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Dynamics of a diffusive model 
for cancer stem cells with time 
delay in microRNA‑differentiated 
cancer cell interactions 
and radiotherapy effects
Frank Eric Essongo 1, Alain Mvogo 2* & Germain Hubert Ben‑Bolie 1

Understand the dynamics of cancer stem cells (CSCs), prevent the non-recurrence of cancers and 
develop therapeutic strategies to destroy both cancer cells and CSCs remain a challenge topic. In this 
paper, we study both analytically and numerically the dynamics of CSCs under radiotherapy effects. 
The dynamical model takes into account the diffusion of cells, the de-differentiation (or plasticity) 
mechanism of differentiated cancer cells (DCs) and the time delay on the interaction between 
microRNAs molecules (microRNAs) with DCs. The stability of the model system is studied by using 
a Hopf bifurcation analysis. We mainly investigate on the critical time delay τ

c
 , that represents the 

time for DCs to transform into CSCs after the interaction of microRNAs with DCs. Using the system 
parameters, we calculate the value of τ

c
 for prostate, lung and breast cancers. To confirm the analytical 

predictions, the numerical simulations are performed and show the formation of spatiotemporal 
circular patterns. Such patterns have been found as promising diagnostic and therapeutic value in 
management of cancer and various diseases. The radiotherapy is applied in the particular case of 
prostate model. We calculate the optimum dose of radiation and determine the probability of avoiding 
local cancer recurrence after radiotherapy treatment. We find numerically a complete eradication of 
patterns when the radiotherapy is applied before a time t < τ

c
 . This scenario induces microRNAs to 

act as suppressors as experimentally observed in prostate cancer. The results obtained in this paper 
will provide a better concept for the clinicians and oncologists to understand the complex dynamics of 
CSCs and to design more efficacious therapeutic strategies to prevent the non-recurrence of cancers.

Keywords  Cancer cells, Cancer stem cells, MicroRNAs, Hopf bifurcation, Time delay, Circular patterns, 
Radiotherapy

Cancer cells result of abnormal growth and uncontrolled division of normal cells1. Cancers grow from stem cells 
in the way that healthy organs do. The discovery of the existence of cancer stem cells (CSCs) in cancers has led to 
an understanding the mechanisms of cancer proliferation and development. The CSCs have been identified and 
isolated in many so-called solid tumors such as breast cancer, pancreatic cancer, glioblastoma (a type of brain 
cancer) and colon adenocarcinoma2. Recent reports, primarily for haematopoietic malignancies, have suggested 
that CSCs can be selectively targeted without ablating normal stem cell function. The CSCs can be more resistant 
to chemotherapy and radiotherapy3. Sometimes, after cancer treatment, the cancer comes back or recurs, this is 
called a cancer recurrence. The CSCs are a minor population of tumor cells that possess the stem cell property 
of self-renewal. Dysregulation of stem cell self-renewal is likely requirement for the development of cancer4. The 
CSCs are biologically unique cells within a tumor, possessing self renewal capacity and produce progeny with 
self proliferative capacity, similar to normal stem cells5. All these properties have led many researchers to believe 
that CSCs are responsible for the recurrence and spread of glioblastoma and other cancers, since they give rise 
to multiple other cancer cells and produce new tumors6.
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MicroRNA molecules (MicroRNAs) are small non-coding RNA molecules that regulate gene expression by 
binding to RNA messenger, thereby preventing its translation into proteins7. The microRNAs are key regulators of 
the activity of CSCs and are also involved in the transformation of differentiated cancer cells (DCs) into CSCs8,9. 
The DCs are tumor cells that undergo a process of differentiation, meaning they acquire specific characteristics to 
particular type of tissue. The microRNAs play an important role in many biological processes, including develop-
ment, cell differentiation, and tumor progression. Similarly, complex cellular secretions (serum, plasma, urine, 
saliva, blood) are regulated by microRNAs in extracellular environment. The microRNAs are used as powerful 
biomarkers10–12, of various human pathologies precisely when measured in the bloodstream. For example, the 
detection of abnormal levels of microRNAs in the blood of cancer patients makes them a very promising diagnos-
tic tool in cancerology. In adrenocortical carcinomas or adrenocorticalomas, miRNAs are used as non-invasive 
molecular markers for prognostic evaluation within a very short time after surgery. It has been shown in13 that 
microRNA-483-5p is significantly more abundant in the serum of patients who have recurred within 3 years after 
surgery compared to those who have not recurred. Some researchers have found that a specific microRNA can 
act as an oncogene in some types of cancer while the same microRNA can also act as a cancer cell suppressor 
in other cancers. For example, the microRNA-29 molecule acts as a tumour suppressor in lung tumours and as 
an oncogene in breast cancer14,15.

The CSCs are responsible to the tumor relapse, and their dynamics are closely linked to disease progression. 
Therefore, there is an urgent need for improved diagnostic methods that provide more precise clinical assess-
ments and sensitive detection of symptoms at earlier stage of the disease. In this context, mathematical modeling 
has been successfully applied. For example, Bonnet and Dick16 have shown in a mathematical model that acute 
myeloid leukemia is indeed organized as a hierarchy, with the disease originating from a primitive hematopoietic 
cell. Wang et al.17 have studied network-based methods for the identification of microRNA-target pairs in cancer. 
A long the same line, Konstorum et al.18 demonstrated that feedback regulation in a model for CSCs can cause 
an allee effect. On this background, Olmeda and Amar19 investigated clonal pattern dynamics in the concept 
of CSCs and showed that disordered patterns can be obtained inside a stable growing contour driven by the 
cancer stem cells. Very recently, Mori and Amar20 studied the importance of stochasticity and drug effects in a 
dynamical model for CSCs. These above-mentioned works implicitly assume that biological transitions such as 
the interactions between DCs or CSCs with signaling molecules and proteins are instantaneous. However, in 
reality these take time. Time delays play an important role in the modeling of life phenomena in various fields of 
applications21–23. Time delays are often associated with complex molecular mechanisms, such as the activation 
of specific signaling pathways or the regulation of gene expression by microRNAs.

