addition, selective sweep analysis was 
conducted to detect signatures of selection in the winter wheat genome driving the differentiation 
between LR and MV, to gather an understanding of genomic regions linked to adaptation and yield 
improvement. The panel was genotyped with 25 K wheat SNP array and phenotyped for agronomic 
traits for two growing seasons (2018 and 2019) in Konya, Turkey. Year 2018 was treated as drought 
environment due to very low precipitation prior to heading whereas year 2019 was considered as 
a favorable season. GWAS conducted with SNPs and haplotype blocks using mixed linear model 
identified 18 genomic regions in the vicinities of known genes i.e., TaERF3-3A, TaERF3-3B, DEP1-5A, 
FRIZZY PANICLE-2D, TaSnRK23-1A, TaAGL6-A, TaARF12-2A, TaARF12-2B, WAPO1, TaSPL16-7D, 
TaTGW6-A1, KAT-2B, TaOGT1, TaSPL21-6B, TaSBEIb, trs1/WFZP-A, TaCwi-A1-2A and TaPIN1-7A 
associated with grain yield (GY) and yield related traits. Haplotype-based GWAS identified five 
haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124), with the favorable haplotypes 
showing a yield increase of > 700 kg/ha in the drought season. SNP-based GWAS, detected only one 
larger effect genomic region on chromosome 7B, in common with haplotype-based GWAS. On an 
average, the percentage variation (PV) explained by haplotypes was 8.0% higher than PV explained 
by SNPs for all the investigated traits. Selective sweep analysis detected 39 signatures of selection 
between LR and MV of which 15 were within proximity of known functional genes controlling 
flowering (PRR-A1, PPR-D1, TaHd1-6B), GY and GY components (TaSus2-2B, TaGS2-B1, AG1-1A/
WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, FBP, TaLAX1, TaPIL1 and 
AP3-1-7A/WPA3-7A) and 10 regions underlying various transcription factors and regulatory genes. The 
study outcomes contribute to utilization of LR in breeding winter wheat.

Wheat is a major staple cereal, providing one-fifth of the calories and protein for four billion people  globally1. 
Turkey is the eighth largest wheat producer worldwide and a leading exporter cultivating > 8 million  ha2. Wheat 
production in Turkey is therefore important for global food security. Climate change scenarios have indicated 
that heat and drought stress will have profound effects on Turkey’s wheat production in coming  decades3,4. Lat-
est crop models project that the winter wheat zone of the country will suffer great losses in yield as compared 
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to the spring wheat zone due to drought and heat (25–29%) yield reductions in winter wheat and 15–16% in 
spring wheat,  respectively5. There is an urgent need to explore new approaches to develop climate resilient wheat 
varieties that can adapt to drought and heat stress environments.

In 2011–2014, International Winter Wheat Improvement Network (IWWIP) based in Turkey, collected wheat 
landraces (LR), which were evaluated, and superior landraces multiplied for seed deliveries to farming com-
munities assuring their continuous cultivation and use in  breeding6. The LR collection was sampled from four 
provinces in Turkey, two provinces in Iran and Afghanistan. Thereafter, 84 LR were delivered to the gene banks 
of the three countries to establish a common field trial along with 73 IWWIP modern germplasm and varieties 
(MV). This important germplasm set, named ‘International Landrace Exchange Set’ was evaluated for yield and 
yield components across Afghanistan, Iran and  Turkey6. The trial results demonstrated that LR were highly 
adaptable to diverse agro-ecological conditions in all three countries.

Genome-wide association study (GWAS) has been increasingly utilized in wheat to untangle the genetic 
architecture of complex agronomic traits including yield and yield components under favorable and abiotic 
stress  conditions7–17. However, most studies have used SNP-based GWAS. SNP markers are bi-allelic therefore 
less informative than multi-allelic markers. Additionally, in SNP-based GWAS multiple SNPs in high linkage 
disequilibrium (LD) are commonly associated with the same quantitative trait loci (QTL), resulting in overes-
timation of QTL effects. Haplotypes are constructed by combining multiple SNPs in high LD and haplotype-
based GWAS overcomes most of the limitations associated with using single SNPs in GWAS, resulting in better 
statistical  significance9,12,18–21.

The increased understanding of genetic loci that control complex traits and those that underwent selection 
during crop improvement (referred to as selective sweeps or signatures of selection) is important to design effi-
cient breeding strategies. A combination of GWAS and selective sweep analysis is emerging as a leading approach 
to identify such new genomic  targets14,22,23. Additionally, it allows to evaluate the role of selection in shaping 
the quantitative genetic variation at various  levels24. In this study, we characterized the International Landrace 
Exchange Set to (i) identify the genetic diversity and population structure in this set, (ii) conduct GWAS using 
SNP and haplotype-based GWAS to detect genomic regions leading to improved drought resilience, and (iii) 
identify genome regions that were directionally selected between LR and MV and link these regions to known 
genes related to wheat adaptation and improvement.

Methods
Germplasm panel
The LR subset in the International Landrace Exchange Set comprised of 84 wheat landraces; 45 entries from 
Turkey, 20 from Afghanistan and 19 from Iran. The MV subset comprised of 73 entries developed by IWWIP 
in Turkey; 32 were bred for semiarid environments and 41 for irrigated environments. The detail list of entries 
is in supplementary Table S1 and described  by6.

Phenotyping, genotyping and population structure
Phenotyping was conducted on 6 m2 plots at the Bahri Dagdas International Agricultural Research Institute in 
Konya, Turkey for two years (2018 and 2019). An alpha-lattice experimental design was used with two replicates. 
The weather conditions in Konya in 2018 were characterized by lack of moisture prior to heading resulting in 
drought conditions. In 2019, the precipitation was sufficient and grain yield exceeded 4 t/ha without applying 
any additional irrigation. The 2018 year was treated as a drought season and 2019 as a favorable season. Experi-
mental data were recorded on grain yield (GY), spike length (SL), spike number (SN), number of spikelets per 
spike (NSS), harvest index (HI) and thousand grain weight (TGW) as described  in6. The statistical analysis of the 
phenotypic data, including estimation of best linear unbiased predictors (BLUP) and broad-sense heritability, 
was done in Meta  R25 (Vargas et al. 2013). Broad-sense-heritability in Meta R was estimated using the formula 
 H2 =  Vg/(Vg +  Verr/r), where  Vg is the genotypic variance,  Verr is the error variance, and r is the number of rep-
lications. The ANOVA was done with R package lme4 using a linear mixed effect model in which replications 
were treated as fixed effect and entries as random effect. The correlations between traits were calculated using 
R packages ggplot2, GGally and rlang.

The germplasm set was genotyped using a high-density Illumina Infinium 25 K wheat SNP array (Trait-
Genetics GmbH, Gatersleben, Germany). After removing markers with missing data > 30% and minor allele 
frequency < 5%, 15,208 SNPs were used in the analyses. The polymorphic information content (PIC) and nucleo-
tide diversity parameter (π) were calculated to estimate genetic diversity in the panel. PIC was calculated using 
PowerMarker version 3.2526 while π was calculated in TASSEL version 5.2.7927.

Principal component analysis (PCA) was conducted using the R package ‘stats’ and ‘rgl’. Coefficient of cor-
relation r2 among markers was calculated to estimate LD among all pairwise comparison of markers in TASSEL 
version 5.2.79 and the values were plotted against genetic distance (bp) in R Studio using an in-house script. The 
pattern of LD decay was determined as the distance where LD values reduced to half of their maximum value.

SNP and haplotype-based GWAS
Genome-wide haplotypes were constructed based on the linkage disequilibrium (LD) parameter D’ using the 
modified R  script28. The details of the parameters used were described  by29,30. Haplotype-based GWAS was 
conducted using Plink version 1.07 with default  parameters31. SNP-based GWAS was conducted in GAPIT 
Version 3.032. A mixed linear model was applied with the first three principal components as fixed variate and 
kinship as a random variate. SNPs and haplotype blocks were declared significant at p < 0.001. Box plots were 
generated to show the allelic effects of the associated markers and haplotype blocks using the PAST statistical 
program version 1.9333.
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Analyses of selective sweeps
To identify genomic regions under selection, we used two independent methods;  EigenGWAS34 and Wright’s Fst 
 statistic35. EigenGWAS (Genome-wide association study with eigenvector decomposition) is a GWAS, however, 
phenotypic data are replaced by individual-level eigenvectors derived from the genotypic data. EigenGWAS 
was conducted using R-based GEAR software (https:// github. com/ gc5k/ GEAR). To control the genetic drift 
component, the method generates a genomic control factor (λGC) and corrects the p-value. We used the cor-
rected p‐value, called PGC (p value with a genomic control  factor36, for detecting the loci under selection. One 
of the EigenGWAS outputs is called strength of selection, which is defined as the ratio between Fst of a locus and 
the average Fst of the population under  study37. Wright’s F statistics of all individual 15,208 loci was calculated 
using ‘hierfstat’ package in R environment. A locus was declared under selection if it showed Fst > average Fst 
of the panel.

Candidate gene analysis
To search for putative candidate genes in the proximity of any significant GWAS output, Basic Local Alignment 
Search Tool (BLAST) in the EnsemblPlant database (https:// plants. ensem bl. org/ index. html) was used. The co-
expression patterns and gene network analysis were investigated in the Wheat Expression database (http:// 
www. wheat- expre ssion. com/). Potential links to phenotypes were determined using Knetminer integrated in 
the Wheat Expression database.

