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Quantization of linear acoustic 
and elastic wave models 
in characterizations of isomorphism
Chen Yang 

From the macroscopic to the microscopic world, quantum mechanical effects in acoustics and 
elastic waves have become increasingly important. Observations on the quantum effects of acoustic 
and elastic waves using experimental methods have been reported in the literature. However, the 
conventional formulations of acoustic and elastic waves are still mainly governed by classical models. 
In this study, we investigated the quantization of acoustic and elastic waves using generalized Lorenz 
gauges. The potential variables of acoustic and elastic waves can be quantized in a manner similar to 
that of electrodynamics. The results include the Schrödinger equation with minimal coupling between 
the field and particles. The quantization of field variables is established as a consequence of the 
gauge symmetry property of the Schrödinger equation. Later, we explored the connections between 
the parallel formulations of mechanics and waves through an algebraic aspect. This highlights the 
isomorphism pattern from the theoretical characterization within the parallel formulations. To support 
the results, the derivations of potential formulations based on Lorenz gauges and functional mapping 
between field variables are presented.

Historically, mechanical waves, such as acoustics and elasticity, have been considered as waves that carry classical 
properties only. During the last few decades, continuous research and studies on acoustic and elastic media in 
microscopic worlds have demonstrated the important quantum mechanical properties of waves in propagation 
and interaction1,2. Recent experimental studies on small devices (e.g., thin-film beams and plates) have revealed 
quantum features in microscale and nanoscale mechanical devices3–7. In such mechanical devices, acoustic 
and elastic potentials are important sources of energy to interact with the external microscopic world. These 
experiments not only established the direction of further study on the quantum mechanics of the macroscopic 
world, but also demonstrated the important connections between classical and quantum worlds. In parallel, the 
discoveries from many experiments have generated theoretical interest in characterizing the quantum properties 
in acoustics and elasticity.

In the past, the foundations of acoustics and elastics were established using continuum mechanics in the 
classical regime. The governing equations of acoustic and elastic waves are derived from an infinitesimal element 
based on the equation of motion. Simultaneously, a model of electromagnetism has been developed for both 
field strength and gauge-potential formulations8,9. Unlike electromagnetism, the formulation of acoustics and 
elasticity is frequently given in their field-strength form. Gauge-potential formulations, such as those similar to 
classical electrodynamics, have not been extensively investigated. In the potential formulation of electrodynamics, 
Lorenz and Coulomb gauges are frequently introduced to establish field equations of electromagnetic potentials 
that are parallel to the formulation of field strengths10. Compared with other gauge approaches, the discovery of 
the Lorenz gauge provides a symmetrical treatment of the scalar and vector potentials in the decoupled form10,11.

Earlier studies on the theoretical connections between mechanical and electromagnetism involved the for-
mulation of a classical electromagnetic model12. Subsequently, analogies between the gauge formulation of 
electrodynamics and elasticity have been studied by various authors. A symmetric relationship between the 
Coulomb gauge and linear elasticity was shown in13. The authors also discussed possible mapping between the 
two models based on analogous formulations14. Analogies between the gauge formulation of electrodynamics 
and acoustics are reported in15. Furthermore, similarities between the field strength formulation of electromag-
netism and Lamé formulation of elasticity were reported in16,17. Although analogies between mechanical waves 
and electromagnetic waves have been reported in the literature, their connection with quantum properties has 
not been revealed. Therefore, the motivation of this study is to establish quantization of models for linear acoustic 
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and elastic waves from the original classical forms. To achieve this, we aim to further discuss isomorphic patterns 
in the theoretical characterizations of parallel models within classical and quantum frameworks.

Results
Gauge‑potential formulation of models
To begin with the quantization of waves, we chose to establish the original models via an alternative gauge-
potential formulation to maximize the similarity with electrodynamics. To this end, the concept of the Lorenz 
gauge is generalized to waves in a medium, and it preserves the causality and gauge invariance of waves.

