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Optimizing PCF‑SPR sensor 
design through Taguchi approach, 
machine learning, and genetic 
algorithms
Sameh Kaziz 1*, Fraj Echouchene 2 & Mohamed Hichem Gazzah 3

Designing Photonic Crystal Fibers incorporating the Surface Plasmon Resonance Phenomenon 
(PCF-SPR) has led to numerous interesting applications. This investigation presents an exceptionally 
responsive surface plasmon resonance sensor, seamlessly integrated into a dual-core photonic crystal 
fiber, specifically designed for low refractive index (RI) detection. The integration of a plasmonic 
material, namely silver (Ag), externally deposited on the fiber structure, facilitates real-time 
monitoring of variations in the refractive index of the surrounding medium. To ensure long-term 
functionality and prevent oxidation, a thin layer of titanium dioxide (TiO2) covers the silver coating. 
To optimize the sensor, five key design parameters, including pitch, air hole diameter, and silver 
thickness, are fine-tuned using the Taguchi L8(25) orthogonal array. The optimal results obtained 
present spectral and amplitude sensitivities that reach remarkable values of 10,000 nm/RIU and 
235,882 RIU-1, respectively. In addition, Artificial Neural Network (ANN) optimization techniques, 
specifically Multi-Layer Perceptron (MLP) and Particle Swarm Optimization (PSO), are used to predict 
a critical optical property of the sensor confinement loss (αloss). These predictions are derived from 
the same input structure parameters that are present in the full L32(25) design experiment. A genetic 
algorithm (GA) is then applied for optimization with the goal of maximizing the confinement loss. Our 
results highlight the effectiveness of training PSO artificial neural networks and demonstrate their 
ability to quickly and accurately predict results for unknown geometric dimensions, demonstrating 
their significant potential in this innovative context. The proposed sensor design can be used for 
various applications including pharmaceutical inspection and detection of low refractive index 
analytes.

Keywords  Genetic algorithm, Surface plasmon resonance, Photonic crystal fiber, Multi-layer perceptron, 
Particle swarm optimization, Taguchi approach

The optical phenomenon known as surface plasmon resonance (SPR) occurs when free electrons oscillate at 
the interface between a metallic surface and a dielectric layer. In this fascinating phenomenon, the photon 
wavelengths of the incident electromagnetic wave align with the wavelengths of the surface electrons, especially 
under p-polarized light radiation1. This unique phenomenon has spurred extensive research into SPR sensors, 
primarily because of their attractive properties. These sensors offer efficiency, precision in sensing, fast response 
times, real-time and label-free detection, and an exceptional ability to effectively control light2. Traditional SPR 
sensors have been designed using prisms, fiber Bragg gratings, slot waveguides, and V-groove waveguides. How-
ever, these designs tend to be bulky and costly2. To overcome these limitations, SPR sensors based on photonic 
crystal fibers (PCFs) have been introduced. PCF-based sensors provide portability, compactness, and the ability 
for remote sensing. Various PCF-SPR structures have been investigated for different sensing applications. These 
include configurations such as microfluidic slot-based designs, external metal-coated structures, long-period fiber 
Bragg gratings, internal metal-coated structures, and D-shaped structures, among others2. A PCF-SPR sensor 
uses two different sensing configurations: external and internal. In the internal sensing approach, the analyte 
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selectively occupies the air holes in the fiber. This mechanism enhances sensitivity because the introduced analyte 
directly modifies the initial refractive index distribution of the fiber. However, internal sensing is not suitable for 
real-time and distributed sensing applications due to its impracticality and susceptibility to significant propaga-
tion losses. To overcome these challenges, the external sensing technique is used. In this method, the analyte 
is located on the surface of the PCF, eliminating the need for analyte infiltration into the fiber. The external 
sensing technique has gained popularity due to its ease of detection and practical implementation3. In previous 
research, a gold lattice PCF-SPR sensor was introduced that achieved an impressive wavelength sensitivity (Ws) 
of 3340 nm/RIU4. Another study reported a D-shaped PCF sensor with a sensing range of 1.33 to 1.43, resulting 
in a maximum Ws of 46,000 nm/RIU5.

In a separate study, a gold-plated D-shaped PCF-SPR sensor with a refractive index (RI) detection range of 
1.33 to 1.38 and a maximum sensitivity of 10,493 nm/RIU at an RI of 1.38 was discussed6. Numerous other PCF-
based SPR sensors capable of detecting analytes with RI values as low as 1.33 have been documented in various 
studies4–14. However, most of this work has focused primarily on sensor structures suitable for analytes with RI 
values greater than 1.33. Research on PCF-SPR sensors capable of detecting lower RIs, particularly those below 
1.30, has been relatively limited3. The current landscape demands sensors capable of detecting low RIs as appli-
cations emerge in diverse fields, including aerogels15, halogenated ethers16, sevoflurane, pharmaceuticals, and 
more. Recognizing this need, a few PCF-SPR sensors have emerged to address low-RI analyte detection16–21, with 
different WS values, including 13,500, 6000, 11,055, 20,000, 13,000, and 51,000 nm/RIU, respectively. However, 
it’s noteworthy that only two of these studies19,21 reported the assessment of amplification sensitivity (As), with 
values of approximately 1054 and 1872 RIU-1, respectively. This underscores the untapped potential for PCF-SPR 
sensors capable of detecting lower refractive indices with improved sensitivity in both interrogation methods.