Results
Phenotypic variation in LR and MV
Year 2018 growing season was treated as the drought environment due to very low precipitation prior to head-
ing, whereas year 2019 growing season was considered as the favorable environment. The metrological data is 
provided in Table S2, which clearly supports the drier conditions in 2018 growing seasons as compared to 2019. 
The total rainfall during 2018 (149.6 mm) growing season was 27.7% lower than that during 2019 (206.8 mm) 
growing season. Analysis of variance (ANOVA) revealed that all traits showed significant variation in the panel 
(Table S3). The effect of environment was significant on all traits except SL. In addition, significant genotype x 
environment interaction was observed for all traits. Broad sense heritability (H2) estimates were higher in the 
drought season for GY, SL and SN, whereas these were higher for HI and TGW in the favorable season (Table S3). 
For NSS, H2 estimates were similar in both seasons. Across seasons, TGW had the highest heritability of 0.73 
whereas SL and NSS showed moderate heritability values of 0.62 and 0.65, respectively. The remaining traits GY, 
SN and HI showed low heritability values (H2 < 0.50) across seasons.

A detailed description of morphological diversity and descriptive statistics of the panel has been published 
 recently6. To avoid repetition, we have elaborated here effects of drought on GY and yield components in LR 
and MV. The average GY was 3292 and 4786 kg/ha in the favorable season and 2378 and 2073 kg/ha in the 
drought season in LR and MV, respectively. This shows that reduction in GY was more severe in MV (56.6%) as 
compared to LR (27.7%) under drought conditions (Fig. 1a). NSS and TGW also showed significant reductions 
in the drought season in both LR and MV. The reduction in NSS was up to 33.3 and 30.9% whereas in TGW the 
reductions were up to 23.4 and 16.7% in LR and MV, respectively (Fig. 1b,c). For the remaining traits, reductions 
were moderate to very low (Fig. 1d–f). For example, SL was least affected by drought (Fig. 1d) in both LR and 
MV, while SN (Fig. 1e) and HI (Fig. 1f) displayed moderate reductions of 8.1 and 8.4% and 7.5 and 6.7% in LR 
and MV, respectively.

The correlations were estimated between traits for the two groups (LR and MV) and two seasons i.e. drought 
(2018) and favorable (2019). In general, the correlation between traits were higher in the drought season of 
(Fig. S1a,b) than in the favorable season of 2019 (Fig. S1c,d). In the favorable season, except for HI (r = 0.236, 
p < 0.05) in LR, correlations of all traits with GY were insignificant in both LR and MV. In the drought season, the 
correlation of three traits (SL, NSS and HI) became stronger and significant with GY in LR (SL and GY, r = 0.265 
at p < 0.05; NSS and GY, r = -0.33 at p < 0.01; HI and GY, r = 0.367 at p < 0.001). In MV too, the correlation of all 
three spike traits (SL, SN and NSS) became stronger with GY in the drought season (SL and GY, r = 0.463 at 
p < 0.001; SN and GY, r = 0.391 at p < 0.001; NSS and GY, r = 0.432 at p < 0.001).

Distribution of SNPs and haplotype blocks, population structure and LD decay
A total of 15,208 filtered SNPs was used, after filtering for 30% missing data and minor allele frequency ≥ 0.05, for 
all subsequent analysis. The distribution of SNPs showed maximum number of SNPs on chromosome 2B (1263) 
followed by chromosomes 3B (1196), 7A (1195) and 5B (1191). Chromosome 4D showed the least number of 
SNPs. Based on the linkage disequilibrium  approach28, a total of 2568 haplotype blocks were constructed from 
15,208 SNPs that covered a total genome length of 14,050 Mb (Table S4). The highest number of haplotype blocks 
were obtained on chromosome 5B (225) followed by chromosomes 3B (209) and 2B (205) (Table S4, Fig. S2).

The population structure was determined by 3-dimensional PCA that revealed a clear distinction between LR 
and MV (Fig. 2a). Three subgroups were evident in the PCA plot. Subgroup 1 was formed by all modern varieties 
regardless of the fact whether these were bred for irrigated or semiarid environments while subgroups 2 and 3 
were formed by landraces from Turkey and Afghanistan, respectively (Fig. 2b). The landraces from Iran formed 
a diffused group and a few Iranian landraces overlapped with the other 3 groups. We also computed pairwise 
average  FST (population differentiation  coefficient35) between different subpopulations. Overall, the  FST analysis 
indicated a moderate genetic differentiation between MV and LR (Fst = 0.101). The pairwise Fst values, as shown 
in Fig. 2b, between MV and LR from Turkey, Afghanistan and Iran were 0.101, 0.090 and 0.101, respectively. 
The pairwise Fst value between LR from Afghanistan and Iran was 0.141 and between LR from Turkey and Iran 
was 0.142, while it was slightly higher between LR from Afghanistan and Turkey (Fst = 0.151) (Fig. 2b). The 
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genetic diversity parameter, as estimated by PIC, was 0.31, 0.30 and 0.27 for the complete panel, MV and LR, 
respectively. The nucleotide diversity parameter π was 0.39, 0.38 and 0.36 respectively, for the complete panel, 
MV and LR, respectively.

LD decayed to half of its maximum at 1.58 Mb in the complete panel, while it decayed at ~ 1.96 and 1.99 Mb 
in LR and MV (Fig. S3a–c), respectively. The LD decay curve was also drawn at cut off r2 = 0.1 to allow an easy 
comparison with various previous studies in wheat (discussed in the Discussion section below). The LD decay 

Figure 1.  Rate of reduction in grain yield in kg/ha, p < 0.01 (a) and yield parameters (b number of spikelets 
per spike, p < 0.001; (c) thousand grain weight in g, p < 0.01, (d) spike length in cm, p < 0.05, (e) spike number, 
p < 0.01and (f) Harvest index, p < 0.05 in drought (2018) and favorable (2019) seasons. The solid and dotted 
boxes represent reductions LR and MV, respectively.

Figure 2.  Three dimensional PCA plots showing two broad groups of LR and MV (a) and three subgroups of 
LR based on geographic origins and one group of MV (b). Pairwise Fst among different groups are shown in 
part (b) of the figure.
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at cut off r2 = 0.1 was observed at ~ 5.94 Mb in the complete panel, whereas it was observed at ~ 7.58 and 8.08 Mb 
in LR and MV (Fig. S3d–f), respectively.

Marker trait associations (MTA) identified using SNP- and haplotype-based GWAS
We used two approaches for GWAS, SNP- and haplotype-based GWAS, to identify MTA of GY and yield param-
eters in both environments separately. Below, we have first described MTA identified in the drought season using 
both GWAS approaches followed by MTA identified in the favorable season. All MTA identified by both GWAS 
are summarized in Tables 1 and 2 separately. The common genomic regions identified by both GWAS are also 
described, especially when these were co-located with the known metaQTL for GY or known genes in wheat 
governing yield-related traits (Table S5).

A total of 47 MTA were identified for all traits using SNP-based GWAS in the drought season of 2018. For 
GY, 12 MTA were identified in SNP-GWAS with percentage variation (PV) varying from 10.2 to 11.8% (Table 1). 
Haplotypes-GWAS, on the other hand, identified 15 MTA associated with GY with PV ranging from 10.4 to 
20.1% (Table 2). Interestingly, a hot spot region (724,940,015–730179871 Mb) was identified on chromosome 
7B by haplotype-GWAS, where four haplotypes (H7B-123, H7B-124, H7B-127 and H7B-128) were associated 
with GY (Table 2). Figure 3 shows the estimated yield advantage at the five best haplotype blocks and the five 
best SNPs. The favorable alleles at these five haplotype blocks showed invariably yield increase of > 700 kg/ha 
(Fig. 3I–V), whereas the favorable alleles at the best five SNPs (Fig. 3VI–X) showed yield advantage varying from 
352 kg/ha with SNP BS00067150_51_5A) to 710 kg/ha with SNP AX-158592462_7B. Figure 4 shows heat map 
of the panel showing the distribution of favorable alleles at the five best haplotype blocks in LR and MV. Only 
ten MV showed a favorable allele at two of the five best haplotypes. Clearly, MV are devoid of favorable alleles 
of the best five haplotypes identified here. Table S6 shows 16 important landraces that have been identified to 
carry favorable alleles of two or more than two haplotypes for GY. These 16 landraces showed an average GY of 
3436 kg/ha in the drought season and are important for introgression of high allele effect haplotypes into mod-
ern varieties. Both GWAS approaches identified common genomic regions for GY on chromosomes 3B, 4A and 
7B, of which the genomic regions identified on chromosomes 4A and 7B were located within the two metaQTL 
regions reported for GY (MQTLs 31 and 63) (Table S5). The genomic region identified on chromosomes 3B 
was located in the TaERF3-3B gene, which plays an important role in grain size and development (Table S5).