Potential formulation of acoustic waves
Based on the electromagnetism procedures presented in the Methods section, we introduced the generalized 
Lorenz gauge to establish the potential formulation of the waves. The original field variables of the acoustic waves 
are governed by inhomogeneous wave equations with external sources fa and ga18:

where P is the acoustic pressure, u is the particle velocity, and ca is the acoustic velocity defined by the material 
properties.

where B is the bulk modulus of the fluid and ρ is the fluid density. In Eq. (2), the material properties were assumed 
to be constant in the acoustic medium. Next, an acoustic gauge function �a is introduced to satisfy the following 
wave-like gauge condition:

The acoustic pressure and particle velocity between different configurations can be expressed by the acoustic 
gauge function as follows:

where �P denotes the change in acoustic pressure and �u denotes the change in the particle velocity at differ-
ent configurations . By substituting Eqs. (4) into (3), we obtained the following equation for the acoustic gauge 
function:

It can be observed that Eqs.  (4) and (5) are similar to the Lorenz gauge formulation in the text on 
electrodynamics10. The gauge invariance of the above gauge potential formulation of acoustic waves can be 
observed. To demonstrate this feature, the body force and fluid vorticity were expressed by the field potentials.

where f a is the force density of the acoustic medium and ωa is the vorticity of the acoustic medium. The above 
fields are not altered by the change in field potentials from old to new configurations ( P → P′, u → u′ ), as 
follows:

Thus, the acoustic body force and material velocity were invariant under the gauge transformations in Eq. (4).

Potential formulation of elastic waves
In a solid medium, the time evolution of mechanical disturbance is described by the elastic displacement wave 
motion from an external source24,25. For general three-dimensional linear elastic solids, different modes of elastic 
waves have been introduced in the literature. Longitudinal and transverse waves are the most common modes in 
elastic solids, and typically refer to tensile and shear waves in solid mechanics. Surface waves such as Rayleigh 
and Lamb waves also exist in solid membranes and plates. Here, we mainly consider longitudinal and transverse 
waves in a three-dimensional solid medium. For a longitudinal wave, the tensile stress σ and particle velocity w 
are governed by inhomogeneous wave equations with external sources fl and g l,

and

(1)∇2P −
1

c2a
∂2t P = fa(r, t),∇2u−

1

c2a
∂2t u = ga(r, t),

(2)ca =
√
B/ρ

(3)∇ · (ρu)+
1

c2a

∂tP = 0.

(4)�P = P′ − P = −∂t�a,�u = u
′

− u =
1

ρ
∇�a,

(5)∇2�a −
1

c2a
∂2t �a = 0.

(6)f a = ∇P − ∂t(ρu);ωa = ∇ × u,

(7)f a = ∇P′ − ∂t

(
ρu

′

)
= ∇P − ∂t(ρu);ωa = ∇ × u

′

= ∇ × u.

(8)∇2σ −
1

c2l
∂2t σ = fl(r, t),∇2w −

1

c2l
∂2t w = g l(r, t)
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where E is Young’s modulus and ρ is the mass density of the solid. The longitudinal gauge function �l satisfying 
the wave-like condition can be expressed as follows:

where the tensile stress and longitudinal velocity between different states can be expressed by:

where �σ denotes the change in tensile stress and �w denotes the change in particle velocity at different con-
figurations. By substituting Eqs. (11) into (10) yields the following equation for the longitudinal gauge of tensile 
deformation:

For transverse waves, the shear stress τ and particle velocity γ are governed by inhomogeneous wave equa-
tions with external sources ft and g t,

and

where G is the shear modulus, and ρ is the mass density. The transverse gauge function �t that satisfies the wave-
like condition is expressed as follows:

where the shear stress and transverse velocity between different configurations can be expressed by:

where �τ denotes the change in shear stress and �γ denotes the change in particle velocity. By substituting 
Eqs. (16) into (15) yields the following equation for the transverse gauge of shear deformation:

A gauge invariance feature was established. The force density and strain vorticity are invariant under the 
change in elastic potentials from old to new configurations ( σ → σ ′,w → w′),

where f l is the force density of the elastic medium and ωl is the vorticity of the elastic medium in the longitudinal 
mode. For the transverse mode, the gauge invariance of the body force and strain vorticity between the old and 
new configurations ( τ → τ ′, γ → γ ′ ) can be expressed as follows:

where f t is the force density of the elastic medium and ωt is the vorticity of the elastic medium. The gauge-
potential formulation of acoustic and elastic waves manifests gauge invariance and causality properties, similar 
to electromagnetism. The establishment of a gauge potential formulation is the first step in the formal quantiza-
tion of mechanical waves.