   In this paper, we investigate a diffusive model for tumor initiation composed of CSCs, DCs and other cells 
that do not contribute significantly to the dynamics of the tumor, such as dead, quiescent and healthy cells. The 
dynamical system is based on the proliferation rates controlled by chemical pathways and physical interaction 
for each cell population. It mainly takes into account the diffusion of cells, the de-differentiation (or plasticity) 
mechanism of differentiated cancer cells (DCs) and the time delay on molecule-cell interaction of microRNAs 
with DCs. We propose an efficiency mathematical approach that includes the radiotherapy effects. Radiotherapy 
is one of the most commonly used treatments for cancer, and its effectiveness largely depends on the sensitivity 
of cancer cells to radiation24. We show that the radiotherapy can applied before a certain critical time delay in 
the dynamical system for a complete eradication of the tumor. This critical time delay represents the time from 
which some DCs transform into CSCs. The rest of the paper is organized as follows. In “The diffusive model 
with time delay and linear stability analysis” section, we present the model formulation and perform the linear 
stability analysis. We calculate the value of critical time delay for 3 different cancer models, namely prostate, 
lung and breast cancers. In “Analytical and numerical results” section, we integrate the radiotherapy function in 
the model and some analytical and numerical results are presented and discussed. “Discussion and conclusion” 
section concludes the paper.

The diffusive model with time delay and linear stability analysis
Model formulation
There are a number of mathematical models used to describe the dynamics of cancer stem cells (CSCs). These 
models include the Dick’s model16, the Reya’s model25 and many others26–28. The model investigated in this paper 
is the one proposed by Konstorum et al.18 and improved by Olmeda and Amar19 and Mori and Amar20. The 
mathematical model considers the dynamics of three types of cells: CSCs with similar characteristics as normal 
stem cells or progenitor cells such as self-renewal ability and multi-lineage differentiation to drive tumor growth 
and heterogeneity, differentiated cancer cells (DCs) which are specific to the tumor and vary across organs and 
other cells (C) or inert constituents. The CSCs are the sub-populations that undergo cell division leading for the 
proliferation of cells. The model also considers eliminating intermediate progenitors to the proliferation process. 
A CSC can divide symmetrically into two CSCs or two DCs, or asymmetrically into one CSC and one DC. The 
average number of CSCs generated in division is regulated by an activator Wnt-β (Wingless-related integration 
site) catenin pathway proteins8 with concentration a. Experimental evidence shows that a feedback mechanism 
exists, triggered by phenotypic changes of DCs that revert to the CSC state. This process, also known as cancer 
cell plasticity, is driven by an activator microRNA molecules (microRNAs) with concentration m9. It is now 
proved that differential dynamical systems with time delay and diffusion play an important role in the modeling 
of real life phenomena in biology, physics and medicine21–23,29–31. Also, the modeling of CSCs with diffusion 
has the potential to yield invaluable insights into cancer metastasis, disease progression, and treatment efficacy 
assessment32. Then, to improve the model, we include the diffusion process in the dynamical equations of all 
types of cells and molecules. More interesting, we include a time delay τ in the dynamical equation of CSCs to 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5295  | https://doi.org/10.1038/s41598-024-55212-4

www.nature.com/scientificreports/

represent the time needed for DCs to produce new CSCs after the interaction of microRNAs with DCs. All these 
assumptions can be explained in the following set of equations:

where S = S(x, y, t) is the concentration of CSCs, D = D(x, y, t) is the concentration of DCs, a = a(x, y, t) repre-
sents the concentration of Wnt-β catenin pathway proteins and m = m(x, y, t) the concentration of microRNAs. 
The quantities 2p(D, a) denotes the probability to gain two CSCs per mitosis and q(m(t − τ)) represents the DCs 
dedifferentiation rate. They satisfy:

where the parameter q0 represents the maximum conversion rate per year of DCs into CSCs and m0 the tiny 
concentration of microRNAs. The parameters α,β respectively represent the degradation rate of proteins, con-
trolling the aggressiveness of self-renewal Wnt-β catenin pathway proteins. The parameter σ measures the sen-
sitivity of CSCs when interacting with microRNAs. The parameter η refers to the definition of a probability 
coefficient p(D, a) for the inhibitor produced by D cells, where ψ gives the intensity of the brake. The parameter 
d is the differentiated cancer cells death rate ( d > 0 ). The parameter ε represents a time unit the inverse of the 
mitotic rate of the CSCs. The quantity S0 is a tiny fraction of S of the entire tumor population. In practice when 
S is below S0 , the activator m starts to grow as q(m) , leadind to an increase of S. Indeed, when m stimulates DCs 
that possess plasticity, the DCs transform into CSCs over a period of time. Given this process, we have considered 
a time delay τ which represents the time needed for DCs to produce CSCs after the interaction with microRNAs. 
In practice, time delays in biological systems may be large33. The term � is the Laplacian operator in two dimen-
sions, such that � = ∂2

∂x2
+ ∂2

∂y2
.

From biological considerations, we assume: S ≥ 0,D ≥ 0, a ≥ 0,m ≥ 0 , (x, y) ∈ � = (0, L)× (0, L) and 
we use zero-flux boundary conditions: ∂S

∂̟
|∂�=∂D

∂̟
|∂�= ∂a

∂̟
|∂�=∂m

∂̟
|∂�=0. The main reason for choosing such 

boundary conditions is that we are interested in the self-organization of pattern and zero-flux conditions imply 
no external input. The length of x, y ∈ (0, L) is measured in millimeter [mm], where the length scale L denotes 
the size of the system in square domain and ̟  is the outward unit normal vector of the boundary ∂� . In practice, 
the length scale L is the average penetration depth of cells in tissue. The time is measured in years. The units of 
variables and parameters used in this paper are given in the Table 1.

Linear stability analysis
The linear stability analysis is attributed to the highest sensibility of biological system37. The linear stability analy-
sis deals with infinitesimal perturbation and consists to perturb the steady state of the system. It is easy to check 
that system (1) has three equilibrium points, E(1) = (0, 0, 0,m1) , E(2) = (S2,D2, 0,m2) and E(3) = (S3,D3, a3,m3).

The first steady state of system (1) is E(1) = (0, 0, 0,m1) , that is, S = 0,D = 0, a = 0 and m1 an arbitrary value. 
Notice that the equilibrium E(1) corresponds to the hypothetical situation where there is no CSCs, no DCs and 
the Wnt − β protein is inactive.

