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Propagation and domains 
of the invariant ion‑acoustic 
solitons in the plasmas
E. Saberian 

Observational pieces of evidence of space probes Voyagers and IBEX to study the Sun’s heliosphere, 
the outer Solar system, and interstellar space beyond the Sun’s heliosphere indicate that 
perturbations in some regions may occur in situations out of the pure thermal equilibrium, e.g., in the 
outer heliosphere regions, the inner heliosheath regions, and in heliopause regions. The data analysis 
extracted from these probes also shows that the transitions between the near/far-equilibrium states 
may happen in some areas, e.g., the slow solar wind e− (Ulysses) plasmas and the fast solar wind He+ 
plasmas. The modern formalism of the kappa distributions explains the distinction between the near/
far-equilibrium states under the value of the kappa index, as an intensive thermodynamic parameter. 
For providing more clarity to this formalism, an invariant kappa index as the zero dimensionality 
spectral index κ0 is determined to consider the physical and thermodynamic feature of the kappa 
index in space plasmas, where it is independent of the dimensionality, the degrees of freedom, or the 
numbers of particles. Recently, this idea has extended for studying the invariant ion-acoustic waves 
(IAWs) in the astrophysical plasmas. Then, we discussed the pure thermodynamic features of the 
background particles. By utilizing κ0 , we found the distinction of the involved IAWs diagrams in the 
near/far-equilibrium states and also the transition from far-equilibrium states to the near-equilibrium 
states in the vicinity of a critical spectral/polytropic index. This paper extends the invariant formalism 
of the ion waves to the propagation features and structure of the nonlinear perturbations in the 
outer Solar system and interstellar space beyond the Sun’s heliosphere relevant to the mentioned 
observational evidences. We study the propagation and allowed domains of the invariant ion-acoustic 
solitary waves (IASWs) by considering the advanced aspects of the kappa distribution formalism. The 
central parameters of our formalism for analysis of the allowed domains of the solitary waves and 
shocks are the polytropic (adiabatic) index associated with the kappa distributed electrons, γ

e
 , and a 

well-defined and extended Mach number Mγ
e

 (the fractional wave speed to the generalized ion-
sound speed). We have used Sagdeev’s methodology for deriving the energy-integral equation of the 
IASWs, which describes the formation of the possible potential wells (pseudo-potentials) for trapping 
the arbitrary amplitude solitons (pseudo-particles). The analysis of the Mach number domains is 
developed by extracting (φ,Mγ

e

) domains for the possibility of the solitary wave solutions in the 
plasma. We also show variation of the relevant (γ

e
,Mγ

e

) domains. The formalism of the energy-
integral equation and the domains of invariant IASWs has illustrated in two cases. At first, we show 
the general aspects of the problem by considering T

i
≪ T

e
 (the cold ion plasma limit), and then we 

extend it to a warm plasma with finite-temperature ions.
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The observational data of spacecraft confirm the particle’s velocity distribution in the space plasmas have the non-
Maxwellian tails1–4, where they decrease as a power law distribution with the particle speed, known as the supra-
thermal tails. A well-known model that could describe these particles is the kappa ( κ ) distribution formalism, 
which introduced by Vasyliunas in 19685 for describing particles in plasmas out of the thermal equilibrium such 
as the Magnetosphere environment and Solar winds. The proposed distribution of Vasyliunas was a power-law 
generalization of the Maxwell-Boltzmann distribution function. At present, we know that the systems with long-
range interactions and correlation, such as the plasmas, may be appropriately described by the q non-extensive 
Tsallis formalism6,7, which proposed by Tsallis in 1988 as a generalization of the Boltzmann-Gibbs statistics8. 
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There is a close connection between the κ-distribution function and the q-distribution function of the Tsallis 
statistics, e.g., Livadiotis and McComas have shown how the kappa distributions arise naturally from the Tsallis 
statistical mechanic9. Detailed information on the historical background and formalism of the kappa distribution, 
its connection with the Tsallis statistics, and its applications in the space plasmas have reviewed by Livadiotis10.

