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Joint superpixel and Transformer 
for high resolution remote sensing 
image classification
Guangpu Dang 1, Zhongan Mao 2, Tingyu Zhang 3,4*, Tao Liu 5, Tao Wang 1, Liangzhi Li 6, 
Yu Gao 1, Runqing Tian 1, Kun Wang 2 & Ling Han 6

Deep neural networks combined with superpixel segmentation have proven to be superior to high-
resolution remote sensing image (HRI) classification. Currently, most HRI classification methods 
that combine deep learning and superpixel segmentation use stacking on multiple scales to extract 
contextual information from segmented objects. However, this approach does not take into 
account the contextual dependencies between each segmented object. To solve this problem, a 
joint superpixel and Transformer (JST) framework is proposed for HRI classification. In JST, HRI is 
first segmented into superpixel objects as input, and Transformer is used to model the long-range 
dependencies. The contextual relationship between each input superpixel object is obtained and the 
class of analyzed objects is output by designing an encoding and decoding Transformer. Additionally, 
we explore the effect of semantic range on classification accuracy. JST is also tested by using two 
HRI datasets with overall classification accuracy, average accuracy and Kappa coefficients of 0.79, 
0.70, 0.78 and 0.91, 0.85, 0.89, respectively. The effectiveness of the proposed method is compared 
qualitatively and quantitatively, and the results achieve competitive and consistently better than the 
benchmark comparison method.
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The resolution of acquired remote sensing images is increasing as remote sensing sensors and imaging technol-
ogy advance1,2. In comparison to the earlier low and medium resolution images, HRI can offer greater spatial 
information and geometric texture information3,4. It offers trustworthy information for land management, land 
planning, and urban construction5. Additionally, this raises the bar for high-resolution remote sensing image 
classification6,7.

Currently, research on deep learning-based methods has increased rapidly as deep neural networks have 
achieved significant advances8–11. Several frameworks have been developed in combination with deep learning-
based methods, including autoencoders12, constrained Boltzmann machines13, and convolutional neural networks 
(CNNs)14. Specifically, CNNs are more widely used in remote sensing image classification.15 proposed a CNN 
framework for remote sensing image classification. The framework extracts deep features using a series of CNN 
and pooling layers to improve the accuracy of remote sensing image classification.16 used a pyramidal pool-
ing module to enable CNNs to combine multi-scale information for remote sensing image classification. This 
method can recognize multiple geographical objects simultaneously. Researches mentioned above demonstrate 
how the deep learning-based remote sensing image classification method enhances accuracy and lessens issues 
with conventional feature extraction and feature selection.

Despite the aforesaid benefits of deep learning-based methods, HRI classification still has significant draw-
backs. End-to-end semantic segmentation networks are mostly used in deep learning-based remote sensing 
image classification to achieve pixel-level classification17–20. For complicated feature objects, these semantic seg-
mentation approaches have a pretzel effect since it is challenging to determine the correct class for each pixel21,22.

In contrast, the above scenario is avoided from the object level using the superpixel segmentation and deep 
neural network classification approach23,24.25 proposed a deep learning method based on CNN and energy-driven 
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sampling for high-resolution remote sensing image classification.26 proposed a deep neural network method for 
standardized segmentation of objects for HRI classification. These superpixel-based classification methods can 
effectively map image classes with high spatial resolution. However, these methods only stack multiple scale 
images for the feature presentation, which not only increases the redundancy of information, but also increases 
the non-separability between features.

Figure 1 shows stacking multiple scales of image blocks for characterizing the central superpixel object 
features. S1 , S2,..., Si scales are sampled and these data are simultaneously used as input as feature information 
for the classification of this superpixel block. This approach only obtains a class of superpixel objects, while not 
obtaining the remote dependence of a superpixel object.

Although some progress has been made in HRI classification based on superpixel segmentation, it is still 
worth exploring. The main problems are as follows:

(1)	  Semantic range. HRI typically contain features at several scales, therefore using images with a set scale 
range as input will add to the complexity of representing heterogeneous information when the network is 
trying to extract features from objects at various scales.

(2)	 Context dependency. It fails to determine the class to which the object belongs using only one superpixel 
object, and the context dependency between him and the surrounding objects must be captured.