The second steady state is E(2) = (S2,D2, 0,m2) , that is, S2 = −S0Log

(

αm2
γ

)

,D2 =
S2
d , a2 = 0 and m2 an 

arbitrary value. E(2) is biologically meaningful and E(2) corresponds to the situation where Wnt-β protein is 
inactive and the microRNAs has arbitrary values. This equilibrium point is always stable if d < q0 and m2 <

γ
α

.
The third steady state E(3) = (S3,D3, a3,m3) , that is, S3 = α(1+a3)

βa3
,D3 =

α(1+a3)
βda3

,m3 =
γ
α
e−S3/S0 and 

a3 =
1+ ψα

dβ (1+η)

2η(1− ψα
dβ )

(

1+

√

1+
4 ψα
dβ η(1− ψα

dβ )

(1+ ψα
dβ (1+η))2

)

. E3 is an unstable equilibrium point. Biologically, E3 corresponds to 

the case where the wnt-β catenin signaling pathway and microRNAs are activated, leading to uncontrolled 
proliferation of cancer stem cells. This also can be related to the chronic phase of the disease. Our goal is to study 
the phenomenon of conversion of differentiated cancer cells into cancer stem cells influenced by microRNAs 
when the wnt-β signaling pathway is not activated. At this stage, cancer proliferation can be controlled and the 
patient can be treated if appropriate therapeutic strategies are used. In the rest of the paper, for the biomedical 
view point, we will investigate the dynamics of the system at the stable equilibrium point E(2).

We now explore the dynamics of diffusion-driven instability with respect to E(2) . For this, consider small 
spatiotemporal perturbations δS(x, y, t) , δD(x, y, t) , δa(x, y, t) and δm(x, y, t) on homogenous stady state 
E(2) = (S2,D2, 0,m2) so that we have:

Expressing spatiotemporal perturbations in the form:

(1)















































dS

dt
= (2p(D, a)− 1)εS + q(m(t − τ))D(t − τ)+ DS�S,

dD

dt
= 2(1− p(D, a))εS − (d + q(m))D + DD�D,

da

dt
= a(βS

a

1+ a
− α)+ Da�a,

dm

dt
= γ e−S/S0 − αm+ Dm�m,

(2)p(D, a) =
ηa

(1+ ηa)(1+ ψD)
, q(m(t − τ)) =

q0

2

(

1+ tanh

(

m(t − τ)−m0

σ

))

,

(3)
S(x, y, t) = S2 + δS(x, y, t); D(x, y, t) = D2 + δD(x, y, t),

a(x, y, t) = 0+ δa(x, y, t); m(x, y, t) = m2 + δm(x, y, t).
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where � is the growth rate of the perturbation in time t. The parameters δS2 , δD2 , δa2 and δm2 represent the 
amplitudes, and kx and ky are the wavenumbers in the x and y directions, respectively. Inserting Eqs. (3) and (4), 
we obtain the following matrix equation for eigenvalues

The eigenvalues � are the solutions of the quadratic equation as follows:

where the parameters C11,C22,C33,C44,E11,E22 and E33 are given in Online Appendix.
Let iωk (where ωk is positive) be the root of Eq. (5) and separating the real and imaginary parts, we obtain 

the following system of equations:

From Eq. (6), we obtain

which leads to

(4)
δS(x, y, t) = δS2e

�t coskxxcoskyy; δD(x, y, t) = δD2e
�t coskxxcoskyy,

δa(x, y, t) = δa2e
�t coskxxcoskyy; δm(x, y, t) = δm2e

�t coskxxcoskyy,

















−1− DSk
2 − � de−�τ 2S2η

1+ψD2

2dD2
σ

�

1− d
q0

�

e−�τ

2 − 2d − DDk
2 − � −

2S2η
1+ψD2

− 2dD2
σ

�

1− d
q0

�

0 0 − α − Dak
2 − � 0

− α
S0
m2 0 0 − α − Dmk

2 − �

















= 0.

(5)�
4
k + C11�

3
k + C22�

2
k + C33�k + C44 + (E11�

2
k + E22�k + E33)e

−�kτ = 0,

(6)
{

C22ω
2
k − C44 − ω4

k = E22ωk sinωkτ + (E33 − E11ω
2
k) cosωkτ ,

C33ωk − C11ω
3
k = (E33 − E11ω

2
k) sinωkτ − E22ωk cosωkτ .

(7)



















cosωkτ =
(E33 − E11ω

2
k)(C22ω

2
k − C44 − ω4

k)− E22ωk(C33ωk − C11ω
3
k)

(E33 − E11ω
2
k)

2 + E222ω
2
k

,

sinωkτ =
E22ωk(C22ω

2
k − C44 − ω4

k)+ (E33 − E11ω
2
k)(C11ω

3
k − C33ωk)

(E33 − E11ω
2
k)

2 + E222ω
2
k

,

Table 1.   Variables and parameters of the model.

Variable Description Unit adopted

S Concentration of CSCs cell.mm−3

D Concentration of DCs cell.mm−3

a Concentration of Wnt-β molecule.mm−3

m Concentration of microRNAs molecule.mm−3

Parameter Description Value & Unit References

η Positive feedback strength of Wnt-β 1 mm3.molecule−1 Modified from19

ψ Negative feedback strength of DCs 0.5 mm3.cell−1 Modified from34

ε Mitotic rate of the CSCs 1 year−1 Modified from20

q DCs dedifferentiation rate year−1 19

q0 Maximum DCs dedifferentiation rate q0 > d year−1 19

m0 Minimal concentration of microRNAs 0.05 molecule.mm−3 Modified from19

d DCs death rate 36.5–109.5 year−1 20

α Degradation rate of proteins or molecules 0.3 mm3.molecule−1 Modified from35

β Aggressiveness of self-renewal Wnt-β rate 1 mm3.cell−1.year−1 Modified from35

γ Maximum concentration of microRNAs 1 molecule.mm−3.year−1 Modified from19

σ Sensitivity of CSCs when interacting with microRNAs 0.05 molecule.mm−3 Modified from19

S0 Minimal concentration of CSCs 0.038 cell.mm−3 Modified from19

DS Diffusion coefficient of CSCs 0.031536 mm2.year−1 36

DD Diffusion coefficient of DCs 0.031536 mm2.year−1 36

Da Diffusion coefficient of Wnt-β 0.365 mm2.year−1 13

Dm Diffusion coefficient of microRNAs 0.365 mm2.year−1 13
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We now suppose that (8) has at least one positive root. Then, (8) has a positive root ωk = ω∗ such that (5) has 
a pair of purely imaginary roots ∓iωk . Then, we can obtain the corresponding critical value of the delay for ωk

where j = 0, 1, 2... from (12), Zk
11 = E22ωk(C22ω

2
k − C44 − ω4

k)+ (E33 − E11ω
2
k)(C11ω

3
k − C33ωk) and 

Zk
22 = (E33 − E11ω

2
k)(C22ω

2
k − C44 − ω4

k)− E22ωk(C33ωk − C11ω
3
k).