In this research, we have introduced and performed a comprehensive numerical analysis of a dual-core pho-
tonic crystal fiber surface plasmon resonance (PCF-SPR) sensor specifically designed for low refractive index 
detection. The improved performance of the sensor is achieved by incorporating a dual sensing channel created 
by a microchannel and a bimetallic configuration22. This innovative design improves the sensitivity of the sensor 
in both wavelength and amplitude interrogation methods. The addition of a titanium dioxide (TiO2) layer on top 
of the silver coating plays a key role in improving sensor performance. It generates a significant number of surface 
electrons that effectively attract the field from the core, resulting in a robust interaction with the plasmonic mode.

Accurate modeling and optimization of photonic crystal structures typically depends on numerical methods, 
including the finite difference method23, the finite element method (FEM)24, the block-iterative frequency domain 
method25, and the plane wave expansion method26,27.

However, it’s worth noting that these methods require significant computational resources, especially when 
faced with complex photonic crystal structures that require multiple simulations to achieve an optimized design. 
Moreover, the computational burden of these iterative analyses is directly influenced by the number of input 
design parameters to be optimized. Therefore, in our study, we used the Taguchi approach to optimize five criti-
cal structural parameters of the PCF sensor. These parameters include pitch, air hole diameter, and silver layer 
thickness. By using the Taguchi approach, we were able to streamline the optimization process and achieve our 
goals with a limited number of simulations28–30.

Recently, the field of machine learning (ML) and deep learning has emerged as a dominant force in various 
fields, including computer vision, robotics, chatbots, natural language processing, and many others. In addition, 
researchers have expanded their exploration of the applicability of machine learning to the field of photonics. This 
expansion has included diverse areas such as multimode fibers31, plasmonics32, biosensing33, and metamaterials34 
and networking35. In one notable case, Kiarashinejad et al.36 introduced a deep learning-based algorithm that 
used dimensionality reduction techniques to gain insight into the interactions between electromagnetic waves 
and nanostructures. In addition, a geometric deep learning approach has been used to study nanophotonic 
structures37. In 2018, the integration of extreme learning machines and deep learning techniques has been used 
to compute dispersion relations38 and optimize Q factors39 for photonic crystals.

A genetic algorithm is a search and optimization method inspired by natural selection and genetics. It is used 
to solve complex problems by evolving a population of potential solutions over generations. Through operations 
such as reproduction, mutation, and selection, genetic algorithms aim to obtain increasingly better solutions over 
time, simulating the process of biological evolution to find optimal or near-optimal solutions. These algorithms 
are widely used in optimization and heuristic search.

In our work, we aim to harness the innovative synergy of Taguchi methodology and artificial intelligence, 
leveraging machine learning techniques to forecast confinement losses in photonic crystal fibers. We combine 
finite element simulations with artificial neural networks (ANN) to facilitate fast and accurate computations. 
The motivation of this work revolves around the design of a simple feed-forward Multilayer Perceptron (MLP) 
and Particle Swarm Optimization (PSO) models that can be trained to estimate critical parameters such as 
confinement loss (αloss) for a PCF structure. Furthermore, Genetic Algorithm (GA) is applied for optimization 
to maximize the confinement loss in the sensor.

Design and numerical simulation
The proposed dual-core PCF sensor configuration and x–y cross-sectional view are shown in Fig. 1a and b. This 
novel sensor design is organized in a square lattice with two layers of air holes (Fig. 1c). The sensing area spans 
a length of L = 1 mm. To improve the interaction between the core-guided and surface plasmon polariton (SPP) 
modes, we reduced the size of two air holes (d2) located at the top of the initial ring. In addition, we excluded 
two air holes located in the center of the initial ring when fabricating the dual-core structure.

The manufacturing process involves the layering of capillaries and solid rods, followed by drawing at a certain 
speed to form the fiber. Different dimensions of air holes, including both large and small sizes, and absence of 
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air holes are achieved by using thin and thick capillaries and solid rods, respectively9. Upon completion of fiber 
fabrication, a polishing technique is implemented5. This technique involves polishing a segment of the fiber, 
incorporating the large thin-walled capillary from the second ring, while the remaining part of the capillary 
forms the microchannel. Finally, a chemical deposition technique18,19 is used to deposit a coating of silver and 
TiO2 on the polished side of the fiber.