To address the above problems, this paper proposes a framework of joint superpixel and Transformer27 is 
proposed for HRI classification. Transformer structure can reflect the complex spatial transformation and con-
textual dependency to obtain the global feature representation. Inspired by the above, we designed an encoded 
and decoded Transformer to obtain the contextual relationship between each input superpixel object and output 
the class of analyzed objects. The main contributions are as follows:

(1)	  Semantic Scaling through Superpixel Object Selection: Our framework addresses the issue of semantic 
scaling by selecting different numbers of superpixel objects as inputs. This approach allows for the repre-
sentation of scale differences between superpixel objects, a crucial factor in HRI classification. By adapting 
the scale of input superpixel objects, our method can more accurately and effectively capture the varying 
semantic levels present in HRIs.

(2)	 Encoded and Decoded Transformer Design: We have innovatively designed a Transformer structure for 
encoding and decoding, which is inspired by the need to capture complex spatial transformations and 
contextual dependencies. This design enables the Transformer to obtain a global feature representation 
of the input data. By establishing contextual dependencies, our Transformer incrementally enhances the 
understanding of the relationships between objects and their surrounding context. This aspect is pivotal 
in accurately classifying each superpixel object based on a comprehensive understanding of its context.

Related work
Image classification techniques
Traditional image classification techniques can be broadly categorized into supervised and unsupervised 
methods28. Supervised classification methods, such as maximum likelihood classification (MLC) and support 
vector machine (SVM), rely on labeled training data to create a model that can predict the class labels of unseen 
data29. These methods have been widely used in remote sensing image classification tasks due to their high 
accuracy when training data is representative and adequately labeled. However, they require a large amount of 
labeled training data, which can be expensive and time-consuming to collect30. Moreover, these methods may 
not generalize well to new datasets or when the class distributions change over time.

Figure 1.   Illustration of a superpixel object for multi-scale input to deep neural networks.
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Unsupervised classification methods, such as K-means Clustering and Iterative Self-Organizing Data Analysis 
Technique (ISODATA), do not require labeled data and are based on clustering algorithms to group pixels with 
similar characteristics31. These methods are advantageous when labeled data is scarce, but their performance 
heavily relies on the choice of the clustering algorithm and its parameters. As a result, unsupervised methods 
may produce less accurate classification results compared to supervised methods32.

Feature extraction techniques play a crucial role in remote sensing image classification, as they determine 
the representation of the data used for classification. Handcrafted features, such as texture features (e.g., Gray 
Level Co-occurrence Matrix, GLCM) and spectral features (e.g., vegetation indices), involve manual selection 
and extraction of features based on domain knowledge33. These features have been widely used in remote sensing 
image classification tasks due to their ability to capture relevant information, such as spatial patterns and spectral 
characteristics. However, the selection of appropriate features is a challenging task, and handcrafted features may 
not capture all the information required for accurate classification34.

Deep learning-based feature extraction methods, particularly Convolutional Neural Networks (CNNs), have 
revolutionized remote sensing image classification by eliminating the need for handcrafted features35. CNNs 
can automatically learn hierarchical feature representations from raw data, leading to improved classification 
performance. Pre-trained CNNs, such as AlexNet, VGG, and ResNet, have been fine-tuned for remote sensing 
image classification tasks, demonstrating significant improvements in classification accuracy28,36. For example,37 
introduces a novel deep learning-based method for forest change detection, which effectively distinguishes 
between changed and unchanged areas by enhancing the Forest Fused Difference Image (EFFDI) and applying 
the Recurrent Residual U-Net. Domain-specific CNN architectures, such as U-Net and SegNet, have also been 
proposed for remote sensing image classification, addressing unique challenges in this field, such as varying 
spatial resolutions and complex class structures38,39. Despite the numerous advantages of deep learning-based 
approaches, significant challenges remain in HRI classification. End-to-end semantic segmentation networks are 
predominantly employed in deep learning-based remote sensing image classification to accomplish pixel-level 
classification40. However, for complex feature objects, these semantic segmentation methods exhibit a “pretzel 
effect,” as accurately determining the appropriate class for each pixel can be quite difficult21,22.