Differentiating both sides of Eq. (8) with respect to τ , we obtain

which yields, at τ = τc = τ
(j)
k  , the following transversality condition :

where

The transversality condition is a mathematical requirement to ensure the validity of the model. In the case of 
the model under study, the transversality condition must be greater than zero. This means that the critical time 
delay, which represents the time delay after which a differentiated cancer cell converts to a cancer stem cell, must 
be strictly positive. We recall that when τ = 0 equilibrium E(2) is always stable when ( d < q0 ) and (m2 <

γ
α
).

From, the transversality condition (10) for τ > τc , E(2) is unstable and stable for τ < τc.
When τ = τc , Hopf bifurcation occurs.

Analytical and numerical results
Analytical results
In this section, we present some analytical results related with this work. We calculate the value of the critical 
time delay τc given in Eq. (9) for some cancers, namely prostate, lung and breast cancers. The estimated values 
of q0 and d that we use are related to a cancer and taken in the literature. The results are summarized in Table 2.

We recall that the critical time delay τc represents the time for DCs to transform into CSCs after the interac-
tion of microRNAs with DCs. At this time, the system becomes unstable. From the biological view point, this 
situation corresponds to the proliferation of CSCs indicating progression leading sometime to metastases44. 
The critical time delay values obtained in Table 2 can be also considered to the relapse period of cancer. For the 
breast cancer, τc = 0.5858 year, and this value can correspond with the relapse period of triple-negative breast 
cancer45. This type of breast cancer is characterized by the absence of over-expression of hormone receptors for 
estrogen and progesterone and absence of over-expression of the HER2 growth factor45. Among the different 
types of breast cancer, triple-negative cancers are the ones that recur most frequently and more rapidly than 
other tumor types. In fact, between 6 and 24 months after the primary tumor, 52.3 percents of triple-negative 
metastases are discovered, 24 percents of metastases are discovered for HER2+ and 12 percent of metastases are 
discovered for HR+HER2-46. For a lung cancer τc = 0.6287 is less than 2 years and this time corresponds to an 
early recurrence observed in small cell lung cancer47,48. For a prostate cancer τc = 11.8964 . This result confirm 

(8)
ω8
k + (C2

11 − 2C22)ω
6
k + (C2

22 + 2C44 − 2C11C33 − E211)ω
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�

�

+
j2π
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, if Zk

11 < 0,Zk
22 > 0,

[

d�k

dτ

]−1

=
4�3k + 3C11�

2
k + 2C22�k + C33 + (2E11�k + E22)e

−�kτ

�k(E11�
2
k + E22�k + E33)e−�kτ

−
τ

�k
,

(10)signRe

[

d�k

dτ

]

τ=τc

= Re

[

d�k

dτ

]−1

τ=τc

= sign

(

ÃRB̃R + ÃI B̃I

B̃2R + B̃2I

)

> 0,

(11)























B̃R = −E22ω
2 cosωτc + (−E11ω

3 + E33ω) sinωτc ,

B̃I = (E33ω − E11ω
3) cosωτc + E22ω

2 sinωτc ,

ÃR = E22 cosωτc − 3C11ω
2+2E11ω sinωτc + C33,

ÃI = −4ω3+2E11ω cosωτc + 2C22ω − E22sinωτc .

Table 2.   Value of the critical time delay τc for some cancers.

Type of cancer Values q0 and d Value of the critical time delay τc
Prostate cancer q0 = 87.6 year−1 , d = 87.2 year−19,20,38 11.8964 years

Lung cancer q0 = 109.97 year−1 , d =  80 year−139–41 0.6287 year

Breast cancer q0 = 70.39 year−1 , d = 45 year−142,43 0.5858 year
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the one obtained by Pound et al.49 who have shown that a very low recurrence of prostate cancer 11 years later 
is possible, and that 10 percents of men with undetectable prostate-specific antigen (PSA) levels 10 years after 
radical prostatectomy subsequently develop biochemical recurrence, which means an increase in the PSA levels 
without clinical signs of cancer. Therefore, an estimation of the recurrence period of cancer can be important to 
adjust therapeutic treatment and to take preventive measures to reduce the risk of recurrence.

 Numerical results
We perform extensive numerical simulations of the spatially extended model (1) in two-dimension spaces in the 
case of prostate cancer model parameters. The numerical simulations employ a system size of 100× 100 space 
units. The numerical integration of model (1) was performed in MATLAB by means of forward Runge-Kutta of 
fourth order with Hermite interpolation. This method is favored for its accuracy and stability compared to other 
numerical methods50,51. A time step �t = 0.01 and a space step of �x = �y = 0.2 are used. Further, the model 
(1) is investigated numerically under the zero flux boundary conditions. The choice of initial value indicates 
small inhomogeneous spatial perturbation from homogeneous equilibrium state E(2) . The initial distribution of 
the populations are taken as

S(x, y, 0) = S2 + (−0.1cos((x2 + y
2)π − 0.01sin((x2 + y

2)π))),

D(x, y, 0) = D2 + (−0.0002cos((
√

x2 + y2)π + 0.0003sin((
√

x2 + y2)π))),

a(x, y, 0) = a2 + (0.002cos(x + 2)2 + 0.001sin(y + 4)2),

m(x, y, 0) = m2 + (0.001cos(x − 2)2 + 0.001sin(y − 4)2),

where {(S2,D2, a2,m2)} = {(0.140000, 0.001605, 0.000000, 0.080000)}

 .