For the three spike measurements SL, SN and NSS, SNP-GWAS identified 7, 7 and 4 MTA while haplotype-
GWAS identified 6, 7 and 14 MTA, respectively (Tables 1, 2). Most notably for NSS, a 5.6 Mb genomic region 
(775,824,676–781,493,870 Mb) was identified on chromosome 3B by haplotype-GWAS, where 6 haplotype 
blocks (H3B-191—H3B-196) were associated with NSS with very high PV varying from 27.9 to 33.2%. The 
common genomic regions identified by both GWAS for the three spike traits were on chromosomes 1B (SL), 
3B and 7B (SN), and 2A (NSS) (Table S5) and these were located within three metaQTL regions (MQTLs 1B.3, 
3B.5, 7B.5 and 2A.3) reported for GY under drought or heat stress environments (Table S5). For HI, nine MTA 
each were identified by both GWAS with PV varying from 9.1 to 24.0% in SNP-GWAS and 16.9 to 31.1% in 
haplotype-GWAS. A common genomic region was identified on chromosomes 7B (Table S5), which was located 
in metaQTL7B.2 reported for GY. Interestingly, on chromosome 6A, a constitutive MTA (identified in both sea-
sons) was detected for HI by SNP- and haplotype-GWAS (Table S5), which could not be mapped to any known 
metaQTL or gene and hence an interesting candidate for future studies. Eight and seven MTA were identified 
for TGW by SNP- and haplotypes-GWAS with PV varying from 8.7 to 11.5% and 11.0 to 17.0%, respectively. A 
common genomic region on chromosome 5B, identified by both approaches for TGW, was located in metaQTL45 
for GY. Most importantly, three known TGW genes, TaTGW6-A1 (chromosome 3A), TaTPP-6A (chromosome 
6A) and TaCwi-A1-2 (chromosome 2A), were identified to be associated with TGW in the drought season by a 
combination of both GWAS (Tables 1, 2).

In the favorable season of 2019, 11 and 21 MTA were identified for GY with SNP- and haplotype-GWAS, 
respectively (Tables 1, 2). Two common regions were identified on chromosomes 3A and 3B by both GWAS 
(Table S5), of which the genomic region identified on chromosome 3B fell within metaQTL26 for GY. In addition, 
two important genes governing yield-related traits were identified for GY on chromosomes 6A (TaAGL6-A) and 
6B (TaSPL21-6B) by SNP- and haplotype-GWAS, respectively (Tables 1, 2). For the three spike measurement 
traits, 9, 4 and 5 MTA and 9, 9 and 8 MTA were identified by SNP- and haplotype-GWAS for SL, SN and NSS, 
respectively. The common genomic regions identified for the three spike traits by both GWAS were on chromo-
somes 1B, 5B and 7B for SL, 6A for SN and 2B for NSS (Table S5). Of these, the genomic regions on chromosomes 
5B and 7B for SL were in metaQTL5B.1 and metaQTL63, respectively, and the genomic region on chromosome 
2B for NSS was in metaQTL18. For HI, SNP- and haplotype-GWAS identified 7 and 11 MTA, respectively, with a 
common genomic region on chromosomes 3B (557,088,909–557,097,177 Mb), which could not be mapped to any 
known metaQTL for GY or gene. Three and four MTA were identified for TGW by SNP- and haplotype-GWAS, 
respectively, and no common genomic region was detected by two GWAS for TGW. Two MTA by SNP-GWAS 
and one MTA by haplotype-GWAS could be mapped within known metaQTL (Tables 1, 2).

Comparison of SNP and haplotype-based GWAS
A comparison of both approaches showed that the haplotype-GWAS was more effective in identifying MTA with 
high PV values as compared to SNP-GWAS. For example, haplotype based GWAS identified 15 MTA for GY in 
the drought season, of which 7 haplotypes showed high PV values of more than 15.0% and 8 haplotypes showed 
moderate PV values between 10.0 and 14.5%. The SNP-based GWAS, on the other hand, identified 12 MTA in 
the drought season and all 12 MTA showed moderate PV values of 10.2 to 11.8%. The average PV explained for 
GY by all associated haplotypes was 15.0 and 7.3%, whereas it was 10.8 and 4.6% by SNPs in the drought and 
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Trait Marker Chr Physical position (bp)

P value/R2 (%) Co-localization with selection of 
signature (P value in EigenGWAS), 
MetaQTL for GY, known genesDrought affected season (2018) Favorable season (2019)

GY

BS00107250_51 1D 27,689,216* 3.71E−07/4.8 MQTL1D.1

BS00010946_51 1D 488,976,932 3.30E−07/4.9

wsnp_Ex_c38739_46195930 2B 192,364,804 9.43E−07/4.5

Excalibur_s113043_59 3A 61,308,322* 5.07E−05/10.6 1.05E−16, MQTL3A.2

wsnp_Ex_rep_c66685_65003254 3A 571,407,719 2.65E−05/11.0 TaERF3-3A (Jia et al. 2021)

BS00000445_51b 3A 625,533,783 1.25E−07/5.2

BS00001478_51c 3A 627,254,114 3.29E−07/4.8

AX-94479553 3A 700,811,389 4.98E−07/4.7

AX-158598372b 3B 562,443,713 1.95E−05/11.1 TaERF3-3B (Jia et al. 2021)

Ku_c101932_436b 3B 562,444,883 2.03E−05/11.1 TaERF3-3B (Jia et al. 2021)

wsnp_Ex_c36937_44788679c 3B 698,617,994** 4.21E−06/4.7 MQTL26

wsnp_Ex_c7451_12757458 3D 611,252,106 6.03E−05/10.4

Excalibur_c42667_427 3D 611,918,428 4.93E−05/10.2

BS00041735_51 4A 594,283,620 1.65E−06/4.4

AX-158524359b 4A 603,380,455** 2.63E−05/10.9 8.33E−25, MQTL31

AX-158524348b 4A 603,450,276** 2.81E−06/11.1 MQTL31

RAC875_c59673_188 4A 681,669,144* 1.23E−06/4.3 MQTL4A.3

BS00067150_51 5A 609,243,940 4.38E−05/10.3

wsnp_Ex_c20440_29511162 5B 462,143,612 9.77E−06/11.8

BS00063175_51 6A 479,890,385 1.30E−06/4.5 TaAGL6-A (Kong et al. 2021)

AX-89582418 6B 439,070,773 5.99E−05/10.2 2.24E−12

AX-95136614 6B 702,209,887 1.88E−07/4.4

AX-158592462c 7B 730,227,625** 1.05E−05/11.6 MQTL63, TaSBEIb (Schönhofen 
et al. 2017)

SL

AX-95245523c 1B 15,745,730 1.24E−06/10.9

AX-95182696b 1B 15,748,142 5.93E−07/13.7

AX-110042022b 1B 574,277,209* 4.80E−06/10.8 MQTL1B.3

AX-95254907c 1B 576,219,498* 8.08E−06/10.4 MQTL1B.3

AX-158523658 3A 653,510,868 1.11E−05/10.1

SL

wsnp_Ex_c14202_22145805 3A 659,159,798 1.14E−05/10.1 1.64E−09

IACX5899 3A 659,529,512 1.14E−05/10.1 1.64E−09

AX-94796364 5A 439,878,001*** 6.54E−06/11.0 MQTL5A.4, DEP1-5A (Li et al. 2022)

AX-94664659 5B 13,361,005 6.96E−06/11.0

Tdurum_contig49841_618b 5B 38,166,722* 3.99E−08/15.6 MQTL5B.1

AX-158525835 5B 559,771,793 6.14E−06/10.6

AX-95114986 7B 340,653,213 8.64E−06/9.2

wsnp_Ex_c32905_41484291b 7B 732,651,100** 2.64E−07/13.7 MQTL63

BS00042111_51d 7B 733,596,201** 1.73E−05/10.4 2.49E−07/13.4 MQTL63

GENE−4848_559b,c 7B 739,931,176 1.25E−11/19.6

SN

IAAV5505c 3B 242,747,403 8.52E−05/7.4* MQTL32

Kukri_c57965_109 5A 537,127,759** 6.46E−05/6.7 MQTL41

BS00064947_51 5A 631,268,120 3.21E−05/7.0

Tdurum_contig81548_426 5B 632,154,961** 9.21E−05/6.2 MQTL45

AX-158539210 5D 480,184,657** 1.66E−05/8.8 2.61E−10, MQTL47

RFL_Contig2815_1305 6A 797,823 8.41E−06/3.1

wsnp_Ex_c8741_14630167b 6A 522,618,612 1.64E−06/3.5

TA006111-0352 6B 713,511,907 3.05E−06/3.4

AX-158543927 7B 568,649,768 6.85E−05/7.8 2.73E−13

BS00023023_51b 7B 683,445,856* 8.96E−05/6.4 MQTL7B.5

RAC875_c13942_2973 7D 93,498,826 2.69E−06/3.4

Continued



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8431  | https://doi.org/10.1038/s41598-024-57469-1

www.nature.com/scientificreports/

favorable seasons, respectively. A similar trend i.e., higher PV explained by haplotype blocks as compared to 
SNPs was observed for all the traits in both seasons except NSS in favorable season (Fig. 5).