Presently, numerous studies employ object-based segmentation combined with deep neural network 
approaches for HRI classification. Such methods circumvent the need for intricate, artificially designed features 
and enhance classification accuracy. While these object-based classification techniques can achieve higher accu-
racy through deep learning networks, determining the segmentation scale remains a challenge due to the network 
output size, potentially leading to over-segmentation or under-segmentation issues. Superpixel segmentation, 
which groups adjacent pixels into irregular pixel blocks with uniform distribution, has demonstrated effectiveness 
in HRI classification.25 introduced a deep learning approach that relies on CNNs and energy-driven sampling 
for HRI classification.26 employed a deep neural network technique for standardized segmentation of objects in 
HRI classification. These superpixel-centric methods can proficiently outline and represent the features of high 
spatial resolution images.

Transformer
The Transformer model, proposed by27, has revolutionized the field of natural language processing and has 
been successfully applied to various tasks, such as machine translation, sentiment analysis, and named entity 
recognition.

In recent years, the integration of Transformer models with conventional approaches has marked a significant 
advancement in remote sensing image classification. The HyFormer framework, proposed by Yan et al.41, exem-
plifies this trend by merging Transformer models to bolster feature expressiveness for pixel-level multispectral 
image classification. Similarly, Xu et al.42introduced a novel network leveraging multiscale and cross-level atten-
tion learning (MCAL) for hyperspectral image (HSI) classification. This approach capitalizes on both global and 
local multiscale features through a multiscale feature extraction module coupled with a cross-level feature fusion 
module, enhancing the precision of HSI classification. Another innovative model, the SS-TMNet, developed 
by Huang et al.43, integrates spatial-spectral Transformer with multi-scale convolution. This network excels 
in extracting comprehensive local and global spatial-spectral information for HSI classification, showcasing 
the potential of spatial-spectral analysis in remote sensing. These developments underscore the transformative 
impact of Transformer-based models in remote sensing, offering novel methodologies for accurate and efficient 
image classification.

The core ideas of Transformer-based models revolve around self-attention mechanisms, positional encoding, 
and layer normalization, which effectively capture long-range dependencies in input data. This paper discusses 
the application of the Transformer architecture in conjunction with superpixel segmentation for remote sensing 
image classification, aiming to improve the performance of high-resolution satellite image (HRSI) classification.

The Transformer model is built upon the self-attention mechanism, which enables the model to weigh the 
importance of different input elements relative to each other. This mechanism is particularly useful for capturing 
long-range dependencies in data, as it enables the model to focus on relevant parts of the input sequence while 
disregarding less relevant parts. The self-attention mechanism is mathematically described as follows:

where Q, K, and V are the query, key, and value matrices, respectively, and dk is the dimension of the key vector. 
The softmax function is applied to the dot product of the query and key matrices, normalized by the square root 
of dk , which results in a probability distribution over the input elements. This distribution is then used to compute 
a weighted sum of the value vectors, generating the output of the attention mechanism.

(1)Attention(Q,K ,V) = Softmax

(

QKT

√
dk

)

V ,
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In this work, we propose to integrate the Transformer model with superpixel segmentation for remote sensing 
image classification. The goal is to leverage the long-range dependency capturing capabilities of the Transformer 
model to improve the classification performance of HRI by combining the superpixel.

Methods
Overall framework
Figure 2 shows the technical flowchart of the joint superpixel segmentation and Transformer for HRI clas-
sification, which mainly includes: (1) superpixel segmentation. HRI are segmented by a simple linear iterative 
clustering segmentation algorithm to obtain superpixel objects. Superpixel objects are then used as the input of 
the network. (2) Model training and classification. The network framework is shown in Figure 3. The model is 
based on a proposed encoder- and decoder Transformer structure that maps a sequence of patch embeddings 
to pixel-level tokens for extracting features, and finally outputs the category of each input object. the proposed 
encoder- and decoder Transformer structure is described in detail in Section 2.3.

Superpixel segmentation
The simple linear iterative clustering (SLIC) algorithm is a superpixel segmentation method that considers color 
space and spatial distance. Firstly, the image’s color space is transformed into CIELab, and initial clustering 
centers are sampled at intervals of S pixels. The clustering points’ distance is set as S =

√

N
k  to produce super-

Figure 2.   Flowchart for high-resolution remote sensing image classification using joint superpixel and 
Transformer.