To avoid numerical stiffness, we performed the simulations qualitatively for smaller values of the step sizes.

Bifurcation diagrams and time series
We now explore the bifurcation of the system, in order to show that the system can manifest diverse biological 
phenomena such as shifts in cell concentrations and cell-protein interactions. Figure 1 shows the emergence 
of bifurcation in the system. In this figure, the equilibrium state is represented by a stationary point where the 
system trajectory remains constant. Instability is indicated by the Hopf bifurcation and its occurs at the critical 
time delay τc = 11.8964 . In fact, when τ < τc , the system is stable at the equilibrium E(2) and when τ > τc , the 
system becomes unstable. From the biological point of view, the instability occurs at τ = τc , that is when the 
conversion of DCs into CSCs takes place indicating tumor progression. It is observed an increase in the con-
centration D of DCs and a decrease in the concentration m of microRNAs. Thus, the critical time delay τc can 
be viewed as the initial time for the proliferation of CSCs. Then, Hopf bifurcation indicates the transition to the 
disease state, characterized by the proliferation of CSCs25. This bifurcation can serve as a crucial indicator of 
substantial disruptions in the system’s normal functioning, with potentially implications for health and disease.

Figure 2 shows the time series of S(t), D(t) and m(t) . We observe that before the critical time delay 
τc = 11.8964 , the concentrations S and D of CSCs and of DCs, respectively decrease while the concentration m of 
microRNAs decreases as time progresses. For such a situation, it has been shown that the microRNAs can reduce 
tumorigenicity7. Some works reported also in vivo that the regulation of NF90 greatly reduces ovarian tumor 
proliferation and invasion52. This regulation also greatly reduces the size of the ovarian tumor and the number 
of metastases. We also observe a dormancy period of cancer cells. From the biomedical view point, during this 
period the patients often have no symptoms and the tumor can be undetectable using the usual diagnostic tools 
such as PET scan (nuclear medicine imaging examination). After the time τc = 11.8964 , we observe the inverse 

τ (years)
0 2 4 6 8 10 12 14 16

D
(t

)

×10-3

0

0.5

1

1.5

2

2.5

3

τ (years)
0 2 4 6 8 10 12 14 16

m
(t

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 1.   Bifurcation diagrams of D(t) and m(t) . DS = DD = 0.031536 and Da = Dm = 0.365 and the 
values of the other parameters values are given in the Table 1. We observe that Hopf bifurcation occurs at 
τ = τc = 11.8964 for prostate cancer.
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of the scenario, the concentration m decreases as time progresses while the concentrations S and D increase. In 
this case, oncogenic role for microRNAs can be reported.

Pattern formation and effect of diffusion on cancer cells
The diffusion of cancer stem cells is a complex phenomenon characterized by the migration and invasion of these 
cells from the primary tumor to distant organs, leading to the formation of metastases44. This process, known 
as metastasis, is a major contributor to cancer-related deaths, as it confers resistance to treatment strategies and 
increases the risk of relapse53. Therefore the effect of diffusion on cancer stem cells is an important to understand 
cancer mechanisms and develop new therapeutic strategies. The effect of diffusion on cancer stem cells could lead 
also to the development of a prevention strategy for non-recurrence in either non-metastatic or metastatic cancer.

Figure 3 shows the process of pattern formation for different values of diffusion coefficients at τ = τc = 
11.8964.

The Fig. 3 exhibits the formation of circular patterns. Such circular patterns have great pre-clinical diagnostic 
and therapeutic potentials in multiple cancers. These have been reported playing important roles in multiple 
malignant behaviors including proliferation, migration, metastasis and chemoresistance54. Pattern formation 
has been also observed in other biological systems to explain energy transport in DNA strands55,56, impulse 
propagation in neural networks56,57 and instabilities in directed networks58.

In Fig. 3a the patterns are obtained for DS = DD = 0.0031536 and Da = Dm = 0.0365 . The patterns in the 
spatial domain represent the distribution and density of cancer cells in different regions. Since the patterns are 
more localized in the center, it may indicate that the cancer cells can not migrate far from their origin. This can 
be related to non-metastasized behavior44. In Fig. 3b, the patterns are obtained for the diffusion coefficients such 
that DS = DD = 0.031536 and Da = Dm = 0.365 (we have increased the diffusion coefficients). We observe that 
the patterns are less localized in the center of the spatial domain. This may suggest that the cancer cells have 
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Figure 2.   The time series of S(t), D(t), and m(t) at τ = τc = 11.8964 for DS = DD = 0.031536 and 
Da = Dm = 0.365 . The other parameter values are given in the Table 1.

x
0 20 40 60 80 100

y

0

20

40

60

80

100
S

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

(a)
x

0 20 40 60 80 100

y

0

20

40

60

80

100
S

0.06

0.08

0.1

0.12

0.14

0.16

(b)

Figure 3.   Panels show the feature of patterns at fixed parameters τ = τc = 11.8964 and time t = 16. (a) 
DS = DD = 0.0031536 and Da = Dm = 0.0365 and (b) DS = DD = 0.031536 and Da = Dm = 0.365.
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dispersed widely and reached distant areas. Since metastasized behavior refers to the spread of cancer cells from 
their original site to other parts of the body. The scenario observed in this figure can be related to metastasized 
behavior. In this case, the function and structure of the surrounding tissues and organs can be affected44.

Figure 4 shows the emergence of circular patterns in the system for the different species of the model. We 
assume the time delay τ = 6.8964, which means 5 years before the dedifferentiation of DCs. Such circular patterns 
of CSCs, DCs and microRNAs obtained in this work have been observed in some solid tumors, where the CSCs 
surrounded by the DCs forming protective niche59. Circular patterns of CSCs, DCs and microRNAs obtained can 
be used as biomakers for diagnosis, by allowing to identify the type, stage and molecular subtype of the tumor. 
For example, circular pattern of microRNAs can be detected in blood, urine or biopsies of patients and can reflect 
the genetic profile of the tumor. Circular patterns of CSCs and DCs can be observed by imaging techniques 
such as positron emission tomography and can indicate the degree of aggressiveness and vascularization of the 
tumor59. In addition to diagnosis, circular patterns of CSCs, DCs and microRNAs, can also be used as biomark-
ers for cancer prognosis, by allowing to evaluate the risk of recurrence, progression or metastasis of tumor. For 
example, circular pattern of microRNAs can be associated with the overall survival or disease-free survival of 
patients and can predict the response to treatments54. Circular patterns of CSCs and DCs can be related to the 
invasive and metastatic potential of the tumor and can influence choice of treatment.