The finite element method (FEM) was used for the numerical analysis of the proposed sensor. In order to 
improve the absorption of the radiation power, a perfectly matched layer was included as the outermost layer. 
To achieve the highest simulation accuracy, a very fine mesh element was used. The optimized structural param-
eters consist of the diameters of the air holes (d1, d2, d3), the pitch (Λ), and the thickness of the silver layer (tAg). 
Furthermore, the opening of the microchannel is set to 1.75 µm.

The dielectric constant of silver is determined using the Drude model, as described in the reference40:

where ε∞ = 9.84 , is the dimensionless high-frequency (infinite frequency) permittivity, ωp = 1.367× 1016rad/s , 
is the plasma frequency, and ωτ = 1.018× 1014rad/s , is the collision frequency.

As for the background material, SiO2 is used, and its refractive index is determined using the following Sell-
meier equation, as described in reference41.

In this context, the refractive index of silica is expressed as nSi , and the operating wavelength is expressed as 
λ in µm. The refractive index of air is assumed to be 1.

The dielectric constant of TiO2 is expressed by the provided equation22:

The excitation of surface plasmons is measured by evaluating the loss of the optical fiber. The confinement 
loss, quantified in decibels per centimeter (dB/cm), correlates directly with the imaginary component of the 
effective refractive index and is expressed mathematically by the following Eq. (4) 22:

where, k0 = 2π
�

 is the number of waves in free space, λ is the operating wavelength, and Im(neff ) is the imaginary 
part of the effective refractive index.

Wavelength sensitivity ( Ws ) and resolution ( R ) can be defined using the equations given in references5,22, as 
shown in Eqs. (5) and (6):

where ��peak is the shift in the wavelength of the loss resonance peak and �na is the change in the refractive 
index of the analyte.

(1)εAg (ω) = ε∞ −
ω2
p

ω(ω + iωτ )

(2)n2Si = 1−
0.6961663�2

�2 − (0.0684043)2
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0.4079426�2

�2 − (0.1162414)2
+

0.897479�2

�2 − (9.896161)2
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Figure 1.   Illustration depicting the proposed Dual-core PCF sensor configuration (a), the x–y cross-sectional 
view (b), and the stacked preform of the fiber (c).
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In Eq. (6), ��min corresponds to the minimum wavelength resolution, and ��peak denotes the shift of the 
resonance peak in the wavelength domain.

The amplitude sensitivity (As) of the proposed sensor is calculated using the following formula22, which is 
defined in Eq. (7):

Here, α(�, na) represents the loss for the given analyte with refractive index na , ∂α(�, na) is the difference 
between two loss spectra, and ∂na is the change in analyte refractive index.

Results and discussion
Dispersion and mode field distribution
Figure 2a to c visually illustrate the distribution of the mode field, providing an intuitive assessment of the cou-
pling intensity. The color bar reflects the normalized mode field intensity distribution, ranging from 0 (indicating 
a weaker field) to 1 (indicating a stronger field), with the color spectrum shifting from blue to red to represent this 
intensity variation. Figure 2d shows the dispersion curves for the core mode and the surface plasmon polariton 
(SPP) mode, assuming a refractive index of 1.34. The wavelength is plotted on the x-axis and the real part of 
the effective refractive index, which reflects the light dispersion capabilities of the sensor, is plotted on the right 
y-axis. The left y-axis shows the attenuation constant per centimeter, which mirrors the pattern of the imaginary 
part of the effective refractive index. This measure doesn’t affect the assessment of wavelength sensitivity (Ws), 
but effectively characterizes the light absorption or loss capabilities of the sensor.

The optimized structural parameters for the configuration are as follows: d1 = 1.80 µm, d2 = 1.00 µm, 
d3 = 1.65 µm, and pitch Λ = 3.30 µm. In addition, the silver and TiO2 layers have thicknesses of 65 nm and 10 nm, 
respectively. The aperture of the microchannel is 1.75 µm.

In this scenario, the enhanced evanescent field in the y-polarized transverse electric (TE) mode, TEy, is 
proposed to result from the excitation of a larger fraction of free electrons at the surface compared to the TEx 
mode. The optimal power transfer becomes apparent when the phase matching condition is satisfied, facilitat-
ing the transition from the core-guided fundamental mode to the plasmonic mode. As a result, a distinct peak 
appears at the interface.