Figure 3.   Graphical representation of combining superpixel and Transformer framework. JST has two 
components. 1. HRI are segmented into homogeneous objects by a superpixel segmentation algorithm. 2. 
Superpixel objects are linearly projected into tokens with position information. The added features are then 
processed by the encode-Transformer and decode-Transfomer modules, which have multiple self-attention 
layers and can extract contextual dependency information between objects and finally obtain the category of 
each object by SoftMax.
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pixels of approximately the same size, where k is the desired number of superpixels, the N represents the total 
number of pixels in the image. The clustering centers are then moved to the lowest gradient in a 3× 3 domain.

The algorithm involves initializing seed points (clustering centers) according to the set number of superpixels 
and distributing them evenly within the image. Next, seed points are reselected within an n× n neighborhood, 
and the gradient values of all pixel points in the neighborhood are computed. Seed points are then moved to the 
location with the smallest gradient in the neighborhood.

Each pixel point is assigned class labels within the neighborhood around each seed point, limiting the search 
range to 2S × 2S . The distance metric includes color and spatial distance, calculated for each searched pixel point 
as the distance to the seed point. The color distance dc is given by:

The spatial distance ds is given by:

The final distance metric D′ is given by:

Since each pixel point is searched by multiple seed points, each pixel point is given a distance from the sur-
rounding seed points, and the seed point corresponding to the minimum value is taken as the clustering center 
of that pixel point.

Transformer
Encoder‑Transformer
The superpixel object is split into a one-dimensional vector, where H ×W  denotes the superpixel object 
length and width and C is the number of channels. Then, x is linearly projected to a patch embedding 
x0 = [Ex1, . . . ,ExN ] ∈ R

N×D , where E ∈ R
D×(P2C) . To obtain the location information of the input object, the 

learnable position embedding pos =
[

pos1, . . . , posN
]

∈ R
N×D are added to the patch sequence to obtain the 

resulting tagged input sequence z0 = x0 + pos . A Transformer encoder consisting of z0 input to the designed 
L-layer is used to obtain the features of the remote context. A Transformer layer is composed of a multi-headed 
attention block.

Figure 4 illustrates the one-layer Transformer network structure. Given the input tensors F, then the input 
tensors are linearly transformed as Wq,Wk ,Wv for obtaining qi , ki , and vi , i.e.

Let the matrix A =
(

a1, a2, ai
)

,Q =
(

q1, q2, qi
)

,K =
(

k1, k2, ki
)

,V =
(

v1, v2, vi
)

 , then Q, K, V

(2)dc =
√

(

lj − li
)2 +

(

aj − ai
)2 +

(

bj − bi
)2

(3)ds =
√

(

xj − xi
)2 +

(

yj − yi
)2

(4)D′ =

√

(

dc

m

)2

+
(

ds

S

)2

(5)







qi = Wq · ai
ki = Wk · ai , i ∈ {1, 2, 3}
vi = Wv · ai

(6)







Q = Wq · A
K = Wk · A
V = Wv · A

Figure 4.   A layer in Transformer encoder and decoder.
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Let the output matrix B =
(

b1, b2, bi
)

 , then B

The attention features obtained above are used to obtain the final output by the fully connected layer, batch 
normalization, and the input.

Decoder‑Transformer
Our decoder transformer is inspired by ViT44, which introduces object embedding to generate instance masks. 
For Transformer decoder, we introduce a set of K learnable class embeddings c = [cls1, . . . , clsK] ∈ R

K×D , where 
K is the number of classes. Each class embedding is randomly initialized and assigned to a single semantic class. 
It will be used to generate class masks. The class embedding c is processed by the decoder jointly with the patch 
encoding. The decoder is a transformer encoder consisting of M layers. Decoder-Transformer generates the 
K-mask by computing the scalar product between the L2 normalized patch embedding z′

M
∈ R

N×D and the class 
embedding c ∈ R

K×D output by the decoder. The class mask set is computed as follows:

where Masks
(

z
′
M
, c
)

∈ R
N×K are a set of patch sequences. SoftMax is applied on the class dimension, and layer 

norms are added to obtain pixel-level scores to form the final classification. The detailed structural parameters 
are described in Table 1.

Data and parameter settings
Data
WHDLD45 is a densely labeled dataset that can be used for remote sensing image retrieval and pixel-based tasks 
such as remote sensing classification. The images were meticulously extracted from satellite imagery provided by 
GaoFen-1 and ZiYuan-3 satellites. A key feature of this dataset is its spatial resolution, which stands at 2 meters. 
We use the pixels of each image with the following 5 category labels, namely buildings, roads, Bare ground and 
vegetation.