Functional maps and minimal coupling
With the established gauge potential formulations, the isomorphism between the gauge and potentials in simi-
lar differential operators was studied. This leads to a functional map (relations) between the wave variables in 
acoustic, elasticity, and electromagnetism. The minimal coupling between the mechanics and waves was obtained 
from the mapping of the Lagrangian.

(9)cl =
√

E/ρ,

(10)∇ · (ρw)+
1

c
2
l

∂tσ = 0,
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ρ
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1
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Functional map relations of field potentials
The wave variables in the gauge-potential formulations are presented in Table 1 based on their gauge functions, 
field potentials, and differential equations. From the table, it can be seen that the main differences between the 
given potential formulations are related to the velocity parameters in the wave equations. Furthermore, because 
of the governing wave equations of the gauge function of the same type and field potentials are defined by the 
same differential operators, the isomorphic patterns between the potential formulations can be represented by 
the plot in Fig. 1. In the above figure, the variables are classified using three color codes to demonstrate their 
roles in each model. The gauge functions are shown in blue, vector potentials in orange, and scalar potentials in 
green. Arrow relations refer to differential or algebraic operations between variables. The isomorphic patterns 
are labeled in the top-right corner.

Moreover, from the homogenous wave equations of the gauge function, the basic solution of the gauge func-
tions is in a plain waveform:

and

where X denotes the gauge function, X0 denotes the amplitude of the gauge, and eiθ denotes the gauge phase. 
From the properties of the complex exponentials, the basis solution of a certain gauge function can be used to 
generate the basis solution of another gauge function by modifying the amplitude and phase as follows:

where X′ denotes the new gauge function, A denotes certain constants, eiθ ′ denotes the phase difference, and F  
refers to the functional relation (one-to-one map) between the old gauge function X and new gauge function X′ . 

(20)X(r, t) = X0e
iθ ,

(21)Y = ∇X;Z = −∂tX

(22)X′(r, t) = (AX0)(e
iθ eiα) = X0′eiθ ′ ⇒ X′(r, t) = F ◦ X(r, t) = F(X)

Table 1.   Wave variables in the electromagnetic, acoustic and elastic fields.

Field models Wave variables Gauge-potential formulations

Electrodynamics
(Transverse) � = �(r, t)

ϕ = ϕ(r, t)
∇2�− 1

c
2
0

∂2t � = 0
�ϕ = −∂t�

A = A(r, t) �A = ∇�

Acoustics
(Longitudinal) �a = �a(r, t)

P = P(r, t)
∇2�a − 1

c2a
∂2t �a = 0

�P = −∂t�a

u = u(r, t) �u = 1
ρ
∇�a

Elasticity
(Longitudinal and transverse)

�l = �l(r, t)
σ = σ(r, t)

∇2�l − 1

c
2
l

∂2t �l = 0
�σ = −∂t�l

w = w(r, t) �w = 1
ρ
∇�t

�t = �t (r, t)
τ = τ(r, t)

∇2�t − 1

c
2
t

∂2t �t = 0
�τ = −∂t�t

γ = γ (r, t) �γ = 1
ρ
∇�t

∇

0

∇ −

∇ − ∇ −

Electromagne�cs

Acous�cs

Elas�city

Isomorphic pa�erns in poten�al formula�ons

∇

: Gauge func�ons

: Vector poten�als

: Scalar poten�als

−

−

Figure 1.   Common differential structures between wave variables in classical models.
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As shown in Fig. 1, the differential operations between the gauge and potential were the same for the three field 
models. Consequently, the functional relations between vector-like potentials can be derived using the chain rule:

where Y ′ and Y  denote the two vector-like potentials in different field models. Similarly, the functional relations 
between the scale-like potentials can be derived using the chain rule:

From the results of Eqs. (22)–(24), the gauge functions and field potentials in different potential formulations 
can be connected by functional relationships. From the linearity of the differential operators, the functional maps 
between one set of wave variables and another can be stated as follows:

Minimal coupling with particle mechanics
To consider the coupling between the particles and waves, the first step is the construction of the total Lagran-
gian, which constitutes both kinematic and potential contributions. Given the functional mapping between the 
wave variables, the modification of the Lagrangian can be derived by representing the electromagnetic potentials 
using the acoustic potentials:

where Fa denotes the functional relation, which gives the Lagrangian of the forced particle in terms of the 
acoustic potentials P and u,

For elasticity, the functional relations between the potential variables from electromagnetism and elasticity 
can be applied to construct the corresponding Lagrangian of particles for the longitudinal and transverse modes, 
respectively.

and

where Fl and Ft denote the functional relationships of the longitudinal and transverse modes, respectively. For 
the longitudinal mode, the Lagrangian of the particle becomes,

For transverse mode, the Lagrangian of the particle becomes,

From the above Lagrangian of the particle, the total Lagrangian of the particle coupled with acoustic and 
elastic waves can be obtained as

The Hamiltonian of the particle can be obtained by the Legendre transform as follows:

Therefore, the Hamiltonian of free particle H0 can be rewritten as

and the momentum of free particle p0 can be rewritten as:

The above two equations show the minimal coupling between the particle and mechanical waves in the clas-
sical framework. The quantum properties are not explicitly accessible from the above relations. Nevertheless, 
with the connections between the mechanical and electromagnetic waves, the quantization of the acoustic and 
elastic waves will share procedures in the quantization of the electromagnetic waves.

(23)Y ′ = ∇X′ = ∇(F ◦ X) = F ◦ (∇X) = F ◦ Y = F(Y)

(24)Z′ = −∂tX′ = −∂t(F ◦ X) = F ◦ (−∂tX) = F ◦ Z = F(Z)

(25)X →F X ′;Y →F Y ′;Z →F Z′.

(26)Fa(ρu) = qA;Fa(P) = qϕ,

(27)L(v,ϕ,A)
Fa→ L(v, P, u) =

1

2
mv

2 + Fa(ρu) · v − Fa(P),

(28)Fl(ρw) = qA;Fl(σ ) = qϕ,

(29)Ft(ργ ) = qA;Ft(τ ) = qϕ,

(30)L(v,ϕ,A)
Fl→ L(v, σ ,w) =

1

2
mv

2 + Fl(ρw) · v − Fl(σ ),

(31)L(v,ϕ,A)
Ft→ L(v, τ , γ ) =

1

2
mv

2 + Ft(ργ ) · v − Ft(τ ),

(32)L(v, P, u, σ ,w, τ , γ ) =
1

2
mv

2 + [Fa(ρu)+ Fl(ρw)+ Ft(ργ )] · v − [Fa(P)+ Fl(σ )+ Ft(τ )].

(33)H
(
p, P, u, σ ,w, τ , γ

)
=

1

2m

[
p− Fa(ρu)− Fl(ρw)− Ft(ργ )

]2 + [Fa(P)+ Fl(σ )+ Ft(τ )].

(34)H0 = H − [Fa(P)+ Fl(σ )+ Ft(τ )],

(35)p0 = p− Fa(ρu)− Fl(ρw)− Ft(ργ ),
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Schrödinger equation and wave quantization
From the dynamic variables and minimal coupling, the quantum equation of mechanics and waves is established 
from the modification of the dynamic operators. The fixing of the action magnitude using the Planck constant 
uniquely determines the Schrödinger equation. The gauge symmetry of the Schrödinger equation provides suf-
ficient conditions for quantization of the wave variables.

Schrödinger equation of particle with waves
For a free particle, the conservation laws of the Hamiltonian and momentum lead to a homogenous wave equa-
tion of action, which leads to wave-like dynamic variables26,27,

where S0 denotes the amplitude of the action and φ0 denotes the phase function of the free particle. From the 
linear differential operator, the Hamiltonian of the particle can be represented by the differential operators of 
the phase function as

and the momentum can be represented by the operator form,

From the minimal coupling with the mechanical waves in Eqs. (34) and (35) yield the following relationship 
for differential operators:

where �H denotes the modification of the Hamiltonian, �φ denotes an additional term for the phase function, 
and φ denotes the phase function of the particle. Similarly, the momentum of a particle in minimal coupling 
with the field potentials can be obtained using Eqs. (44) and (47), respectively.