(7)As
[
RIU−1

]
= −

1

α(�, na)

∂α(�, na)

∂na

Figure 2.   Mode field distribution of the fundamental (a) surface plasmon polariton (SPP) mode, (b) SPR mode, 
and (c) core mode at 1.65 µm. (d) Relationship between the dispersion of the fundamental core-guided mode 
and the SPP mode at na = 1.34.
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Taguchi approach and ANOVA analysis
The Taguchi method is a robust optimization technique that has gained widespread recognition in various fields 
for its ability to systematically optimize multiple parameters and their respective levels while minimizing the 
need for extensive experimentation28,30,42,43. When applied to the task of optimizing the structural parameters of 
the PCF sensor, which include the diameters of the air holes (d1, d2, d3), the pitch (Λ), and the thickness of the 
silver (tAg), the Taguchi method provides an efficient approach. In Table 1, we present the optimization param-
eters along with their associated levels. Using the Taguchi method, our goal is to identify the ideal combina-
tion of parameter settings that will increase the performance and accuracy of the PCF sensor. This methodical 
approach not only saves time and resources, but also fine-tunes these critical structural parameters to achieve 
superior results.

To systematically investigate the effects of these parameters, we used a Taguchi L8 (25) orthogonal array, as 
shown in Table 2. In this specific design, L8 signifies eight experimental runs, while 25 indicates five factors, each 
with two levels. Factors are the variables or parameters that can affect the outcome of a process or product, and 
levels represent the different settings or values that each factor can take. The choice of factors and their levels is 
crucial for conducting efficient experiments while capturing the effects of interest28,30,42,43. By utilizing the L8(25) 
orthogonal array, researchers can systematically explore the effects of multiple factors on a process or product 
with a relatively small number of experiments. This structured approach not only saves time and resources but 
also enables the identification of optimal factor settings for improved performance or quality. In the context of 
Taguchi optimization, the signal-to-noise (S/N) ratio serves as a key metric. It is used to evaluate the performance 
of the process and to quantify the influence of different parameter combinations on the effectiveness of the sen-
sor, specifically in terms of confinement loss (αloss). Higher confinement loss indicates strong coupling between 
the core and the surface plasmon polariton (SPP) mode, and vice versa. Our primary goal is to maximize the 
S/N ratio, which represents an optimal balance between desired performance (signal) and unwanted variation 
(noise), ultimately resulting in an improved PCF sensor. The signal-to-noise (S/N) ratios were determined using 
the next criterion according to Eq. (8)30:

where n is the number of simulation tests performed and Yi is the measured response (confinement loss) for 
the ith simulation. Table 2 shows the numerical results for the PCF-SPR sensor’s confinement loss peak αpeak

loss  , 
wavelength peak �peak , and the corresponding signal-to-noise (S/N) ratios obtained by the L8 experimental layout.

Figure 3 shows the loss curves corresponding to all the experimental tests described in Table 2.
To assess the impact of each key parameter, it is critical to calculate the mean signal-to-noise (S/N) responses 

for each corresponding level. This is done by summing the results associated with each level from the orthogonal 
table and dividing this sum by the number of tests performed at that level. The significance of each factor can 
then be determined by calculating the difference between the maximum and minimum mean S/N ratios across 

(8)Larger is better : (S/N)i = −10log10

(
1

n

n∑

i=1

(
1

Y2
i

))

Table 1.   Optimization parameters and their levels.

Parameter

Levels

1 2

d1 (µm) 1.70 1.90

d2 (µm) 0.80 1.20

d3 (µm) 1.55 1.75

� (µm) 3.20 3.40

tAg (nm) 55 75

Table 2.   The Taguchi L8(25) orthogonal table.

Experiment Test

Factors levels Outputs

d1 d2 d3 � tAg α
peak

loss (dB/cm) �peak(µm) S/N(dB)

1 1.7 0.8 1.55 3.2 55 14.0790 1.8 22.9714

2 1.7 0.8 1.55 3.4 75 4.1233 1.76 12.3049

3 1.7 1.2 1.75 3.2 55 23.8960 1.84 27.5665

4 1.7 1.2 1.75 3.4 75 7.0851 1.8 17.0069

5 1.9 0.8 1.75 3.2 75 25.0240 1.8 27.9671

6 1.9 0.8 1.75 3.4 55 29.1150 1.96 29.2823

7 1.9 1.2 1.55 3.2 75 5.9560 1.68 15.4991

8 1.9 1.2 1.55 3.4 55 5.5555 1.82 14.8945
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the two levels, referred to as the delta, as shown in Table 3. A larger difference indicates a greater effect of that 
control factor. Examination of the response data presented in Table 3 indicates that the Air Hole Diameter (d1) 
factor has the most significant influence.

In Fig. 4, the plot of signal to noise (S/N) versus each key parameter shows that the maximum confinement 
loss occurs when d1 is at level 2, d2 is at level 1, d3 is at level 2, Λ is at level 1, and tAg is at level. It is noteworthy 
that the optimal combination obtained (d1 = 1.9 µm, d2 = 0.8 µm, d3 = 1.75 µm, Λ = 3.2 µm, and tAg = 55 nm) was 
not initially included in the L8 orthogonal array provided by Taguchi’s method. It is noteworthy that the simula-
tion of the confinement loss using these optimal parameters yields a value of 31.536 dB/cm, exceeding the values 
obtained in all other tests performed.