Signatures of selection by EigenGWAS and Fst analyses in LR and MV
We conducted EigenGWAS and F-statistical test (FST) to identify genomic regions that have been differentially 
selected between LR and MV, hence must have played an important role in adaptation or other selected traits. 
Overall, EigenGWAS identified 90 SNPs with significant PGC (PGC < 0.01) values (Table S7, Fig. 6). At all loci, 
one of the SNP alleles was almost fixed in either LR or MV (Fig. 7). The pattern of contrasting allele frequencies 
in the LR and MV at each of the 90 loci supports the fact that these loci are under differential selection (Fig. 7, 
Table S7).

Table 1.  Marker trait associations identified by SNP-GWAS in drought affected (2018) and favorable (2019) 
seasons for grain yield (GY), spike length (SL), spike number (SN), number of spikelets per spike (NSS), 
harvest index (HI) and thousand grain weight (TGW). Chr Chromosome. a Pleiotropic SNPs showing 
association with multiple traits under the same or different seasons. b SNPs falling in haplotype blocks 
associated with traits; representation of common genomic regions between the two GWAS. c SNPs identified 
within 2 Mb of the associated haplotype blocks. *Meta-QTL of Liu et al. (2020). **Meta-QTL of Acuña-
Galindo et al. (2015). ***Meta-QTL of Saini et al. (2022).

Trait Marker Chr Physical position (bp)

P value/R2 (%) Co-localization with selection of 
signature (P value in EigenGWAS), 
MetaQTL for GY, known genesDrought affected season (2018) Favorable season (2019)

NSS

Kukri_c21008_657b 2A 779,881,857* 9.34E−05/11.8 MQTL2A.3

RAC875_c25271_138a 2B 762,518,995 7.30E−05/10.7 TaARF12-2B (Li et al. 2022)

Excalibur_c48404_59b 2B 789,868,993** 3.17E−05/11.7 MQTL18

wsnp_Ex_c15646_23969140b 2B 789,869,145** 2.92E−05/11.7 MQTL18

BS00081578_51 2D 67,552,797*** 8.69E−05/12.3 FRIZZY PANICLE−2D, MQTL2D.5

AX-158548368 3B 738,748,940 2.34E−05/14.0

TG0127 5A 586,725,629 9.13E−05/10.5

AX-111624408 5B 700,917,443 4.97E−05/10.3

Tdurum_contig43566_801 6A 594,988,644** 3.80E−06/15.7 MQTL49

HI

GENE−0235_131 1A 381,316,740 3.91E−05/12.1 TaSnRK23-1A (Miao et al. 2017)

AX-158556633 1D 493,638,930 1.61E−05/13.0

AX-158575330 2B 17,631,084 4.72E−05/12.2

RAC875_c25271_138a 2B 762,518,995 3.30E−10/24.0 TaARF12-2B (Li et al. 2022)

AX-158523686 3A 649,544,403 2.23E−05/13.1

AX-94492274 3B 279,702,676 8.17E−05/11.2

AX-89551965b 3B 557,097,177 5.57E−05/12.9

AX-94504714 5A 669,584,446 9.33E−05/9.1

BS00074429_51c 6A 2,221,127 4.85E−07/18.0

AX-95230651 6D 67,510,483 4.55E−05/12.3

RFL_Contig2531_987 7A 10,193,624*** 6.44E−05/11.9 TaGS3-7A, MQTL7A.1

AX-110462419 7A 262,463,706 1.94E−05/10.9

AX-108837168 7A 674,607,818* 9.93E−06/14.1 MQTL7A.7, WAPO1 (Kuzay et al. 
2019)

AX-94439426 7A 674,801,909* 2.98E−05/12.7 MQTL7A.7, WAPO1 (Kuzay et al. 
2019)

RAC875_rep_c78007_394c 7B 701,339,824* 8.76E−05/11.3 MQTL7B.2

Excalibur_c13094_523 7D 235,982,962* 8.34E−05/9.3 MQTL7D.1, TaSPL16-7D (Cao et al. 
2019)

TGW 

Tdurum_contig29983_490 2A 259,213 1.26E−06/9.2

AX-95116218 2A 759,732,578* 2.12E−05/6.1 MQTL2A.3, TaARF12-2A (Li et al. 
2022)

AX-108882320 3A 720,435,586 9.56E−06/9.1 TaTGW6-A1 (Hanif et al. 2016)

Kukri_c23743_112 5B 622,629,693 1.70E−05/6.0

Tdurum_contig5017_993b 5B 635,358,608** 8.24E−07/9.6 MQTL45

wsnp_Ex_c99215_85409445 6A 72,432,063* 6.33E−05/5.9 MQTL6A.1

AX-158552200 6A 447,631,757 2.90E−06/8.7

Excalibur_c15844_1470 6A 447,833,875 51.7E−06/11.5

AX-94971944 6A 448,230,743 1.91E−06/8.9

AX-158552203 6A 449,640,723 1.91E−06/8.9

AX-158526868 6A 452,959,034 6.06E−07/9.9 TaTPP-6A (Zhang et al. 2017)
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Trait Haplotype block* Chr
Physical position (bp)—first to last 
SNP in the block

P value/R2 (%) Co-localization with selection of 
signature (P value in EigenGWAS) 
or MetaQTL for GY or known genesDrought affected season (2018) Favorable season (2019)

GY

H1A-42 1A 38,729,484–39,407,691 5.23E−04/16.7

H1A-43 1A 45,581,400–46,238,712 1.23E−05/7.7

H1B-26 1B 108,837,056–109,729,572 3.63E−05/6.7

H1D-26 1D 49,422,527–50,296,844 1.41E−05/6.8 9.61E−30

H1D-30 1D 272,541,461–272,541,472 5.57E−04/11.3

H2A-71 2A 507,068,286–508,033,171*** 7.46E−04/16.3 1.22E−18, MQTL2A.2

H2A-84 2A 686,857,812–686,877,681 4.58E−06/8.0 7.66E−14

H2A-87 2A 693,292,831–693,421,350 2.20E−04/13.3

H2A-97 2A 709,833,346–709,836,593 1.97E−05/17.8

H2B-138 2B 683,028,883–683,047,437* 6.67E−04/17.3 MQTL2B.5

H2B-198 2B 785,229,422–786,105,977* 2.58E−05/7.4 MQTL2B.5

H2D-22 2D 78,083,628–79,055,437* 2.80E−05/7.4 MQTL2D.4

H2D-34 2D 579,201,885–580,194,720 3.19E−05/6.8

H3A-17a 3A 23,642,562–23,829,202* 1.48E−06/7.0 MQTL3A.1

H3A-90b 3A 624,946,738–625,533,783 7.48E−07/8.1

H3B-112b 3B 562,443,713–562,444,883 5.88E−05/11.4 TaERF3-3B (Jia et al. 2021)

H3B-157c 3B 698,607,594–699,509,692** 1.45E−06/7.6 3.55E−15, MQTL26

H4A-48b 4A 603,286,138–603,380,455** 4.75E−04/17.7 8.33E−25, MQTL 31

H4A-49b 4A 603,450,276–603,460,389** 1.33E−05/11.4 MQTL 31

H4A-63a 4A 622,200,839–622,237,185 1.19E−07/7.4

H5B-69 5A 456,500,530–457,342,644* 1.84E−05/6.7 MQTL5A.5

H5B-95 5A 531,538,511–531,591,516 9.65E−07/8.5 4.61E−40

H5B-171 5A 617,820,739–617,829,157 5.30E−07/6.7

H5B-173 5A 620,018,405–620,827,450 4.45E−06/6.5

H5D-15 5D 549,852,162–550,151,965* 2.27E−06/8.2 MQTL5D.1

H6A-47 6A 61,887,622–61,888,224* 4.72E−04/10.4 MQTL6A.1

H6A-163 6A 614,164,320–614,586,125 1.84E−05/6.7

H6B-66 6B 206,831,865–207,388,128*** 2.29E−07/7.9 MQTL6B.10, TaSPL21-6B (Zhang 
et al. 2017)

H6D-8 6D 454,655,598–454,934,087*** 6.69E−07/6.6 1.65E−16, MQTL6D.1

H6D-18 6D 461,316,633–461,413,027*** 6.89E−05/7.0 MQTL6D.1

H7B-24 7B 59,179,319–59,642,066 1.32E−05/6.8

H7B-60 7B 552,780,328–553,628,525 3.87E−04/14.5

H7B-123 7B 724,940,015–725,380,411** 5.51E−04/12.3 8.83E−29, MQTL63

H7B-124 7B 727,634,048–727,634,326** 1.70E−04/13.6 MQTL63, TaSBEIb (Schönhofen et al. 
2017)

H7B-127c 7B 730,151,518–730,152,759** 1.92E−04/17.1 MQTL63, TaSBEIb (Schönhofen et al. 
2017)

H7B-128c 7B 730,154,257–730,179,871** 6.22E−05/20.1 MQTL63, TaSBEIb (Schönhofen et al. 
2017)