DLRSD46 is a densely labeled dataset of high-resolution remote sensing image classification dataset that can 
be used for semantic segmentation of remote sensing images. The images were sourced from the National Map 
and are primarily in the RGB colorspace. The spatial resolution for these images is set at 0.3 meter. We choose 
the image file (named mediumresidential) with 5 category labels, namely building, road, tree and vegetation in 
DLRSD for the experimental dataset.

Parameter settings
Figure 5 shows the partial segmentation results on the two datasets with different segmentation parameters. The 
number of segmented superpixels is determined based on the size of the two images, and the tightness parameter 
is set to 1-60 for comparison. Figure 5 shows the segmentation results for the same tightness with different (n), 
where n denotes the number of superpixel objects. Since the influence of mixed pixels, increasing n can improve 
the homogeneity of segmented objects for WHDLD. The tightness of the image and the number of segmented 
objects in WHDLD are set to between 30-45 and 800 respectively, which is more suitable by comparison. For 
DLRSD, the tightness coverage parameter is set between 15-30 and the number of segmented objects is set to 
650, which obtains better segmentation results. This is attributed to the clearer texture of the features covered in 
the DLRSD, reducing tightness and n can ensure the heterogeneity of each superpixel object.

The model is implemented by the Pytorch library and all the experiments are implemented on Ubuntu with 
128GB RAM, RTX2070, 8GB. We indeed adopted an 80/10/10 split (Train/Validation/Test) for the datasets used 
in our study. The optimization model of the network is used with Adam and the learning rate, epoch and batch 
size were set to 0.0001, 4000 and 200.

(7)B = Attention(Q,K ,V) = V · softmax

(

K⊤ · Q
√
dk

)

(8)Masks
(

z
′
M, c

)

= z
′
Mc

T

Table 1.   Parameters of each layer in a Vision Transformer (ViT) model.

Layer Parameters Description Values/size

Input Image size Image dimensions H ×W × C

Patching Patch size Patch dimensions P × P × C

Embedding Embedding size Embedding vector size D

Transformer

Num. of layers Number of transformer layers L

Num. of heads Number of attention heads HA

Hidden size Hidden layer size DH

Feed-forward Feed-forward hidden size DFF

Classifier Num. of classes Number of output classes COut
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Experiment
Evaluation matrix
Several widely used quantitative metrics, such as overall accuracy (OA), average accuracy (AA) and statistical 
Kappa coefficient ( κ ), are used to evaluate the performance of JST. OA represents the proportion of correctly 
classified test samples relative to all test samples, while κ reflects the degree of agreement between the classifica-
tion map generated by the considered model and the ground truth provided.

Effect of the number of objects for input
Contextual dependencies exist between superpixel objects. How many input superpixel objects effect the clas-
sification accuracy is determined by the size of the range of contextual information that maximizes the identi-
fication of the categories between each object. The minimum number of input for segmented objects is 1 and 
the maximum number of input for segmented objects is the whole image. However, using one object as input 
does not provide more semantic information leading to misclassification. The number of input segmentation 
objects is chosen as 9, 12, 16, 20, 25, and 36 for evaluating the impact on classification accuracy. We use the 
same training parameters on both datasets from scratch to compare the impact of the input objects on the clas-
sification accuracy.

Figure 6 depicts the classification accuracies on the two datasets with a different number of inputs on the 
datasets. The results show the same trend of classification accuracy on both datasets, i.e., the overall trend of 
classification accuracy tends to increase as the number of inputs increases. When the number of input objects 

Figure 5.   Superpixel segmentation results on partial WHDLD and DLRSD by different segmentation 
parameters, where n denotes the parameters used for the segmentation number of the superpixel objects.

Figure 6.   Overall accuracy for different number of input objects on WHDLD and DLRSD datasets. ANTs is the 
abbreviation of Accuracy Norm Threshold.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5054  | https://doi.org/10.1038/s41598-024-55482-y

www.nature.com/scientificreports/

is increased from 96 to 128, there is little difference in the change of classification accuracy on WHDLD. For 
DLRSD, the overall decrease in classification accuracy on WHDLD is observed when the number of input objects 
is increased from 96 to 128. This may be because increasing the number of input objects increases the heterogene-
ity between objects in more distant neighborhoods and reduces the classification accuracy.