The analysis of variance (ANOVA) framework, as applied in the L8 Taguchi approach presented in Table 4, 
is used to determine the percentage contribution of each significant parameter to the increase in confinement 
loss. DF is the degree of freedom associated with each factor, Seq-SS is the sequential sum of squares, and Adj-
MS is the adjusted sum of squares divided by the degrees of freedom. Table 4 and Fig. 5 together show that the 
most significant contributions are associated with the parameter d3, which accounts for 53%, and tAg, which 
contributes 16%. Conversely, parameters Λ and d1 show minimal contributions of 9% and 5%, respectively, to 
αloss. Also the factor d3 seems to have a statistically significant impact on the variability of the data, as indicated 
by its low p-value (typically less than 0.05). The F-values and percentage contributions show the relative impor-
tance of each parameter.
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Figure 3.   Loss curves for the eight Taguchi tests.

Table 3.   Response Table for Signal to Noise Ratios.

Level d1 d2 d3 � tAg

1 19.96 23.13 16.42 23.50 23.68

2 21.91 18.74 25.46 18.37 18.19

Delta 1.95 4.39 9.04 5.13 5.48

Rank 5 4 1 3 2
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Figure 4.   Main effects plot for S/N ratios.
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Multiple linear regression model
Multiple linear regression (MLR) analysis is a statistical modeling method used to examine the correlation 
between a dependent variable (in this case, response) and two or more independent variables (designed as 
inputs). Using the data extracted from the Taguchi table, we can create an MLR model to examine how the five 
control factors (d1, d3, d3, � , tAg) relate to the confinement loss αLoss . The regression analysis is performed using 
Matlab software. The explicit equation for this model is given below:

We specify that for the above MLR equation, the key parameters are encoded (-1 for the low level and + 1 
for the high level).

Based on the predicted results of the MLR model presented in Table 5, a high R-squared (R2) value of 
approximately 97.69% in the variance of the dependent variable suggests that the model is effective in captur-
ing the variation in the data. The adjusted R-squared ( R2

Adj ) takes into account the number of predictors in 
the model and penalizes the R-squared for including irrelevant predictors. With an R2

Adj value of 91.93%, we 
see that approximately 91.93% of the variance is explained, taking into account the influence of the number of 
predictors. This provides a more conservative estimate of the explanatory power of the model, especially in cases 
with multiple predictors such as ours. The predictive ability of the model for new data points is assessed by the 

(9)αLoss(dB/cm) = 14.35+ 2.06×d1 − 3.73×d2 + 6.93×d3 − 2.88×�− 3.81×tAg

Table 4.   Results of the ANOVA on the sensor confinement loss. Significant values are in bold.

Source DF Seq-SS Adj-MS Contribution F-value P-value

d1 1 33.90 33.896 4.65% 4.04 0.182

d2 1 111.37 111.368 15.29% 13.26 0.068

d3 1 383.73 383.732 52.69% 45.70 0.021

� 1 66.56 66.563 9.14% 7.93 0.106

tAg 1 115.95 115.954 15.92% 13.81 0.065

Error 2 16.79 8.396 2.31%

Total 7 728.31 100.00%

d1
5% d2

15%

d3
54%

Λ
9%

tAg
17%

d1 d2 d3 Λ tAg

Figure 5.   Contributions of key parameters to the confinement loss of the PCF sensor.

Table 5.   Comparaison of simulated and prediced MLR values.

Tests d1 d2 d3 � tAg Simulated values Predicted values

1 1.7 0.8 1.55 3.2 55 14.0790 15.7928

2 1.7 0.8 1.55 3.4 75 4.1233 2.4095

3 1.7 1.2 1.75 3.2 55 23.8960 22.1822

4 1.7 1.2 1.75 3.4 75 7.0851 8.7989

5 1.9 0.8 1.75 3.2 75 25.0240 26.1469

6 1.9 0.8 1.75 3.4 55 29.1150 27.9921

7 1.9 1.2 1.55 3.2 75 5.9560 4.8331

8 1.9 1.2 1.55 3.4 55 5.5555 6.6784
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predicted R-squared ( R2
pred ). Its value of 63.11% indicates that the model can predict approximately 63.11% of 

the variance in new observations.
Under ideal operating conditions (optimal conditions), the MLR model predicts the optimal value of the 

confinement loss value ( ̂αLoss ) to be 33.761 dB/cm. Performing the FEM simulation with these optimized settings 
yields an observed value ( αLoss ) of 31.536 dB/cm, with a relative error of : 

∣∣∣ αLoss−α̂Loss
αLoss

∣∣∣× 100 ≈ 7% . This level of 
error is considered acceptable in engineering.