SL

H1B-7b 1B 15,745,280–15,748,142 8.62E−06/21.6

H1B-113b 1B 573,567,500–574,277,209* 3.40E−05/15.8 6.24E−16, MQTL1B.3

H3A-146 3A 742,470,065–742,470,253 5.41E−07/17.5 3.38E−14

H3B-69a 3B 241,273,847–242,168,693 3.66E−04/17.1

H3B-154 3B 691,454,854–691,750,221** 1.34E−04/16.0 1.71E−20, MQTL26

H5A-60 5A 462,154,966–463,066,915* 2.68E−07/24.8 9.21E−23, MQTL5A.5

H5B-3 5B 8,343,384–8,945,985 1.89E−06/23.0

H5B-25b 5B 37,370,018–38,180,259* 4.54E−06/17.5 4.33E−16, MQTL5B.1

H5B-113 5B 550,851,238–551,736,975 2.46E−10/30.4

H6D-25 6D 464,739,680–465,207,141*** 8.93E−04/16.1 MQTL6D.1

H7A-45a 7A 54,943,867–55,345,966 1.69E−04/16.5 7.95E−16

H7B-109 7B 704,114,527–704,270,130 1.44E−04/15.2

H7B-131b,c 7B 732,651,100–732,653,814** 3.21E−06/16.0 MQTL63

H7B-132b 7B 739,931,176–739,931,859 2.97E−10/20.2

H7B-135c 7B 741,572,238–741,573,528 7.95E−09/18.9

Continued
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Trait Haplotype block* Chr
Physical position (bp)—first to last 
SNP in the block

P value/R2 (%) Co-localization with selection of 
signature (P value in EigenGWAS) 
or MetaQTL for GY or known genesDrought affected season (2018) Favorable season (2019)

SN

H2B-144 2B 692,465,836–692,468,875* 3.92E−07/5.4 MQTL2B.5, KAT-2B (Chen et al. 
2020)

H2D-16 2D 73,571,362–74,279,445 3.99E−06/5.3

H3A-17a 3A 23,642,562–23,829,202* 1.02E−06/5.7 MQTL3A.1

H3A-102 3A 683,239,168–683,249,841 7.47E−06/3.8

H3B-69a,c 3B 241,273,847–242,168,693 8.26E−04/14.6

H4A-63a 4A 622,200,839–622,237,185 9.42E−04/10.6 1.83E−06/5.3

H4A-73 4A 666,148,980–666,151,081* 6.65E−06/3.9 MQTL4A.2

H6A-78b 6A 522,618,612–522,618,750 4.88E−06/4.2

H6A-123 6A 599,911,928–600,476,173** 5.49E−07/7.0 8.71E−27, MQTL49, TaOGT1 (Fan 
et al. 2021)

H7A-45a 7A 54,943,867–55,345,966 4.34E−04/14.0 7.95E−16

H7B-36 7B 155,727,255–156,707,640 2.89E−07/6.3

H7B-96b 7B 683,445,840–683,514,740* 6.99E−04/11.6 2.67E−12, MQTL7B.5

NSS

H1B-3 1B 4,347,096–5,158,560 6.22E−08/32.8

H1B-123 1B 614,184,398–614,791,382 2.34E−07/33.3

H2A-26 2A 59,553,585–59,554,468 8.02E−04/9.5 trs1/WFZP-A (Du et al. 2021)

H2A-152a 2A 761,306,730–761,307,264* 5.55E−04/12.3 3.0E−19, MQTL2A.3, TaARF12-2A 
(Li et al. 2022)

H2A-161a,b 2A 779,881,836–780,715,720* 3.10E−09/34.9 6.02E−13, MQTL2A.3

H2B-2 2B 1,331,398–2,109,745 3.13E−07/31.0

H2B-80 2B 192,364,438–192,364,804 9.37E−04/8.0

H2B-202b 2B 789,868,993–789,869,145** 1.14E−04/11.7 MQTL18

H3A-8 3A 11,893,292–12,253,793 2.56E−06/30.5

H3B-50 3B 69,604,748–70,585,887 4.58E−04/12.5

H3B-191 3B 775,824,676–776,359,464** 8.68E−08/31.4 9.65E−15, MQTL27

H3B-192 3B 778,277,449–778,297,183** 8.07E−09/28.1 MQTL27

H3B-193a 3B 779,135,885–779,535,750** 2.51E−07/33.2 MQTL27

H3B-194 3B 779,536,788–779,577,828** 3.02E−08/29.2 MQTL27

H3B-195 3B 781,043,145–781,044,112** 6.70E−10/27.9 MQTL27

H3B-196 3B 781,044,508–781,493,870** 1.17E−07/28.8 MQTL27

H4B-57 4B 538,270,213–538,999,562 6.83E−04/13.1

H5A-106 5A 535,733,671–536,677,294 1.83E−08/29.7

H6A-35 6A 29,610,252–30,190,396 4.37E−07/32.6

H6D-15 6D 460,465,066–460,570,638*** 7.91E−08/33.5 MQTL6D.1

H7A-23 7A 19,899,388–19,899,713 1.21E−04/14.1

H7A-92 7A 141,261,164–141,272,130 4.89E−04/11.3 TaPIN1-7A (Yao et al. 2021)

Continued
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In the F-statistical test, SNPs above the threshold of Fst > 0.101 were declared to be under differential selec-
tion based on the average Fst 0.101 ± 0.007 (SD) between LR and MV. A total of 85 SNPs showed Fst > 0.101 and 
82 of these were common with EigenGWAS (Table S7). The A genome showed the largest number of SNPs 
under selection (54) followed by the B (25) and D (11) genomes. Based on the genome wide LD threshold 
of ~ 6 Mb, SNPs within 6 Mb region were merged to declare a selection region and thus 39 selection regions 
were identified. Notably, on chromosomes 4A and 6B, multiple selection hot spot regions were observed (Fig. 6, 
Table S7). On chromosomes 4A, five selection regions were identified. Of these, four selection regions were 
0.04 Mb (100,634,209–100,673,242 bp), 6.0 Mb (113,854,870–119,931,428), 2.8 Mb (542,827,852–545,618,766) 
and 0.02 Mb (570,265,418–570,478,671) long, while the fifth region was at 640 Mb identified by one SNP 
(AX-89422359). Likewise, on chromosome 6B, seven selection regions were evident; three regions were 
identified by only one SNP at each region at 77.7, 112.9 and 567.4 Mb while the remaining four were 4.2 Mb 
(92,433,077–96,648,725), 5.4 Mb (103,667,878–109,143,478), 6.5 Mb (650,045,929–656,565,987) and 0.01 Mb 
(678,175,501–678,344,340) long.

We aligned known genes, published QTL/meta-QTL and MTA identified in GWAS studies in wheat for 
flowering-time, adaptation and yield and yield-related traits to understand the biological relevance of the selec-
tion regions identified here. Table 3 shows selection regions linked to known genes/meta-QTL known for plant 
adaptation and yield related traits. Out of 39 selection regions, 15 (i.e., 38.4%) were within the proximity of 
known functional genes controlling flowering [PRR-A1, PPR-D1, TaHd1-6B) and yield and yield components 
(TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaSnRK210-4A, 

Trait Haplotype block* Chr
Physical position (bp)—first to last 
SNP in the block

P value/R2 (%) Co-localization with selection of 
signature (P value in EigenGWAS) 
or MetaQTL for GY or known genesDrought affected season (2018) Favorable season (2019)

HI

H1A-19 1A 12,505,528–12,506,155 3.93E−05/18.6

H2A-152a 2A 761,306,730–761,307,264* 8.15E−09/25.5 3.0E−19, MQTL2A.3, TaARF12-2A

H2A-161a 2A 779,881,836–780,715,720* 9.14E−04/18.5 6.02E−13, MQTL2A.3

H2D-26 2D 81,299,053–81,305,597 2.64E−05/14.5

H2D-58 2D 650,322,702–650,325,224 9.85E−06/20.9

H3B-10 3B 6,754,335–6,754,382 5.55E−05/15.1

H3B-108b 3B 557,088,909–557,097,177 1.93E−05/20.1

H3B-114 3B 564,760,298–565,637,495 4.72E−04/15.4

H3B-126 3B 581,266,296–581,703,874 7.87E−05/24.6

H5A-83 5A 492,618,192–493,606,424 2.34E−05/23.2 3.33E−13

H5A-110 5A 547,814,036–548,609,945 9.08E−04/21.3 2.07E−21

H5B-68 5B 455,735,459–455,738,860 8.78E−05/25.4

H5B-196 5B 678,452,476–678,529,123 4.30E−07/31.1

H5B-200 5B 680,357,525–680,605,514 6.94E−05/24.7

H6A-5c 6A 2,953,239–3,206,299 3.53E−06/25.7

H6B-65 6B 201,205,772–201,222,999 9.83E−05/23.3 3.26E−11

H6B-90 6B 470,807,503–471,167,088 5.24E−05/25.1

H7A-186 7A 721,223,720–721,659,295 9.14E−05/25.3

H7B-103c 7B 701,302,817–701,326,473* 1.48E−04/16.9 MQTL7B.2

H7D-11 7D 101,398,126–101,761,180 1.73E−05/22.8

TGW H1A-145 1A 544,170,158–544,365,169 2.01E−04/10.8 1.06E−12

TGW 

H1B-175 1B 680,862,984–680,867,496 5.22E−05/12.9

H2A-67 2A 501,850,118–502,623,346*** 3.29E−05/11.0 MQTL2A.2, TaCwi-A1-2A (Ma et al. 
2012)