Using the κ - or q-distribution functions, the plasma waves, oscillations, instabilities, and the other aspects of 
space plasmas may be studied in the extended formalisms. The spectral indices κ and q is considered a measure 
of quantifying the stationary states of the space plasma. Pierrard and Lazar have shown that κ index may describe 
the thermodynamic distance of the system from the thermal equilibrium11. For example, the influence of pick-up 
ions on space plasma distribution shows that the addition of highly ordered distributions of pick-up ions can 
increase the ordering of space plasmas, decreasing their entropy, and driving them away from equilibrium12.

We note that the modern formalism of the kappa distribution connects to the zeroth law of thermodynam-
ics and the thermal equilibrium, so it is allowed to be parameterized by temperature13. The kappa distributions 
correspond to the generalized thermal equilibrium, where correlations may exist. In contrast, in the classical 
thermal equilibrium, no correlations exist among the particles13. Furthermore, it has recently proved that the 
thermodynamics of particles’ physical correlations are consistent only with the existence of kappa distribution14.

The linear/nonlinear aspects of the wave propagation in space and astrophysical plasmas have been widely 
studied in the context of the Tsallis non-extensive statistics and/or the kappa distribution formalism, e.g., the 
plasma oscillations in a collision-less electron-ion plasma15,16, the ion-acoustic waves (IAWs) in a collision-
less magnetic-field-free plasma17, the ion plasma waves in a pure pair-ions plasma or equivalently the plasma 
oscillations in a collisionless electron-positron plasma18–20, the arbitrary amplitude ion-acoustic solitary waves 
(IASWs) in a two-component plasma21, the ion-acoustic double layers in a two-component plasma22, the IASWs 
in an electron beam-superthermal plasma23, the nonlinear dust-acoustic solitons in multi-component space 
plasmas24,25, the ion-acoustic solitons in solar winds plasma with superthermal electrons26, the generalized 
formalism of the plasma sheaths in a kappa-distributed plasma27, and the maximal Mach number for solitons in 
a collision-less warm electron-ion plasma, where the isothermal and adiabatic models of the ion-sound waves 
have been considered28.

Note that there are other proposed models for describing the non-Maxwellian features of the plasmas in space, 
such as the non-thermal alpha ( α ) model advanced by Cairns et al.29 which introduced at first for explanation of 
the solitary electrostatic structures involving density depletions that have been observed in the upper ionosphere 
in the auroral zone by the Freja satellite30. This model has some applications for studying the particle trapping 
in the plasma (see e.g. Ref.31).

An exciting feature of the Tsallis non-extensive statistics is that the spectral indices (q and κ ) of the canoni-
cal distribution function depend on the numbers of degrees of freedom or dimensionality32,33, where q or κ is 
related to the correlation between the system’s particles. We have studied the dimensional dependency of the 
plasma oscillations on the number of degrees of freedom (involved in the spectral indices of the non-extensive 
statistical mechanics) by using the escort (modern) formalism of the canonical probability distribution34. Note 
that the ordinary (old) formalism of the canonical probability distribution has some physical inconsistencies 
that have solved by introducing the escort probability distribution and some other constraints9. In summary, 
the advantages of the escort formalism are as follows: it is independent of an energy level; it provides the cor-
rect and consistent partition of the system’s internal energy to the subsystem’s partial internal energies, and it is 
compatible with a meaningful temperature35.