Confinement loss with changing analyte RI (na)
The loss peak approach is widely accepted for evaluating the efficiency of an SPR sensor. Increased losses contrib-
ute to an expanded evanescent field within the cladding of the photonic crystal fiber (PCF), thereby increasing 
sensitivity. The proposed sensor exhibits increased sensitivity, capable of detecting even subtle variations in the 
refractive index (RI) of the analyte. This is particularly evident when the effective RI (neff) of the fundamental 
mode is significantly affected by the analyte RI (na), as shown in the confinement loss spectra in Fig. 6. In this 
particular scenario, a noticeable shift in the resonance wavelength accompanies a change in analyte RI from 1.29 
to 1.36. It can be seen that as the analyte RI increases, the confinement loss also increases, causing the resonance 
peak to shift to higher values. This phenomenon is due to the fact that variations in RI induce changes in both the 
propagation constant and the kinetic binding energy44. Consequently, the confinement loss exhibits a minimum 
of 3.7654 dB/cm at 1.44 μm with na value of approximately 1.29, while the maximum confinement loss peak of 
31.536 dB/cm is observed at 1.92 μm with na value of approximately 1.36.

Wavelength sensitivity
In the general context, the wavelength interrogation method is used to determine the wavelength sensitivity 
(Ws), which is defined by Eq. (5). In our proposed SPR sensor, we observed Δλpeak values of 40, 60, 40, 80, 60, 
100, 100 nm as na varied from 1.29 to 1.30, 1.30 to 1.31, 1.31 to 1.32, 1.32 to 1.33, 1.33 to 1.34, 1.34 to 1.35, and 
1.35 to 1.36, respectively. Accordingly, the maximum Ws values obtained were 4000, 6000, 4000, 8000, 6000, 
10,000, and 10,000 nm/RIU. Consequently, the wavelength sensitivity reaches a peak value of approximately 
10,000 nm/RIU within the analyte RI range of 1.34 to 1.36.

Amplitude sensitivity
Unlike wavelength sensitivity, amplitude sensitivity provides a simple and inexpensive method of measuring 
sensitivity at a specific wavelength. The amplitude sensitivity observed by varying the sample refractive index 
(RI) from 1.29 to 1.36 is shown in Fig. 7. As shown in the figure, the amplitude sensitivity shows an increase 
as the sample RI increases from 1.29 to 1.33. The peak shifts to a higher wavelength, indicating an enhanced 
interaction between the evanescent field and the surface plasmon polariton (SPP) mode. Consequently, the 
amplitude sensitivity reaches a maximum value of approximately 235.882 RIU−1 at na = 1.33 and an operating 
wavelength of 1.72 μm.

Machine learning models
Machine learning models were used to optimize and predict the confinement loss of the PCF sensor using 
simulation data. The input factors were air hole diameters (d1, d2, d3), pitch (Λ), and silver thickness (tAg). Their 
effects on the efficiency of PCF sensors were evaluated by a full experimental design (25) with 32 samples, since 
machine learning models require a large dataset. The dataset and model architecture were used to evaluate the 
effectiveness of two different Artificial Neural Network (ANN) optimization techniques, namely Multi-Layer 
Perceptron (MLP) and Particle Swarm Optimization (PSO).
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Statistical error analysis
The following coefficients45 were calculated to monitor the performance of the models used in this analysis: 
MLR-ANN and PSO-ANN

Here, N is the number of samples, VAF is the variance accounted for, RMSE is the root mean square error, 
MAPE is the mean absolute percentage error, R2 is the coefficient of determination, and R2

Adj is the adjusted R2 . 
Here, yi is the actual value, ŷi is the predicted value, y is the average value of y, and k is the number of features 
(input variables).

MLP‑ANN optimization
A Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) is a type of artificial neural network that uses 
the Multi-Layer Perceptron architecture. This architecture is characterized by its composition of multiple con-
nected layers of neurons, which typically include an input layer, one or more hidden layers, and an output layer. 
ANNs are widely used in the field of machine learning, where they are applied to various tasks such as classifica-
tion, regression, and pattern recognition. Figure 8 provides a visual representation of the network structure of 
the MLP used in this study.

The overall network consists of multiple interconnected layers, and learning is accomplished by adjusting 
weights and biases during the training phase, typically using optimization techniques such as gradient descent. 
The following equation is a mathematical representation of the feedforward process in a neural network. It calcu-
lates the output of a given neuron in the output layer based on the inputs, weights, and biases from the previous 
layer, incorporating activation functions:
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In this equation, Yk represents the output of neuron k within the neural network, g and f  denote the activation 
function of neurons in the output layer and hidden layers respectively (Fig. 8), q represents for the number of 
neurons in the previous layer and, wij represents the weight of the connection between neuron i in the input layer 
and neuron j in the hidden layer. bhj  represents the bias term associated with neuron j in the hidden layer and b0 
represents the bias term associated with neuron k in the output layer. Several networks with different numbers 
of hidden layer neurons were trained and then evaluated. The architecture of the ANN used in this investigation 
is characterized by a feed-forward structure using sigmoid activation functions within the hidden layers and a 
linear activation function at the output node.