H3A-93 3A 651,627,162–651,627,389 6.40E−05/11.3 2.66E−15

H3A-105 3A 685,357,867–686,127,701 3.40E−06/11.9

H3B-147 3B 672,867,140–673,850,338 2.99E−05/10.7

H3B-166 3B 723,791,754–724,750,829 7.31E−06/13.8

H3B-193a 3B 779,135,885–779,535,750** 5.76E−05/16.8 MQTL27

H5B-161 5B 601,336,331–602,244,923** 9.93E−05/11.3 MQTL44

H5B-175b 5B 635,358,608–635,358,677** 7.85E−06/11.2 MQTL45

H6A-22 6A 17,911,219–18,713,269 4.58E−05/17.0

Table 2.  Marker trait associations identified by haplotype-GWAS in drought affected (2018) and favorable 
(2019) seasons for grain yield (GY), spike length (SL), spike number (SN), number of spikelets per spike 
(NSS), harvest index (HI) and thousand grain weight (TGW). Chr chromosome. a Pleiotropic SNPs showing 
association with multiple traits under the same or different seasons. b Representation of common genomic 
regions between the two GWAS. c Haplotype blocks identified within 2 Mb of the associated SNPs. *Meta-QTL 
of Liu et al. (2020). **Meta-QTL of Acuña-Galindo et al. (2015). ***Meta-QTL of Saini et al. (2022).
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FBP, TaLAX1, TaPIL1 and AP3-1-7A/WPA3-7A). Six selection regions were close (within 5 Mb) to QTL/metaQTL 
reported for yield and yield related traits. Eight selection regions showed homology with genes coding for ion/
amino acid/sugar transporters, transcription factors and regulatory genes (Table S7). For the remaining selection 
regions, annotated candidate genes were identified from the EnsemblPlant database, however, their molecular 
functions are not known.

Most importantly, the selection regions also included known genes for quality (Pina-D1, Glu-D1, TaSS4-1A 
and Tamyb10-A1) and disease resistance (Yr78, Yr5) (Table S7). We validated some of the selection regions by 
genotyping the panel with 32 gene-based KASP assays available for known genes related to flowering, yield 
related traits, quality and disease resistance in wheat and calculated the allele frequencies and Fst in both groups 
(Table S8). The results clearly showed that seven genes out of 32 showed signatures of selection (Fst > 0.101) and 5 
(PRR73-A1-4A, TaSus2-2B, Glu-D1, Pinb-D1 and Yr5) of these were also identified in EigenGWAS (Table S8). In 
addition, Rht-B1 and Ppd-D1 genes showed signatures of selection but these were missed in EigenGWAS prob-
ably due to low density of SNPs around these two genes in this study. Interestingly, LD analysis of the 7 genes 
revealed that these were in high LD with each other (Fig. S4). Table S9 shows gene-based association mapping 
for all traits in the two seasons.

Discussion
GWAS has been extensively deployed in wheat to detect genomic regions associated with complex agronomic 
 traits38, however, the approach has not been explored much in combination with selective sweep  analysis14,39. 
While GWAS effectively identifies large-effect loci, its application is limited to the germplasm and phenotypes 

Figure 3.  Allelic effects of five best haplotypes (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124) and five 
best SNPs (AX-158598372_3B, wsnp_Ex_c7451_12757458_3D, BS00067150_51_5A, AX-89582418_6B and 
AX-158592462_7B) associated with GY in the drought season. The favorable haplotype alleles are underscored.

Figure 4.  Heat map of the panel showing distribution of favorable haplotype alleles as green vertical rectangle 
for GY in LR and MV at five best haplotype blocks (H1A-42, H2A-71, H4A-48, H7B-123 and H7B-124). Each 
vertical black line represents an individual accession and each green vertical rectangle represents the favorable 
allele of the corresponding haplotype block labelled on the left. The numbers on the x-axis show first and 
last serial number of the LR (1–84) and MV (85–157) corresponding to the serial number in Supplementary 
Table S1.
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Figure 5.  Percentage variation explained by SNPs and haplotypes associated with the traits. GY grain yield, 
SL spike length, SN spike number, NSS number of spikelet per spike, HI harvest index, TGW  thousand grain 
weight.

Figure 6.  Manhattan plot from EigenGWAS in a panel of Turkish landraces and modern varieties highlighting 
SNPs that showed signatures of selection. The X-axis represents chromosome numbers and Y-axis represents the 
corrected P value, also called PGC.

Figure 7.  Frequencies of alleles in LR and MV at 90 loci showing signature of selection.
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SNP Chr
Physical 
position

Allele in 
LR

Allele in 
MV P PGC Freq LR Freq MV

Strenth of 
selection Fst

Co-location 
with known 
genes/QTL/
MetaQTL 
for yield Traes ID

Kukri_c44738_477 1A 49,363,611 T G 6.18E−45 0.0031 0.78 0.10 0.828 0.113

QTL for 
thousand 
kernel weight 
and kernel 
traits (Bhatta 
et al. 2018, Li 
et al. 2019)

TraesCS1A02G067900

AX-158555559 1A 159,173,047 A C 2.36E−52 0.0014 0.03 0.81 1.260 0.126
proximity 
to AG1-1A/
WAG1-1A 
gene

Ra_c21676_178 1A 506,282,302 G A 4.23E−47 0.0025 0.05 0.80 1.118 0.111
proximity 
to DUO-A1 
gene

Excalibur_
c23155_327 1A 506,553,332 C T 5.48E−47 0.0025 0.05 0.80 1.136 0.126

proximity 
to DUO-A1 
gene

Kukri_c24570_282 1A 539,964,551 G T 2.11E−63 0.0004 0.89 0.07 1.333 0.133 proximity to 
TaSS4-1A

AX-110606361 1B 558,910,249 G A 1.9E−69 0.0002 0.81 0.09 1.061 0.126
proximity 
to DUO-B1 
gene

AX-95152246 1B 559,575,971 G A 2.01E−56 0.0009 0.81 0.09 0.965 0.097
proximity 
to DUO-B1 
gene

IAAV2018 2B 168,622,486 G A 9.22E−79 7.96E−05 0.85 0.02 1.389 0.139
proximity to 
TaSus2-2B 
gene

Excalibur_
c2484_2113 2B 717,474,767 C T 4.82E−45 0.0031 0.00 0.75 1.192 0.129

proximity to 
TaGS2-B1 
gene

Tdurum_con-
tig33100_127 3A 535,219,515 T C 4.62E−71 0.0002 0.86 0.01 1.469 0.147

proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G301800

BS00022882_51 3A 535,224,341 C T 2.02E−53 0.0012 0.86 0.06 1.295 0.129
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G301800

BobWhite_
c30232_154 3A 535,323,709 A G 2.02E−53 0.0012 0.86 0.06 1.295 0.129

proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G302100

wsnp_
BE443568A_
Ta_2_1

3A 536,637,519 T C 2.02E−53 0.0012 0.86 0.06 1.295 0.129
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G302700

AX-108817109 3A 537,744,597 T C 2.02E−53 0.0012 0.86 0.06 1.295 0.129
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G303400

Tdurum_con-
tig83663_371 3A 540,662,354 G A 1.11E−44 0.0032 0.86 0.08 1.210 0.121

proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G304600

Kukri_c68006_282 3A 540,665,020 G A 3.40E−45 0.0031 0.86 0.08 1.227 0.123
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G304600

Kukri_c47643_920 3A 540,666,242 A G 1.11E−44 0.0032 0.86 0.08 1.210 0.121
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G304600

BS00021871_51 3A 540,669,147 T G 4.17E−49 0.002 0.86 0.07 1.252 0.125
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G304600

wsnp_
BE490613A_
Ta_2_1

3A 540,969,715 G A 1.11E−44 0.0032 0.86 0.08 1.210 0.121
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G304900

Continued
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SNP Chr
Physical 
position

Allele in 
LR

Allele in 
MV P PGC Freq LR Freq MV

Strenth of 
selection Fst

Co-location 
with known 
genes/QTL/
MetaQTL 
for yield Traes ID

GENE−3939_653 3A 541,209,947 G A 3.04E−48 0.0022 0.88 0.09 1.247 0.125
proximity 
to AG2-3A/
WAG2-3A 
gene

TraesCS3A02G305100

wsnp_Ku_
c44716_51926415 3A 600,008,239 G A 1.89E−51 0.0015 0.03 0.82 1.283 0.128

proximity 
to TaLAX1 
gene

wsnp_CAP8_
c296_283066 4A 100,634,209 G A 2.6E−71 0.0002 0.01 0.86 1.470 0.147 FBP gene TraesCS4A02G093100

IAAV3906 4A 113,854,870 T C 1.93E−64 0.0004 0.00 0.83 1.397 0.140
proximity 
to PRR-A1 
flowering 
gene

wsnp_Ku_
c16481_25377573 4A 114,487,263 T C 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ku_
c7197_12439299 4A 114,587,218 T C 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ex_
c4286_7734046 4A 114,744,423 C T 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ex_
c1387_2659020 4A 115,912,802 A G 5.84E−63 0.0004 0.00 0.83 1.388 0.139

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ku_
c14803_23225628 4A 115,913,316 T C 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ku_
c50991_56423564 4A 116,473,035 T G 8.42E−53 0.0013 0.07 0.85 1.239 0.124