In Fig. 5, we assume the time τ = 14.8964, which means 3 years after the dedifferentiation of DCs. As one can 
observe, after the dedifferentiation, these circular patterns become more localized. The emergence of localized 
circular patterns can also be the result of physical, chemical or biological processes. For example, at the molecular 
level, circular patterns can be observed in the structure of some molecules such as circular RNAs. At the cellular 
level, circular patterns can be involved in the dynamics of membranes. For example the formation of curvature, 
fission and sorting of lipids in the membranes can be influenced by proteins that induce circular patterns. At 
the tissue level, circular patterns can be associated with morphogenesis and differentiation. At the organ level, 
circular patterns can be related to circulation and respiration60. Circular pattern are also important because of 
their prominence in virus DNA.
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Figure 4.   The process of formation of circular patterns for a value of τ = 6.8964 < τc = 11.8964 and the 
parameters DS = DD = 0.0031536 , Da = Dm = 0.0365 , at time t = 16 . The values of the other parameters are 
given in the Table 1.
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and Da = Dm = 0.0365 . The values of the other parameters are given in the Table 1.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5295  | https://doi.org/10.1038/s41598-024-55212-4

www.nature.com/scientificreports/

In addition to the fact that for the numerical point of view, colors in patterns generally represent different 
level of cell concentrations, from the biological point of view, the colors in circular patterns obtained in this work 
indicate that as genes recombine inside the cell, the cell elaborates a color unique to its genetic code. For cancer 
stem cells, that color becomes a genetic signature passed down to daughter cells. Blue stem cells, for example, will 
only make blue cancer cells. Along the same line, researchers at Harvard Medical School and Boston Children’s 
Hospital reported a new color-coding tool enabling scientists to better track live blood stem cells over time, a 
key part of understanding how blood disorders and such cancers as leukemia arise61.

Radiotherapy modeling and effects
In this section, we focus on the radiotherapy effects on the dynamical system (1). Radiation induced cell death. 
Radiation directly affects DNA molecule in the target tissue, single broken strand can usually be repaired by 
the cell while two broken strands commonly result in cell death. We know that it is possible to identify, isolate 
and quantify CSCs in a large number of cancers including brain, colon, prostate, lung, breast, blood62. Several 
studies63–65 have shown that CSCs are resistant to cytotoxic treatments such as radiotherapy. For example, numer-
ous studies have demonstrated the high resistance of CSCs to in vitro exposure to single-dose, low LET ionizing 
radiation and chemotherapy. However, the effects of fractionated radiation on CSCs have not been sufficiently 
studied. We will examine through numerical simulations the behavior of the system when irradiated with X-rays 
before resurgence using fractionated doses. Radiation fractionated therapy for treatment of cancer has many 
advantages over single radiation administration as it raises the effect of anticancer therapy and decreases the 
chances of side effects occurrence in normal tissues. The dose fractionation in radiotherapy is a technique that 
involves dividing the total radiation dose into several smaller sessions, called fractions. This approach is used 
to treat cancer patients with a higher radiation dose while minimizing side effects on the surrounding normal 
tissues. The importance of dose fractionation in radiotherapy lies in several key aspects namely protection of 
normal tissues, by dividing the total dose into smaller fractions. It allows healthy tissues to recover between 
sessions, thus reducing undesirable side effects. This can improve treatment efficacy by causing more damage to 
cancer cells. Dose fractionation allows physicians to personalize treatment based on specific patient character-
istics, such as tumor size and location, as well as individual tolerance to side effects. It is important to note that 
dose fractionation may vary depending on the type and stage of cancer, tumor location and treatment goals. We 
now consider R = R(t) the radiotherapy function. Introducing R in the first equation of system (1), we obtain 
the following system:

where δ is the cancer stem cells death rate by radiation therapy66. In linear quadratic model, R(t) can be defined 
as67,68:

where αs and βs are the sensitivity parameters. αs corresponds to the cell that can not repair themselves after one 
radiation hit (important for hight LET radiation) and βs corresponds to cell that stop dividing after more then 
one radiation hit, but can repair the damage caused by radiation (important for low LET radiation), dt is the 
dose-rate at time t, µ is the repair rate constant defined as ln(2)t1/2

 and t1/2 is half-time for the repair of radiation-
induced DNA damage. In fractional radiotherapy, dose is applied as fractions dt for intervals t2n−1 < t < t2n 
where n is the fractions per day. In practice, dose fractions should be separated by 6 hours or more to permit 
repair to approach completion in late-responding tissues69. Now, based on the studies conducted by Nilsson 
et al.70 and Powathil et al.71 on the low-dose fractionated, Eq. (13) can be written as R(t) = Reff kR where Reff  
indicates the effect of n fractions per day and KR is a factor equal to one when the radiation is applied and is equal 
to zero when no radiation is applied. The effective radiation can be written as:

where τr is the duration of irradiation, D is the accumulated dose at time τr per fraction such that D = dtτr and 
function φ = e−µ(τr+�τr ) , where �τr is the time interval between fractions. The functions g(µτr) and hc(φ) are 
defined as:

(12)
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(13)R(t) = αsdt + 2βsdt

t
∫

0

dte
−µ(t−t′)dt′,

(14)R(t) = Reff = αs(nD)+ βsn(D)2
[

g(µτr)+ 2

(

cosh(µτr)− 1

(µτr)2

)

hn(φ)

]

,

(15)g(µτr) = 2
(µτr − 1+ e−µτr )
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,
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The function g(µτr) takes into account repair during fractions, the hn(φ) function takes into account incomplete 

repair between fractions and 
[

g(µτr)+ 2

(

cosh(µτr )−1
(µτr )2

)

hn(φ)

]

 is a function that corrects for both repair during 

the irradiation and incomplete repair between fractions.