Following Bishop’s seminal work in 199546, which suggests that more than one hidden layer is often unneces-
sary, our architectures have only one hidden layer. A back-propagation gradient descent algorithm was used to 
train the ANN. The dataset was carefully divided into three distinct subsets for the duration of the training phase: 
a training dataset (70%), a test dataset (15%), and a validation dataset (15%). The number of neurons in the hid-
den layer was systematically adjusted in the range of 1 to 20 in order to evaluate the performance of the model. 
The mean squared error between the simulation data and the model output, shown in Fig. 9, was expressed as a 
function of the number of neurons in the hidden layer. The selection of the most effective network depended on 
its ability to predict responses with the lowest mean squared error. Consequently, as shown in Fig. 9, our results 
showed that the optimal network configuration was achieved with a 5:11:1 structure (11 neurons in the hidden 
layer). This result is consistent with the formula derived from the literature47:

(16)Nneurone =
Nin +

√
Np

L

Figure 8.   The MLP-ANN Structure.
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In this equation, L is the number of hidden layers (in our case, L = 1), Nin is the number of inputs (in our case, 
Nin = 5 ), and Np is the number of samples (in our case, Np=32).

The architecture, parameters and optimization process of the ANN network are shown in Table 6. 
Figure 10 presents a comprehensive assessment of the MLP-ANN model’s performance in predicting PCF 

sensor efficiency: (a) Comparison of observed (FEM simulation) and predicted data using the MLP-ANN model. 
It serves as a visual representation of how well the model’s predictions match the actual data, providing insight 
into the model’s predictive accuracy. (b) Statistical Analysis Fit of the MLP-ANN Model. It provides insight into 
the goodness of fit of the model by assessing how well the predicted values match the actual data. In addition, 
subplot (c) evaluates the deviation of the predicted values generated by the MLP-ANN model from the actual 
values. This provides a clear understanding of the model’s prediction errors and any discrepancies between the 
predicted and observed data points, facilitating further analysis and refinement of the model if necessary.

The achieved correlation coefficient of 0.949, which is close to 1, indicates a strong correlation. Furthermore, the 
values for RMSE, VAF, MAPE, R2 , and R2

adj underscore the robust predictive capability of the MLP-ANN model.

Table 6.   Architecture and parameters of ANN.

Aspect Description

Input layer 5 neurons

Hidden layers 11 neurons

Activation function Sigmoid

Output layer 1 neuron

Learning rate 0.5

Number of epochs 500

Loss function MSE

Momentum constant 0.9
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Figure 10.   (a) comparison of observed and predicted confinement loss using MLP-ANN model; (b) statistical 
analysis fit of the MPL-ANN model; (c) Deviation analysis of MLP- ANN model predictions from actual 
confinement loss values.
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PSO‑ANN optimization
Using the Particle Swarm Optimization (PSO) algorithm in conjunction with a traditional Artificial Neural 
Network (ANN) is a promising approach48. As mentioned earlier, in a typical ANN structure, there are several 
layers: an input layer, one or more hidden layers, and an output layer. These layers are connected by a network 
of weighted connections, where the value of each neuron is determined by the sum of the connections within 
the neuron, weighted by their respective values. An activation function, typically sigmoidal in nature, is then 
applied to this value. The weights of the network are traditionally tuned by error backpropagation and gradient 
descent. Incorporating the PSO algorithm into this framework helps optimize the connection weights within 
the ANN, with the goal of identifying the optimal weight values that produce the best results. Initially, the PSO 
algorithm generates a population of particles, each of which is used within the neural network. The fitness of 
each particle, representing a potential solution set, is evaluated, and pertinent local and global information is 
retained within each particle. PSO then uses this information to update particle velocities and effectively explore 
the solution space. The PSO-ANN model configured with a swarm size of 150, a cognitive coefficient C1 of 1.5, a 
social coefficient C2 of 2, and an inertia weight W of 0.9 provides the most accurate prediction results, resulting 
in an exceptionally high regression coefficient of approximately 0.99 (as shown in Fig. 11). The global parameters 
of the PSO algorithm for the optimization of the ANN network are shown in Table 7.

The performance metrics, including RMSE, VAF, MAPE, and R2 (detailed in Table 8), consistently show that 
the PSO-ANN model outperforms the MLP-ANN model in terms of prediction accuracy. In particular, the RMSE 
obtained at the 500th iteration was exceptionally low.