where �p denotes modification of momentum. By resolving the action amplitude via the Planck constant S0 → ℏ 
and replacing the phase function with the wave function φ → ψ , the Hamiltonian and momentum of the particle 
arrive at the usual expression in quantum mechanics28. By substituting the differential operators in Eq. (33), the 
following Schrödinger equation of the particle and minimal coupling with acoustic and elastic waves are obtained:

The result in Eq. (41) is the quantum–mechanical version of the classical equation in Eq. (33). In the above 
equation, the particle is characterized by dynamic operators associated with the wave function, whereas the 
classical fields are characterized by mechanical wave variables.

Gauge symmetry and wave quantization
Gauge symmetry of Schrödinger equation is well-known for particle in electromagnetism30. From the functional 
relations wave variables in Eq. (25), the gauge symmetry properties can be shown for the acoustics and elastic-
ity. For acoustics, the transformation of the wave functions ( ψ → ψ ′ ) by the acoustic gauge function does not 
change the Schrödinger equation in Eq. (41):

where F−1
a  is the inverse functional map between the acoustic and electromagnetic potentials, which fulfills the 

unity condition F◦
aF

−1
a = 1 . Similarly, for elasticity, the gauge symmetry of the Schrödinger equation can be 

found with the following transformations based on elastic gauge functions from the functional relations:

and

where F−1
l  and F−1

t  are the inverse functional maps between the elastic and electromagnetic potentials, and they 
fulfill the unity condition F◦

l F
−1
l = F

◦
t F

−1
t = 1 . Because of the gauge functions are additive, the symmetry of 

Eq. (41) can be ensured by linear superposition of the individual gauge functions:

(36)∇2S −
1

v2
∂2t S = 0 ⇒ S(r, t) = −iS0φ0,

(37)H0 = iS0∂tφ0 ⇒ Ĥ0 = iS0∂t ,

(38)p0 = −iS0∇φ0 ⇒ p̂0 = −iS0∇ .

(39)H = H0 +�H = iS0∂tφ0 +�H = iS0∂t(φ0 +�φ) = iS0∂tφ ⇒ Ĥ = iS0∂t ,

(40)p = p0 +�p = −iS0∇φ0 +�p = −iS0∇(φ0 +�φ) = −iS0∇φ ⇒ p̂ = −iS0∇ ,

(41)iℏ∂tψ =
(

1

2m
[−iℏ∇ − Fa(ρu)− Fl(ρw)− Ft(ργ )]

2 + [Fa(P)+ Fl(σ )+ Ft(τ )]

)
ψ .

(42)ψ ′ = ei�(r,t)ψ = eiFa(�a(r,t))ψ; �a(r, t) = F
−1
a (�) = F

−1
a

( q

ℏ
�
)
=

q

ℏ
�a,

(43)ψ ′ = ei�(r,t)ψ = eiFl(�l(r,t))ψ; �l(r, t) = F
−1
l (�) = F

−1
l

( q

ℏ
�
)
=

q

ℏ
�l

(44)ψ ′ = ei�(r,t)ψ = eiFt (�t (r,t))ψ; �t(r, t) = F
−1
t (�) = F

−1
t

( q

ℏ
�
)
=

q

ℏ
�t .

(45)ψ ′ = ei
∑

�(r,t)ψ;
∑

� = �+ Fa(�a)+ Fl(�l)+ Ft(�t) =
q

ℏ
(�+�a +�l +�t).
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The gauge symmetries of the Schrödinger equation from acoustics and elasticity show gauge field features 
that are similar to those of electromagnetism as a linear superposition.

The gauge symmetry of particle in quantum mechanics poses the constraint on gauge function and field 
potentials. In electromagnetism, it introduces the quantum properties of scalar and vector potentials from gauge 
function that fulfills the gauge symmetry. In acoustic wave variables, from Eq. (42) and by applying Eq. (4) which 
yields,

Similarly, in elastic wave variables, from Eqs. (43) and (11) it gives the follow:

and from Eqs. (44) and (16) it gives the follow:

As a result of gauge symmetry in quantum mechanics, the permissible energy and momentum of wave vari-
ables in acoustic and elasticity are included from the inverse functional maps. The relations in Eqs. (46)–(48) 
bridge the classical properties and quantum properties of the mechanical wave variables in linear acoustic and 
elastic models.