 Biological effective dose (BED): determination of the optimum dose
   BED is the theoretical dose, which, if delivered in infinitely small fractions, would produce the same biological 
endpoint as that under consideration72. It is also a measure of the biological dose delivered to a tumor or organ. 
Treatment with any cytotoxic agent, including radiation can trigger surviving cells in tumor to divide faster 
than before, this phenomenon is called repopulation. Considering the proliferation of cancer stem cells during 
radiotherapy treatment from the LQ model73, loge tumor cell kill E is given by

where T is the treatment time under consideration and Td is the time after the start of treatment at which 
proliferation begins. K (in units of Gy/day) is the biological dose per day required to compensate for ongoing 
cancer stem cells repopulation, once this has started. K is the daily BED that must be delivered simply to stop 
the cancer stem cells growing further during treatment. The BED for the calculation of relationships in normal 
tissues defined by Barendsen74 is given by

where M =

[

g(µτr)+ 2

(

cosh(µτr )−1
(µτr )2

)

hn(φ)

]

 , θlate is the αs/βs ratio for the normal tissue late effects and D is 

again the accumulated dose at time τr assumed to be the same for the cancer as for the adjacent critical normal 
tissues which is true in many practical situations. The consideration of the repopulation cancer stem cells effect 
is achieved through the use of a subtractive repopulation factor which takes account of the treatment and 
repopulation rate, the expression of BED is

where θcan is the αs/βs ratio for the cancer stem cells effects.
The relationship between n and T can be approximated as

where f approximates to 7/5 for 5 fractions per week, providing more than 5 fractions are given75. This form of 
approximation becomes more accurate when T is relatively large (greater than 14 days). Eq. (19) can be rewrit-
ten as

When the terms are rearranged and BEDcan is differentiated with respect to D , a dose per fraction given by the 
solution of

The positive root of this quadratic equation provides the value of the optimum dose per fraction:

We calculate the BED using the values of parameters in Table 2 and the values of radiobiological parameters for 
prostate cancer: θlate = 3 Gy, Td=40 days, K = 0.2 Gy/day76 and f = 7/575. For a treatment time T = 45 days with 
2 dose fractions per day, we obtain the values of the optimal dose and the BED given by

respectively.

The tumor control probability (TCP)
The TCP is a key indicator to assess the effectiveness of cancer treatment77. A higher TCP is generally associ-
ated with better outcomes and longer survival for patients. However, there are several factors that can influence 
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(24)Dopt = 1.328Gy and BEDcan = 4.097Gy
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the TCP. The stage of cancer is one of these important factors, as indicates the extent of the disease. Early-stage 
tumors typically have a higher TCP than advanced-stage tumors. The location of tumor is also a factor to con-
sider, as some tumors may be more challenging to treat due to their location in sensitive or hard-to-reach areas. 
The type of treatment used also plays a key role. Different types of treatments, such as surgery, radiotherapy and 
chemotherapy may have different effects on the tumor control probability. The patient’s response to treatment is 
also an important factor. Each patient responds differently to treatments and how the body reacts can influence 
the tumor control probability. The (TCP) is the probability of avoiding local recurrence at total dose nD78. The 
Poisson’s statistics and the linear-quadratic model incorporating the Poisson’s law79 lead to

where N = ς .V  ( ς is cell concentration or density and V is volume) represents the initial number of potential 
proliferating cells in tumor and Sv is the cell survival probability such that Sv = exp(−αsBEDcan) . The closer TCP 
is to one, the greater the probability that all cancer stem cells die out and the tumor is controlled80. Spoormans 
et al.81 discussed that TCP takes into account the total absorbed dose and the radiosensitivity of the tumour 
tissue, while distinguishing between repairable and sublethal single-strand DNA breaks and irreparable and 
lethal double-strand DNA breaks. The parameters related to radiotherapeutic values are given in the Table 3.

Figure 6 shows the TCP as a function of fractionated dose D when the concentration S of cancer stem cells 
is equal to 0.000805 cell.mm−3 at the starting time of the radiotherapy and for a prostate tumor that measures 
8mm visible on magnetic resonance imaging84. The volume of the tumor in the area (100mm× 100mm) is 80000 
mm3 and when the prostate tumor measures 25 mm . The values of the parameters in the Table 3.

Figure 6 shows that the 2 dose fractions per day option requires 0.5273 Gy to avoid possible local resurgence 
of cancer after radiotherapy when tumor measures 8 mm . This requires 0.5697 Gy to avoid local resurgence after 
radiotherapy when tumor measures 25 mm.

Radiotherapy effects on the time series
Radiotherapy is one of the treatment modalities being substantially benefited in cancer research. Figures 7, 8 
and 9 show the time series of S, D and m under the radiotherapy effects. The radiotherapy is applied at the time 
t = 6.8964 before the critical time delay τc = 11.8964 . The figures illustrate the changes in the concentration 
of prostate CSCs, DCs and microRNAs under the radiotherapy effects. We observe that the concentrations of 
CSCs and DCs decrease progressively with an increasing of the fractional dose. In contrast, the concentration 

(25)TCP = exp(−N .Sv) = exp(−Nexp(−αsBEDcan)),

Table 3.   Values of the radiobiological parameters.