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ex_
c3178_5868813 4A 116,473,523 C T 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ex_
c27088_36309449 4A 119,071,282 A C 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

wsnp_Ex_
c8131_13753986 4A 119,084,973 G T 1.93E−64 0.0004 0.00 0.83 1.397 0.140

proximity 
to PRR-A1 
flowering 
gene

Kukri_c57687_182 4A 119,931,428 C A 1.93E−64 0.0004 0.00 0.83 1.397 0.140
proximity 
to PRR-A1 
flowering 
gene

Kukri_c48155_158 4A 120,605,054 T G 7.38E−59 0.0007 0.00 0.81 1.343 0.134
proximity 
to PRR-A1 
flowering 
gene

AX-108900808 4A 542,827,852 G C 9.62E−73 0.0002 0.86 0.09 1.208 0.121 TaSnRK210-
4A

AX-158524430 4A 544,389,263 G C 6.92E−61 0.0005 0.81 0.09 1.057 0.106 TaSnRK210-
4A

TA001512-0387 4A 545,601,781 A G 9.15E−62 0.0005 0.81 0.09 1.055 0.106 TaSnRK210-
4A

Ra_c37920_342 4A 545,602,051 T C 9.99E−66 0.0003 0.82 0.08 1.121 0.112 TaSnRK210-
4A

BobWhite_rep_
c65013_174 4A 545,603,625 C T 6.74E−63 0.0004 0.81 0.09 1.061 0.106 TaSnRK210-

4A

AX-158581338 4A 545,618,766 G A 6.74E−63 0.0004 0.81 0.09 1.061 0.106 TaSnRK210-
4A

Kukri_c48199_102 4B 78,021,175 A G 1.86E−49 0.0019 0.00 0.77 1.225 0.122 TaSnRK210-
4B

Continued
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used in analyses and it often misses the opportunity to detect allelic changes associated with signatures of breed-
ing  selection40. Insights gained from a joint GWAS and selective sweep analysis expand the opportunities to 
exploit both associated loci and selection footprints for designing effective breeding  strategies14. The explosion 
of SNPs in the post genomics era, the concomitant advancements in statistical tools and the availability of high-
resolution reference genomes in wheat have provided unprecedented opportunities to perform such integrated 
analyses and to efficiently apply the data for genomics-assisted breeding.

In the present study, we have characterized a panel of Turkish winter wheat landraces (LR) and modern 
varieties (MV) by GWAS and signatures of selection analyses to identify the genes and MTA associated with 

SNP Chr
Physical 
position

Allele in 
LR

Allele in 
MV P PGC Freq LR Freq MV

Strenth of 
selection Fst

Co-location 
with known 
genes/QTL/
MetaQTL 
for yield Traes ID

RAC875_
c13639_2159 4D 139,205,215 C T 5.94E−95 1.41E−05 0.91 0.07 1.412 0.141 TaNHX1-4D

wsnp_Ra_
c13906_21872355 4D 341,924,750 G T 5.03E−69 0.0002 0.00 0.85 1.454 0.145 proximity to 

TaPRR-4D

AX-94466267 5A 457,881,918 C A 1.37E−69 0.0002 0.70 0.03 0.983 0.098

MQTL 
57 of Liu 
et al. 2020 
(drought and 
heat stress)

AX-158565171 5A 580,799,490 T C 1.38E−42 0.0041 0.65 0.04 0.847 0.085 proximity to 
TaPIL1

Excalibur_
c74858_243 5B 13,190,688 A G 7.53E−98 1.04E−05 0.03 0.93 1.618 0.162

QTL for 
awn length 
(Bhatta et al. 
2018)

TraesCS5B02G013300

Kukri_c34173_518 5B 531,540,179 C T 4.17E−42 0.0043 0.85 0.09 0.976 0.121
QTL for 
spike length 
(Li et al. 
2019)

TraesCS5B02G350900

AX-94999151 5D 13,717,517 C T 1.57E−62 0.0005 0.95 0.08 1.346 0.135

Proximity 
to Pina-D1 
(3.5 Mb) 
and Pinb-D1 
(3.6 Mb)

TraesCS5D02G020800

AX-95120637 6B 567,470,504 T C 1.62E−71 0.0002 0.01 0.85 1.422 0.142 TaHd1-6B

AX-158535361 6B 650,045,929 A G 1.01E−72 0.0002 0.01 0.86 1.460 0.146

MQTL67 
of Liu 
et al. 2020 
(Drought 
and Heat 
Stress)

TraesCS6B02G375600

GENE−4566_348 6B 651,411,545 T C 8.47E−71 0.0002 0.01 0.86 1.454 0.145

MQTL67 
of Liu 
et al. 2020 
(Drought 
and Heat 
Stress)

TraesCS6B02G376400

Kukri_c3292_670 6B 651,418,760 A G 9.77E−76 0.0001 0.03 0.89 1.492 0.149

MQTL67 
of Liu 
et al. 2020 
(Drought 
and Heat 
Stress)

TraesCS6B02G376500

RFL_Con-
tig1105_1309 6B 651,419,105 G A 2.84E−72 0.0002 0.03 0.88 1.451 0.145

MQTL67 
of Liu 
et al. 2020 
(Drought 
and Heat 
Stress)

TraesCS6B02G376500

AX-94465863 6B 656,565,987 T A 7.43E−43 0.004 0.01 0.77 1.177 0.126

MQTL67 
of Liu 
et al. 2020 
(Drought 
and Heat 
Stress)

TraesCS6B02G381900

wsnp_Ex_
c42836_49314564 7A 515,006,480 G A 1.33E−61 0.0005 0.00 0.84 1.434 0.143

Proximity to 
AP3-1-7A/
WPA3-7A

Table 3.  Known genes/QTL, meta-QTL for plant adaptation and yield traits identified by EigenGWAS and Fst 
analysis in the present study. Chr chromosome, Freq LR frequency of allele in landraces, Freq MV frequency 
of allele in modern varieties, PGC p value with a genomic control based on EigenGWAS, Traes ID ID for 
annotated genes in wheat in EnsemblPlant database.
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improved yield under drought for deployment in breeding. The LR collection investigated here is a representa-
tive set of superior landraces, drawn from a large collection done by IWWIP almost a decade ago from 2009 to 
 201441. All traits showed significant variation in the panel, supporting the inclusion of all traits in GWAS and 
signature of selection analyses. The GY in the drought season of 2018 was lower than reported in previous stud-
ies on winter wheat germplasm in Konya,  Turkey12,42. A comparison of yield-related traits such as TGW and HI 
also revealed significant reductions in these parameters in the present study (16–23% in TGW and 6.0–7.0% in 
HI) as compared to previous studies (10–12.0% in TGW and 2.0–3.0% in HI), suggesting a more devastating 
effect of drought in 2018 than previous  years12,42. The total rainfall during 2018 growing season (149.6 mm) was 
32.7 and 38.4% lower than that during 2016 (222.4 mm) and 2017 (243.0 mm) growing seasons in  Konya12. A 
comparison of broad sense heritability (H2) of GY and TGW with previous studies in both spring and winter 
wheat revealed a similar trend as found  here10–12,42,43, i.e., a low H2 for GY and high H2 for TGW across years. With 
regards to HI, the present and previous studies showed variable results and our results were in line with those 
which showed lower H2 for  HI44. The correlations of traits with GY were higher and significant under drought 
conditions in both LR and MV than in favorable environment, as was also observed in a previous  study45. The 
highest positive correlation between HI and GY in LR suggested that HI is a primary determinant of GY under 
stress in landraces, whereas in MV it was the spike length. The panel characterized in this study showed high 
genetic diversity, with an average PIC of 0.31, comparable to winter wheat sets from Australia, Kazakhstan or 
 Croatia46–48 and higher than observed in panels of winter wheat germplasm from the  US49–51. The PIC and π sta-
tistics in MV were comparable to the values estimated in the LR, indicating that the genetic diversity of the MV 
is maintained during crop improvement processes. The International Exchange germplasm Set contains 50% of 
breeding lines derived from the IWWIP breeding program through partnership with CIMMYT. The diversity in 
CIMMYT germplasm has been reported to be high through routine introductions of synthetics and other wheat 
wild  relatives52,53. The LD decay observed was at ~ 5.94 Mb for the complete panel at cut off r2 = 0.1, which is in 
the range reported for highly diverse germplasm  sets18,54–57. The panel revealed a clear distinction between LR 
and MV, suggesting LR as valuable genetic resource for introgression of novel alleles into MV. Further, Afghan 
and Turkish landraces formed two distinct groups whereas Iranian landraces overlapped these two groups. This 
indicates genetic differentiation of Afghan and Turkish landraces and interchange of Iranian landraces with 
neighboring countries through seed exchange.