Some potential applications
From a practical aspect, quantization of the classical acoustics and elastic waves can be applied to provide quan-
tum description of certain classical phenomenon. This closely bridges the wave-like picture in classical regime 
and particle-like picture in quantum regime. Furthermore, it provides a comprehensive model of particle-beam 
interaction with both wave-like components and particle-like components.

Radiation beam with opaque object
One of the examples could be the radiation pressure which is widely established in modern optics where the 
radiation pressure can be described by the energy–momentum exchange of opaque object. From the functional 
mapping between acoustic and electromagnetism, the quantum (particle-like) picture of the radiation pressure 
from acoustic or elastic wave beam can be formulated. Considering the acoustic beam radiated from a point 
source, the resultant force of acoustic beam on an opaque object is given by,

where F is acoustic radiation force, s denotes the applied surface and Eq. (46) is applied into above equation 
for acoustic pressure. From the relation of wave parameter, the radiant momentum can be represented by the 
volume integral of momentum density,

where is the dl infinitesimal length that wave passing through during time increment dt and dV  is the infinitesi-
mal volume. By dividing the total radiant momentum by individual term, the above equation can be given in 
the discretized form based on infinitesimal approximation,

The above equation links the radiation momentum density with quantum parameters of acoustic beam 
interacting with opaque object.

Interaction with waves and particles
A further extension of the above example is the scenarios with waves and particles that are interacted in the same 
spatial domain of interest. Frequently, these scenarios include complex time evolution behavior that part of the 
problem is modeled as continuous propagated waves while the other part is represented as discretized tracing 
particles. During the area of interaction, the exchange of energy–momentum occurs that can be described by 
the relation in Eq. (41). For instance, before and after interaction with linear acoustic waves, the dynamics of 
particle can be represented by:

where ψ and ψ ′ denotes the wave function before and after interaction, respectively. The conservation of energy 
and momentum between particle and waves are the given by the following:

(46)P = −∂tF
−1
a (�)

ℏ

q
= F

−1
a (ℏ�ω�a); ρu = ∇F

−1
a (�)

ℏ

q
= F

−1
a (ℏ�k�a).

(47)σ = −∂tF
−1
l (�)

ℏ

q
= F

−1
l (ℏ�ω�l); ρw = ∇F

−1
l (�)

ℏ

q
= F

−1
l (ℏ�k�l),

(48)τ = −∂tF
−1
t (�)

ℏ

q
= F

−1
t (ℏ�ω�t); ργ = ∇F

−1
t (�)

ℏ

q
= F

−1
t (ℏ�k�t).

(49)Frad =
∫

Pradds =
∫ [

F
−1
a (ℏ�ω�a)

]
ds,

(50)

prad =
∫

Fraddt =
∫∫ [

F
−1
a (ℏ�ω�a)

]
dsdt =

∫∫ [
F

−1
a (ℏ�k�a)

]
dsdl =

∫∫∫ [
F

−1
a (ℏ�k�a)

]
dV ,

(51)prad =
∑

dprad ∼=
∑[

F
−1
a (ℏ�k�a)

]
dV ⇒ dprad = F

−1
a (ℏ�k�a)dV ,

(52)iℏ∂tψ =
(

1

2m
[−iℏ∇ − Fa(ρu)]

2 + Fa(P)

)
ψ ⇒ iℏ∂tψ ′ =

1

2m
(−iℏ∇)2ψ ′.
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and

where P′ and u′ denotes the acoustic pressure and material velocity after the interaction with particle. The new 
wave variables of acoustic pressure and material velocity are derived from new gauge function �a′ via relation 
in Eq. (4). At the same time, the dynamics of propagated acoustic waves can be descripted as the following,

The above example illustrates the dynamics of particles and waves before and after the exchange of their 
energy and momentum in the same spatial region.