Comparative study
In this section, we conducted a comparative analysis between the results generated by two different learning 
machine models used to predict the confinement loss of the PCF-SPR sensor and the results obtained through by 
finite element simulations. Figure 12 and Table 8 provide a visual and numerical representation of this compara-
tive study. Figure 12 visually represents the discrepancies between the predicted values of the MLP-ANN and 
PSO-ANN models with respect to the actual data values for the confinement loss. It is evident that the PSO-ANN 
model provided an efficient prediction that was more reliable than the MLP-ANN model.
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Figure 11.   (a) Comparison of observed confinement loss values using the PSO-ANN model; (b) statistical 
analysis fit of the PSO-ANN model; (c) analysis of the deviation of the PSO-ANN model prediction from the 
actual confinement loss values.
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Furthermore, when examining the key performance metrics presented in Table 8, it is evident that the PSO-
ANN model outperforms the MLP-ANN model. Specifically, metrics such as R2 (coefficient of determination), 
RMSE (root mean square error), VAF (variance accounted for), and MAPE (mean absolute percentage error) 
all indicate superior performance for the PSO-ANN model. Taken together, these results indicate that the PSO-
ANN model excels in predicting the optical properties of the PCF-SPR sensor.

Genetic algorithm optimization
To maximize the sensor confinement loss, the independent parameters [air hole diameters (d1, d2, d3), pitch (Λ) 
and silver thickness (tAg)] were also optimized by genetic algorithm (GA). The optimized PSO-ANN model was 
used as the objective function of the GA. The optimization was performed under constraints to obtain optimal 
conditions predicted in the experimental range. The experimental ranges adopted in the Taguchi design were 
used as bounds for the five input variables. The optimization problem to be solved by the GA was constructed 
as follows:

The optimization process was continued until very low mean sum of square error (MSE) and root mean 
square error (RSME) values were obtained between the mean and individual fitness values. After mutation, the 
optimization cycle resumed, and if the target result was not achieved, the whole population was used for the 

(17)Maximize objective function (optimized PSO − ANN)






1.7µm ≤ d1 ≤ 1.9µm
0.8µm ≤ d2 ≤ 1.2µm
1.55µm ≤ d3 ≤ 1.75µm
3.2µm ≤ � ≤ 3.4µm
55nm ≤ tAg ≤ 75nm

Table 7.   Parameters of PSO algorithm.

Parameter Description

Number of particles 176

Fitness function MSE

Inertia weight 0.65

Cognitive learning factor 0.5

Social learning factor 2

Maximum velocity 5

Table 8.   Key performance metrics for MLP-ANN and PSO-ANN models.

Model MAPE (%) VAF (%) RMSE R2 R2

Adj

MLP-ANN 0.31 95.25 1.95 0.95 0.94

PSO-ANN 0.05 99.19 0.8 0.99 0.99
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Figure 12.   Comparison plot of simulation data for PCF sensor confinement loss versus predicted data obtained 
by MLP-ANN and MLP-ANN models.
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next cycle of breeding, crossover, and mutation. The objective function was written as a MATLAB file using the 
PSO-ANN model. The GA parameters used for optimization are shown in Table 9.

The evolution of the fitness value as a function of the number of generations is shown in Fig. 13. It is clear from 
this figure that from the 60th generation, the fitness value remains constant with an average value of − 32.2692. 
The optimization performed by the GA resulted in the following conditions: d1 = 1.9 µm, d2 = 0.8 µm, d3 = 1.75 µm, 
Λ = 3.27 µm and tAg = 58.02 nm. Under these optimized conditions, the predicted value of the confnement loss 
is 32.2692 dB/cm.

Conclusion
In this study, we used the Taguchi optimization approach to efficiently identify optimal structural parameters for 
a PCF-SPR sensor, including air hole diameters (d1, d2, d3), pitch (Λ), and silver layer thickness (tAg). Then, we 
developed MLP-ANN and PSO-ANN machine learning models to predict the confinement loss based on these 
parameters. The results showed that the PSO-ANN model outperformed the MLP-ANN model, achieving an 
impressive R2 value of 0.99, indicating exceptional prediction accuracy. Taguchi optimization demonstrated its 
effectiveness in minimizing the number of trials required for sensor optimization. Finally, a genetic algorithm 
(GA) was applied to further optimize the sensor conditions with the goal of increasing the confinement loss. 
Under the optimized parameters (d1 = 1.9 µm, d2 = 0.8 µm, d3 = 1.75 µm, Λ = 3.27µm, tAg = 58.02 nm), the GA 
approach yielded a maximum confinement loss of 32.2692dB/cm. These combined results underscore the com-
prehensive optimization approach using Taguchi optimization, machine learning models, and genetic algorithms 
for improved performance in PCF-SPR sensor design.
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