Classification results
To demonstrate the performance of JST for HRI classification, we compare it with seven semantic segmenta-
tion models, namely UNet47, SegNet48, DeepLabV3+49, UPerNet50, SETR51, and Swin Transformer52. for a fair 
comparison, all models are trained on the same data set and trained from scratch.

Tables 2 and 3 report the accuracy and OA,κ for each category using JST as well as other methods on the 
WHDLD and DLRSD datasets, respectively. it can be seen from the tables that JST performs the best on the 
WHDLD dataset with OA, AA and κ of 0.79, 0.70 and 0.78, respectively. JST shows a significant improvement 
in performance over the other methods. The OA of JST increased by 17.72%, 16.45%, 10.12%, 17.72%, 12.65% 
and 3.80% compared to the other six compared models. UNet obtained a moderate performance with an overall 
classification of 0.65. The OA of SegNet, DeepLabV3+, UPerNet , and SETR is higher than that of UNet, however, 
overall OA is lower than JST. Swin Transformer rank second with an OA value of 0.76.

DLRSD covers features with higher contrast and clearer texture. Therefore, all methods have an overall 
improved classification performance, as shown in Table 3. JST provides the best performance on the DLRSD 
dataset with OA, AA, and κ of 0.91, 0.85, and 0.89, followed by Swin Transformer. Since JST is built on superpixel 
segmentation, it retains the boundary information. Compared with other methods, JST not only obtains the 
context dependency but also preserves the boundary information of objects. In contrast, semantic segmentation 
algorithms rely entirely on the semantic information of each pixel in the dataset.

Figure 7 shows the classification results on WHDLD and DLRSD by JST and the comparison method. Visual 
inspection shows that JST outperforms the other six methods. Specifically, the first and second rows of Figure 7 
show the classification results on the WHDLD. For the first row, the proposed method effectively delineates the 
classification boundaries on the highly similar building and ground categories. However, all comparison meth-
ods classify both ground and neighboring buildings into the same category, as shown in the red dashed box. In 
the second row, none of the comparison methods reflect the vegetation cover details and classify buildings as 
vegetation categories, as shown in the red dashed box. The classification performance of UNet on the WHDLD 
is overall lower than the other methods. Although Unet can roughly identify each category, misclassification is 
more serious. For example, there is a significant discontinuity in the road classification in the second row, which 
leads to a loss of detailed information. JST can correctly fit the boundary detail information of each category. 
Since we apply superpixel segmentation to extract homogenized objects, this preserves the boundary informa-
tion of each category.

The third and fourth rows of Figure 7 show the classification results on DLRSD. Each category in the DLRSD 
dataset has rich texture information. Moreover, the contrast of each category is more obvious, which makes all 

Table 2.   Overall accuracy (OA), average accuracy (AA), and Kappa coefficient ( κ ) achieved by different 
methods on WHDLD.

Method Building Road Bare ground Vegetation Pavement OA AA κ

UNet 0.67± 0.04 0.62± 0.02 0.65± 0.04 0.61± 0.09 0.56± 0.05 0.65 0.65 0.64

SegNet 0.71± 0.06 0.66± 0.08 0.56± 0.07 0.61± 0.07 0.69± 0.05 0.66 0.56 0.63

DeepLabV3+ 0.74± 0.05 0.71± 0.07 0.68± 0.06 0.56± 0.07 0.75± 0.04 0.71 0.60 0.70

UPerNet 0.61± 0.03 0.70± 0.01 0.61± 0.07 0.64± 0.01 0.63± 0.07 0.65 0.59 0.61

SETR 0.68± 0.03 0.69± 0.06 0.54± 0.00 0.65± 0.01 0.62± 0.05 0.69 0.61 0.68

Swin Transformer 0.72± 0.04 0.79± 0.02 0.76± 0.06 0.74± 0.05 0.76± 0.06 0.76 0.62 0.70

JST 0.82± 0.02 0.78± 0.03 0.81± 0.02 0.80± 0.01 0.75± 0.01 0.79 0.70 0.78

Table 3.   Overall accuracy (OA), average accuracy (AA), and Kappa coefficient ( κ ) achieved by different 
methods on DLRSD.