Discussion
The presented quantization of linear acoustic and elastic waves carries two levels of information. At the first level, 
the theoretical formulation of linear waves extends the original models in the classical regime and yields a consist-
ent result in the quantum regime. It bridges the classical and quantum properties of wave variables of linearized 
acoustics and elasticity. The transition of the wave variables between the classical regime and quantum regime 
is governed by the angular frequency and wave vector. The increase in the angular frequency of the excitation of 
small objects in the microscopic world enhances the quantum effect. This makes the quantum effect relatively 
visible compared to the large-sized object in the macroscopic world. In contrast, the decrease in the angular 
frequency and wave vector in the wave pattern weakens the quantum effect and approximates the usual classical 
description.

To provide a picture of the different parallel formulations, their connections are categorized and shown in 
Fig. 2. The different connected formulations were labeled with color, and the rest were labeled as white. In detail, 
the gauge-potential formulation of electromagnetism is labeled blue. The gauge-potential formulations of acous-
tics and elasticity are labeled purple. The Hamiltonian and quantum formulations of the particle dynamics are 
labeled orange and red, respectively. The solid arrows indicate the key procedures that change one formulation 
into another. The dashed arrows refer to the couplings between the potentials with dynamic variables between 
the field and particles. The shaded box in the figure shows the key similarities and differences between the char-
acterizations of the models. In particular, the isomorphic patterns in characterizing electromagnetism, acoustics, 
elasticity, and particle dynamics in elementary models are shown.

Moreover, at the second level, the isomorphism on the theoretical characterizations of these elementary mod-
els provide a common algebraic view. In this view, the above models can be represented as vector spaces that are 
equipped with one-to-one linear mappings29. Since the configuration of vector space ( X,Y ,Z ) for each model is 
characterized via the associated physical variables, the linear mappings between the configuration in vector spaces 
are represented by the functional map relations between the dynamic and wave variables. From this perspective, 
the coupling between these models can be formally represented by the linear superposition of individual vector 
spaces in a certain sequence. From Fig. 2, the resultant model is represented as a vector space ( Xn,Yn,Zn ) that 
constitutes the contribution of each elementary model, such as,

(53)iℏ∂tψ + Fa(P) = H + Fa(P) = H′ + Fa(P′) = iℏ∂tψ ′ + Fa(P′)

(54)−iℏ∇ψ + Fa(ρu) = p+ Fa(ρu) = p′ − Fa

(
ρu

′

)
= −iℏ∇ψ ′ + Fa

(
ρu

′

)

(55)∇2�a −
1

c2a
∂2t �a = 0 ⇒ ∇2�a′ −

1

c2a
∂2t �a′ = 0.

(56)
Xn = X0 + Xe + Xa + Xl + Xt;Y = Y0 + Y e + Ya + Y l + Y t;
Z = Z0 + Ze + Za + Zl + Zt ,

Figure 2.   Isomorphic characterizations of mechanics and waves in classical and quantum regimes.
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where the subscript label e, a, l, t denotes the configurations in the models of electromagnetism, acoustic and 
elasticity (longitudinal and transverse). The resulting vector space is dimensionally preserved because the vector 
space of every element model has the same dimension (rank). The entire permissible vector spaces that can be 
represented by the linear superposition of the elementary models from a set of vector spaces that include the 
three types of particle-wave coupling and the three types of wave-wave couplings.

Methods
Gauge‑potential formulation of electromagnetism
In classical electromagnetism10, by introducing the Lorenz gauge function � , the scalar and vector potentials 
are governed by inhomogeneous wave equations with non-vanishing charge density ̺  and current density j:

where ϕ is the scalar potential, A is the vector potential, and c0 is the speed of light in vacuum, which is defined 
based on electromagnetic constants:

where ǫ0 is the vacuum permittivity, and µ0 is the magnetic permeability. The Lorenz gauge function satisfies 
the following gauge condition:

and the field potentials between different configurations can be expressed by:

where �V  denotes the change in the scalar potential and �A denotes the change in the vector potential at dif-
ferent configurations. As in10, from Eqs. (59) and (60), it can be shown that the Lorenz gauge function satisfies 
the following equation:

Other gauge functions, such as the Coulomb gauge (quasi-static) or general velocity gauge (extension of the 
Lorenz gauge), have also been reported in the literature. It is worth noting from the literature that the technical 
procedures for arriving at gauge equations are not unique and parallel methods have been studied and discussed 
by the authors19–21. A comprehensive summary of the different gauge conditions and their relationships can be 
found in the literature22,23. The Coulomb gauge leads to instantaneous propagation of the vector potential. The 
velocity gauge leads to different velocities between the propagation of scalar and vector potentials.