Parameter Value/unit References

αs 0.302Gy−1 82

βs 0.0417Gy−2 82

δ 25 year−1Gy−1 66

µ 3195.77year−1 83
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Figure 6.   Evolution of TCP as a function of fractionated dose D for a treatment time T= 45 days, with 2 dose 
fractions per day when the prostate tumor volume is 80000 mm3(dashed line) and when the prostate tumor 
volume is 250000 mm3 (solid line). That means the radiotherapy is applied on five successive days per week.
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Figure 7.   Time series of S, D and m under radiotherapy at τ = 6.8964 < τc = 11.8964 , t = 16 . 
DS = DD = 0.0031536 and Da = Dm = 0.036500 . D = 0.02 Gy , n = 2 , τr =0.000009 year ∼ 5 min and �τr = 
0.00069 year ∼ 6.04 h. The values of the other parameters are given in the Table 3.
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Figure 8.   Time series of S, D and m under radiotherapy at τ = 6.8964 < τc = 11.8964 , t = 16 . 
DS = DD = 0.0031536 and Da = Dm = 0.036500 . D = 0.05 Gy, n = 2 , τr =0.000009 year ∼ 5 min and �τr = 
0.00069 year ∼ 6.04 h. The values of the other parameters are given in the Table 3.
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Figure 9.   Time series of S, D and m under radiotherapy at τ = 6.8964 < τc = 11.8964 , t = 16 . 
DS = DD = 0.0031536 and Da = Dm = 0.036500 . D = 1.323 Gy, n = 2 , τr =0.000009 year ∼ 5 min and �τr = 
0.00069 year ∼ 6.04 h. The values of the other parameters are given in the Table 3.
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of microRNAs increases when the fractional dose increases. This reflects the over-expression of microRNA 
under the radiotherapy effects as also found in85. Along the same line, it has been shown that in prostate cancer 
patients, two microRNAs hsa-let-7a-5p and hsa-miR-21a-5p, were regulated by irradiation86. Similarly, Halimi 
et al.87 showed that irradiation during radiotherapy increases the serum miR-34a levels in 44 women with breast 
cancer. The obtained figures show that radiotherapy effects modify the expression of microRNAs and lead the 
CSCs to be radiosensitive to radiation. We also observe in these figures a tumor repopulation during radiotherapy. 
This confirm the results obtained in88, where the investigators revealed that rapid tumor regrowth occurs during 
radiotherapy treatment extensions of around 5 to 8 weeks in almost 500 patients with oropharyngeal cancer88. It 
is therefore necessary to administer a higher dose to regions of tumor repopulation for complete eradication of 
CSCs. In the present work, the CSCs are completely eradicated when the treatment lasts 0.3 year ( ∼ 3.7) months 
for a dose of 1.323 Gy.

Radiotherapy effects on the pattern formation
This section is devoted to the radiotherapy effects on the patterns of cancer cell colony. To this end, we perform 
extensive numerical simulations of the mathematical model Eq. (12). The radiotherapy is applied at the time 
t = 6.8964 > τc = 11.8964 before the critical time delay that is in the non-proliferation state of CSCs. Figures 10 
and 11 illustrate the radiotherapy effects on the spatiotemporal dynamics of patterns. These figures show the 
changes in the prostate CSCs, DCs and microRNAs patterns when the dose of fractionation radiotherapy varies. 
In Fig. 10, we use the radiobiological values D = 0.02Gy , n = 2 , τr = 0.000009 year ∼ 5 min and �τr = 0.00069 
year ∼ 6.04 h. We observe a partial eradication of patterns of CCSs and DCs and a decrease in the concentration 
level of cells as compared with Figs. 3 and 4. However, we observe an increase of the concentration level on the 
patterns of microRNAs leading to the fact that they can act as suppressor in certain tumors. In Fig. 11, we take 
D = 0.05Gy , that is, we increase the fractionated dose. In this case, the panels show a complete eradication of 
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patterns of CCSs and DCs. The result obtained in this section clearly demonstrates that the administering of a 
therapeutic treatment, such as the radiotherapy, before the critical time delay τc , can lead to a complete eradica-
tion of the tumor.

Discussion and conclusion
In this paper, we studied a spatiotemporal dynamics of a diffusive model for CSCs. The model included the dif-
fusion of CSCs, DCs, Wnt-β and microRNA molecules. The work focused on the critical time delay τc , since its 
represents the time from which some DCs transform into CSCs due to their interaction with microRNAs. We 
showed that the delayed model can induce a Hopf bifurcation and circular pattern formation. We have found 
that τc = 11.8964 years for prostate cancer, τc = 0.6884 year for lung cancer and τc = 0.5763 year for breast cancer. 
As therapeutic strategy, radiotherapy effects have been included in the model and applied before τc . The results 
revealed that radiotherapy effects can completely eradicate cancer patterns and boost the suppressive effect of 
microRNAs on CSCs. The TCP curve showed that for the prostate tumor volumes equal to 80000 mm3 and 
250000 mm3 , for example, the respective maximum doses of 0.5354 Gy and 0.5758 Gy per dose fraction should 
be administered for a fractionation of 2 fractions per day. The results clearly illustrated that any resurgence of 
cancer at the same site after radiotherapy is not possible for a fraction of the dose required.

Before closing this work, it is important to point out the essential new features of this study with respect to 
some recent works for CSCs available in the literature18–20. To start with, in18, the authors used a concept from 
ecology, the Allee effect, to demonstrate the effectiveness of combination therapies in cancer treatment compared 
to mono-therapy. In19, the authors studied clonal pattern dynamics in tumor in the concept of CSCs and showed 
that the most effective therapeutic strategies for tumor extinction are those that target chemical activators rather 
than cells themselves, due to a vicious feedback loop between CSCs and DCs. In20, the authors investigated the 
dynamical model for CSCs taking into account the drug effects and showed some interesting mechanism, such 
as the tumor growth paradox, as possible out come of therapy significantly. However, the works cited above and 
some other implicitly assume that biological transitions such as interactions between cancer cells with signal-
ing molecules and proteins are instantaneous. In reality, the time delay exists between such interactions. This 
is important because DCs interact with microRNAs to transform into CSCs. In the present work, the proposed 
basic model illustrated this type of scenario. We showed that a diffusive model of CSCs with a time delay can 
be an effective modeling approach for therapeutic strategies. With the advancement of novel technology and 
methods, the circular patterns obtained numerically in this work have been found to give relevance biologi-
cal significance. Just to cite a few, circular patterns have been identified to be extremely abundant, relatively 
stable, diverse, prevalent, and conserved in different diseases89. Circular RNAs may aggregate in cells to induce 
pathologies, such as developmental and degenerative disorders90. In addition, circular RNAs are expressed in a 
tissue-specific pattern, suggesting that they act as promising diagnostic and therapeutic value in management 
of cancer and various diseases76,91,92. We clearly showed that the administering of a therapeutic treatment, such 
as the radiotherapy, before the critical time delay τc (that is during the non-proliferation phase of CSCs), can 
lead to a complete eradication of the tumor. This approach has the virtue of describing therapeutic strategies of 
the dynamics of CSCs with time delay. From that perspective, a wide range of phenomena in biology, physics 
and chemistry can be modeled by the present diffusive delayed system, and relevant applications to these areas 
may be proposed.

We hope that the results obtained in this work can provide a better understanding of the dynamics of CSCs 
and to predict more efficacy therapeutic strategies to prevent cancer recurrence.

Data availability
All data generated or analyzed during this study are included in this paper.
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