SNP- and haplotype-based GWAS were used to identify genomic regions associated with improved GY and 
yield components under rainfed conditions. We used an LD-based approach to construct genome wide haplotype 
blocks. The LD-based approach reflects recombination history of the population and thus is the best among all 
the methods developed to construct haplotype  blocks28. The average number of haplotype blocks per chromo-
some was similar to the findings in a synthetic  panel14 and higher than obtained in a panel of central European 
winter wheat  germplasm58. We found very few common MTA between favorable and drought stress seasons for 
all the studied traits with both GWAS methods. Similar results have been found in many studies in which QTL 
under optimal and stress conditions have been compared and it is attributed to different evolutionary trajectories 
induced by contrasting environmental conditions leading to activation of different sets of  genes11,14. Together, 
both GWAS identified 18 known genes to confer yield advantage in wheat under different water regimes. Of 
these, the allelic variation in seven genes (TaERF3, TaSnRK23, TaARF12, TaDEP1, TaTGW6, TaSPL21, TaCwi-
A1) has been shown to be associated with agronomic  traits22,59–63. It was demonstrated recently that two genes, 
TaARF12 and TaDEP1, encoding an auxin response factor and the G-protein γ-subunit, respectively, control 
both plant height and grain weight pleiotropically and both genes are positively selected in Chinese cultivars over 
the course of  breeding22. Further, they showed that TaARF12 and TaDEP1 interact epistatically with Rht-1 locus, 
suggesting that plant height and yield traits have been selected simultaneously during modern wheat breeding.

Haplotype-based GWAS identified a higher number of MTA (26) that overlapped with known meta-QTL and/
or the signatures of selection (27) identified in the present study when compared to SNP-based GWAS (16 and 8, 
respectively). The MTA overlapping with signatures of selection (i.e. showing significant P values in EigenGWAS) 
in both GWAS can be potential future breeding targets after validation. Present results corroborate previous 
studies and reinforce that haplotypes-based GWAS identifies QTL with better statistical significance (i.e. better 
P-values and higher  R2) than  SNPs12,18,19,30. We obtained 4 to 18% higher PV for the traits in haplotype-GWAS 
as compared to SNP-GWAS. Out of the five best high effect haplotype blocks associated with GY in the drought 
season, four showed signatures of selection (H2A-71, H4A-48, H7B-123 and H7B-124) and hence are interesting 
breeding targets. The haplotype blocks H7B-123 and H7B-124 are in proximity of the TaSBEIb gene, which codes 
for a starch branching enzyme (SBE) 1,4-alpha-glucan branching enzyme involved in starch biosynthesis. Starch 
deposition occurs synchronously with grain development in wheat and its accumulation is greatly affected under 
drought and heat stress conditions because of significant reduction in the activities of the key enzymes involved 
in the conversion of sucrose to starch including  SBE64,65. The SNPs in haplotype block H2A-71 fell in the region 
of TraesCS2A02G295400 (Table S10). The ortholog of TraesCS2A02G295400 in rice OsGIF1 encodes a cell-wall 
invertase required for carbon partitioning during early grain-filling66,67. Recently, the pleiotropic role of GIF1 
gene has been suggested regulating the sizes of stems, leaves and grains in  rice67. The SNPs in haplotype block 
H4A-48 showed homologies with various transcription factor genes including Zinc finger C2H2-type (TraesC-
S4A02G310700), which are known as master regulators of abiotic stress responses in plants such as  drought68. The 
gene network analysis of this candidate gene showed that it is interacting with five other genes (Fig. S5) involved 
in diverse pathways and regulating leaf relative water content, stomatal resistance, harvest index, days to heading 
and chlorophyll content; a suite of drought-adaptive traits. Similarly, the SNPs in H1A-42 show homologies with 
regulatory/transcription factor genes belonging to AP2/ERF domain superfamily (TraesCS1A02G058400) and 
transporters such as sugar phosphate transporter (TraesCS1A02G058600, TraesCS1A02G058700) (Fig. S6). The 
gene network analysis indicated the involvement of these genes in multiple stress pathways including drought 
and cold tolerance and disease resistance. The heat map showed that the favorable alleles of these five high affect 
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haplotypes are either missing in modern varieties or present in less than 10% frequency. Hence, their deploy-
ment is essential to enhance the existing gene pool for novel drought stress tolerance alleles and for further yield 
improvement of the modern germplasm.

We used EigenGWAS and Fst analysis between LR and MV, to identify the footprints of selection that are 
linked to adaptation and yield improvement. We identified selection footprints in 39 genomic regions. Of these, 
15 selection regions were within proximity of known functional genes in wheat controlling flowering (PRR-A1, 
PPR-D1, TaHd1-6B) and yield and related component traits (TaSus2-2B, TaGS2-B1, AG1-1A/WAG1-1A, DUO-A1, 
DUO-B1, AG2-3A/WAG2-3A, TaLAX1, TaNHX1-4D, TaSnRK210-4A, FBP, TaPIL1 and AP3-1-7A/WPA3-7A) 
(Table 3). A comparison between the sets of genes identified by GWAS and signatures of selection analysis reveals 
unambiguously that the two approaches pulled out entirely different sets of genes, thus expanding the repertoire 
of genes that can be utilized in breeding. Notably, the frequencies of early flowering alleles were high in MV for 
all flowering genes showing signatures of selection (PRR-A1, PPR-D1, TaHd1-6B), whereas for the yield-linked 
genes selection of alleles was quite variable between the landraces and modern germplasm.

For deployment in breeding, two strategies can be followed. In the first strategy, the genes that showed 
higher favorable allele frequency in LR (for example, TaSus2-2B, DUO-B1, AG2-3A/WAG2-3A, TaSnRK210-
4A, TaNHX1-4D and TaPIL1) can be deployed for increasing the frequency of favorable alleles in MV through 
targeted crosses and marker-assisted selection. The second strategy could be allele mining of genes with higher 
frequencies of favorable alleles in the modern germplasm to identify new allelic variations. For example, genes 
such as TaGS2-B1, TaLAX1 and DUO-A1 could be mined for additional SNP variation that could not be cap-
tured here and their association with drought adaptive traits could be re-explored as has been done in case of 
TaGS2-B1  gene69.

Many previous studies in wheat have shown selection signatures for Vrn-1  loci14,23,70,71. In our study and an 
earlier  study72, signatures of selection were not observed for Vrn-1. All three major Vrn 1 loci (Vrn-A1, Vrn-B1 
and Vrn-D1) showed a balancing selection for winter habit alleles in both LR and MV. The present results there-
fore suggest that, unlike in spring wheat, the contribution of Vrn-1 loci in shaping the evolution of the winter 
wheat is not a significant one. The flowering time genes PRR-A1, PRR-D1, TaHd1-6B and Ppd-D1 showed signa-
tures of selection indicating the important roles these genes play in fine tuning the crop growth cycle of modern 
germplasm to increase their adaptability to wider cultivation zones of the country (Turkey) and elsewhere (Iran 
and Afghanistan). The high LD between PRR-A1 and Ppd-D1 genes and significant association of PRR-A1 and 
Ppd-D1 with GY and yield related traits  (R2 of 32.9–58.8%) further confirm their importance in providing yield 
advantage to MV (Table S9).

Intriguingly, we found selection footprints for only two gene(s) on homoeologous chromosomes. One gene 
was identified on chromosomes 4A at 113–120 Mb (PRR-A1) and 4D at 341 Mb (PRR-D1), respectively. The 
other gene was DUO-1 on chromosomes 1A (DUO-1-1A) and 1B (DUO-1-1B). Such observations are common 
and have been reported in previous studies in  wheat73,74. It has been suggested that directional selection rarely 
acts on multiple advantageous mutations across homoeologous regions. This happens to prevent fitness loss that 
might occur due to simultaneous mutations in the three copies of the genes on homoeologous  chromosomes73. 
The study  by74 showed simultaneous selection of one SNP in LEC2 (LEAFY COTYLEDON2) gene on chromo-
some 2A and 2B. Several selective sweep regions were identified on chromosome 4A and 6B, in the present study. 
Several selective sweeps on chromosome 4A were also identified in wheat germplasm from Iran and  Pakistan23, 
suggesting high selection pressure on genes from this chromosome in wheat from multiple geographies. The long-
est selective sweep identified on chromosome 4A was a 6 Mb region in the vicinity of the PRR-A1  gene75. PRR-A1 
gene is a paralog of Ppd1 gene for photoperiod insensitivity. This is not surprising considering the important 
role played by this gene in fine tuning the flowering times of wheat, especially during stress conditions. Another 
important selection region was in the vicinity of TaSnRK210-4A gene, coding for a sucrose non-fermenting 
1-related protein kinase and regulating grain weight and spike length in wheat. Interestingly, a selection region on 
chromosome 4A was identified at 100.6 Mb where candidate gene search showed proteins/domains of unknown 
function (DUF) 3527. Since it was selected in the MV in very high frequencies, we assume that it must be playing 
an important role in adapting the plants to new environments. Although no definite role could be ascertained for 
DUF3527, evidences are being generated for other families of DUF proteins. For instance, expression profiling 
of DUF4228 genes was investigated in Arabidopsis exposed to multiple abiotic stresses (osmotic, salt and cold) 
and results suggested the involvement of DUF4228 genes in the pathways of plant resistance to abiotic  stresses76.

Conclusion
The identification of many favorable haplotypes from landraces associated with improved GY under drought 
stress conditions indicates that the landraces have considerable potential towards enhancing the existing gene 
pool for drought stress tolerance. Sixteen landraces have been identified carrying multiple haplotypes alleles and 
showing GY from 3000 to 3781 kg/ha. These landraces should be deployed in breeding to expand the repertoire 
of drought tolerance alleles in the current germplasm for further yield improvement. Further, the genes identi-
fied in signatures of selection analyses should be subjected to allele mining in the modern germplasm to identify 
additional, yet unexplored, superior alleles.

Data availability
The data is available as supplementary files.
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