Gauge invariance of electrodynamics
For a given gauge function and applying the gauge transform, the pair of field potentials is changed from old to 
new configurations. Recalling the gauge transform in electromagnetism, the field strength and field potentials 
are bridged by the following relations:

where E is the electrical field, and B is the magnetic field. The above fields were not altered by the change in field 
potentials from old to new configurations ( ϕ → ϕ′,A → A′):

This shows gauge invariance in the potential formulation of classical electromagnetism, where the field 
strength and field force are unaltered before and after the gauge transform.

As in the potential formulation of electrodynamics10, the corresponding Lagrangian of the charged particle 
in the electromagnetic field is given by:

where q is the unit of charge. The coupling between the particle and electromagnetic field is reflected from the 
potential-related terms in the Lagrangian. If the electromagnetic potential vanishes identically, the Lagrangian 
of the particle is reduced to that of a free particle in classical mechanics. Furthermore, the Lorentz force can be 
directly derived from the Lagrangian of the particle in the potential form as

(57)∇2ϕ −
1

c20
∂2t ϕ = f (̺),∇2A−

1

c20
∂2t A = g(j),

(58)c0 =
1

√
ǫ0µ0

(59)∇ · A+
1

c
2
0

∂tϕ = 0

(60)�ϕ = ϕ′ − ϕ = −∂t�,�A = A
′

− A = ∇�,

(61)∇2�−
1

c20
∂2t � = 0.

(62)E = ∇ϕ − ∂tA;B = ∇ × A,

(63)E = ∇ϕ′ − ∂tA
′ = ∇ϕ − ∂tA;B = ∇ × A′ = ∇ × A.

(64)L(v,ϕ,A) =
1

2
mv

2 + qA · v − qϕ,

(65)F = q

[
(−∇(ϕ − v · A))−

dA

dt

]
,
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The example above shows the equivalent Lagrangian of a particle with its external force in the potential 
formulation. Moreover, from the Lagrangian, the Hamiltonian of the particle can be obtained by the Legendre 
transform, as in classical mechanics, which yields:

In field theory, the results of Eq. (34) refer to the minimal coupling (the simplest case without the spin effect) 
between the electromagnetic field and the charged particle. The interaction between the field and particle can 
include higher-order multipole moments of the charge to reflect the spin effect, as in Pauli coupling30.

Gauge symmetry of wave function
Gauge symmetry is a fundamental property of the gauge field theory that provides a description of the particle 
and field in quantum mechanics. By recalling the gauge symmetry from electromagnetism, the gauge symmetry 
of acoustics and elasticity can be demonstrated using functional relations. For electromagnetism, the Schrödinger 
equation remains unaltered when the following transformations of the wave functions from old to new configura-
tions are performed by the phase function ( ψ → ψ ′):

where � denotes the phase function, which is space and time dependent. From the above relation, the scalar and 
vector potentials can be derived from gauge function from Eq. (60):
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ℏ
�(r, t),

(68)qϕ = −∂t� = ℏω�(r, t); qA = ∇� = ℏk�(r, t).



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8759  | https://doi.org/10.1038/s41598-024-57092-0

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantization of linear acoustic and elastic wave models in characterizations of isomorphism
	Results
	Gauge-potential formulation of models
	Potential formulation of acoustic waves
	Potential formulation of elastic waves

	Functional maps and minimal coupling
	Functional map relations of field potentials
	Minimal coupling with particle mechanics

	Schrödinger equation and wave quantization
	Schrödinger equation of particle with waves
	Gauge symmetry and wave quantization

	Some potential applications
	Radiation beam with opaque object
	Interaction with waves and particles


	Discussion
	Methods
	Gauge-potential formulation of electromagnetism
	Gauge invariance of electrodynamics
	Gauge symmetry of wave function

	References