Method Building Road Tree Vegetation OA AA κ

UNet 0.76± 0.08 0.63± 0.04 0.73± 0.06 0.71± 0.02 0.74 0.66 0.72

SegNet 0.78± 0.03 0.75± 0.02 0.74± 0.01 0.77± 0.09 0.76 0.65 0.77

DeepLabV3+ 0.87± 0.06 0.75± 0.04 0.73± 0.06 0.78± 0.06 0.82 0.72 0.79

UPerNet 0.84± 0.07 0.74± 0.05 0.79± 0.04 0.82± 0.08 0.79 0.70 0.78

SETR 0.89± 0.03 0.85± 0.01 0.84± 0.03 0.87± 0.05 0.85 0.77 0.82

Swin Transformer 0.88± 0.04 0.82± 0.06 0.85± 0.02 0.80± 0.06 0.86 0.80 0.85

JST 0.91± 0.02 0.90± 0.01 0.93± 0.02 0.85± 0.05 0.91 0.85 0.89
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methods have high classification accuracy. Similar to the WHDLD results, the proposed method can obtain more 
detailed classifications. As shown in the red dashed box in the third row, JST fits the boundaries of the road and 
vegetation completely. In addition, JST classifies the vehicles on the road completely into the road category, while 
the other methods fail. The vehicles are not classified in the training set. Therefore, it can be concluded that JST 
has a strong generalization capability.

Ablation study
The number of input superpixel objects affects the classification accuracy as described in Section 4.1. In this 
section, we ablate different variants of our method on the WHDLD and DLRSD datasets. We investigate the 
effect of the number of model layers and the size of the tokens on classification accuracy. The network under 
each variant lets the random parameters (epoch time, learning rate, batch size) be deterministic during train-
ing. Evaluation of the overall classification accuracy on the test dataset is used to compare the effectiveness of 
the configured networks.

The number of layers of Transformer
We investigate the effect on the classification performance by varying the size of the layers and fixing the size 
of the tokens to 128. The detailed network combination and classification results are shown in Table 4. In fact, 
from layer number 9 to 11, we observe a 7.64% and 10.11% performance improvement for WHDLD and DLRSD, 
respectively. Finally, the classification model with the maximum number of layers achieves an OA of 0.80 and 
0.87 on the WHDLD and DLRSD datasets. This trend suggests that increasing the number of layers is a strong 
source of improvement, however, this requires a balance between training efficiency and performance.

Size of token
Since the input superpixel objects have different sizes, mapping these objects into random tokens, their sizes 
inevitably affect the classification accuracy. The average of the sizes of the superpixel objects we counted is 24 × 
24. Therefore, we set the token sizes to 192, 256, 384 for comparing the classification performance on WHDLD 
and DLRSD respectively. When the token goes from 128 to 256, an improvement of 1.65% and 2.13% is obtained 
on the two datasets, respectively. For token 384, we also report classification results on WHDLD and DLRSD, 
which differ from token 256 by only 0.5% and 0.01%. These results show that increasing the size of the token 
does not significantly increase the classification accuracy, which is mainly dominated by the number of layers 
of Transformer that affect the classification.

Conclusion
In this paper, we propose a joint superpixel segmentation and Transformer framework for HRI classification. 
The superpixel segmentation algorithm is used to obtain objects that are similar in size and homogeneous. A 
Transformer-based encoding and decoding structure is designed to obtain contextual dependencies between the 

Figure 7.   Qualitative classification results on WHDLD and DLRSD datasets. Areas are marked with red boxes 
for ease of inspection.
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input objects. The proposed method not only preserves the boundary information of superpixel segmentation, 
but also obtains a heterogeneous feature representation between objects. A comparison with six state-of-the-
art methods is performed to show the superiority of the proposed method. In particular, tests are performed 
on the WHDLD and DLRSD datasets with OA, AA and κ of 0.79, 0.70, 0.78 and 0.91, 0.85, 0.89, respectively. 
The proposed method provides an alternative solution for high-resolution remote sensing image classification.

JST involves a degree of manual intervention in the superpixel segmentation phase. However, this manual 
aspect may affect the overall efficiency of our method, particularly when considering the end-to-end classifica-
tion process. Further research is warranted to explore ways to automate this process.

Data availability
The datasets generated and analysed during the current study are not publicly available due [The data are sourced 
from government classified projects] but are available from the corresponding author on reasonable request.
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