The formalism of the distribution function of the plasma and the involved spectral index therein is depend-
ent on the number of degrees of freedom d, from the equilibrium state, where κd → ∞ and qd → 1 , to the 
anti-equilibrium state, where κd → d

2
 and qd → 1+ 2

d , and in all the intermediate states32. Here, κd and qd 
are d-dimensional spectral indices. The notion of the invariant spectral index may resolve some inconsisten-
cies that may arising from applying the d-dimensional canonical probability distribution function. By defining 
the invariant spectral indices as the zero dimensionality spectral indices, κ0 or q0 , which are independent of 
the dimensionality, the degrees of freedom, or the number of particles, it is possible to consider separately the 
physical features of the spectral index32. We mention that the d-dimensional index κd depends on the invariant 
index κ0 by the relation κd = κ0 + d

2
32. For the interested reader, the general formalism of the escort canonical 

probability distribution in terms of the invariant spectral index κ0 and the resultant number density for the kappa 
distributed particles exist in the Supplementary Material file.

Determining the Mach number domain is one of the challenges in studying the nonlinear structures in the 
plasmas, such as the solitons, shock waves, and double layers. The Mach number M is defined as the fractional 
wave speed to the ion-sound speed in the plasma. We note that the definition of the Mach number and its 
domains in the plasma sheaths is another problem (The interested reader may refer to Ref.27). The flawed normali-
zation of the soliton speed (and also the other normalized parameters) may lead to inaccurate solutions for the 
Mach number domains, as Dubinov has described it as “a widespread inaccuracy in defining the Mach number 
of solitons in a plasma”36. To find the accurate solution of the Mach number domains in the propagation of the 
IASWs, we have to consider the complete formulations of the Debye screening length and the ion-sound speed in 
defining the normalized parameters. In the modern kappa distribution formalism, the generalized formulations 
of the Debye length37 and the ion-sound speed38 depend strongly on the stationary state of the plasma by the 
functional dependency on the extended polytropic index γ . Generally, the formulations of the ion-sound speed 
and Debye length are not unique. Still, they also depend on other parameters of the plasma, such as the density 
and the temperature of the constituents of the plasma, and they depend on the stationary state of the plasma.

By considering all these issues, the general aspects of the invariant ion-acoustic waves in the space plasma 
have been recently studied39, by using the kinetic Vlasov-Poisson equations in the linear regime and the hydro-
dynamic fluid equations both in the linear and nonlinear regimes. We discussed the solitary wave solutions of the 
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invariant ion-acoustic waves using the perturbation technique, which is suitable for the small amplitude IASWs 
at speeds around 1 Mach. In the present study, we want to study the propagation and the allowed domains of 
the arbitrary amplitude invariant IASWs, which implies applying Sagdeev’s pseudo-potential method40. In this 
technique, we may derive an energy-integral equation that describes the trapping of the solitons (the pseudo-
particles) in the typical potential wells (the pseudo-potentials). We also analyze the Mach number domains using 
the pseudo-potential function in detail.

Recently, we introduced a different viewpoint of Sagdeev’s methodology based on the analysis of the Mach 
number domains corresponding to the involved potential, whereby considering the overlap of all the constraints 
for the formation of the pseudo-potential, the allowed (φ,M) domains of the arbitrary amplitude IASWs and the 
possible double layers (DLs) are presented41. On the other hand, in the commonly used analysis of the allowed 
Mach domains, the infinite compression limit, labeled with a critical potential φcr , is considered the maximum 
width of the possible potential wells. Then, one may derive the upper limit of the Mach number by using this 
critical potential, besides the threshold Mach number limit for possible excitation of the IASWs40. In this study, 
we will apply both methods for studying the domains of the arbitrary amplitude invariant IASWs, where both 
of them have their advantages.

The structure of this paper is as follows: First, we introduce the model equations and also the normalization 
of the parameters in terms of the generalized formalisms of the ion-sound speed and Debye length. Then, we 
review the methods for the linear and nonlinear analysis of the IASWs, where the general aspects of the Sagdeev’s 
methodology will be presented together with the criteria for trapping the IASWs and possible DLs in the plasma; 
By using the linear analysis, we show the dispersion relation of the IASWs, where it confirms the generalized 
ion-sound speed in space plasmas; Then, we examine the fully nonlinear analysis of the invariant IAWs, where 
we will derive the solitary wave solutions in two cases, i.e., the cold-ion plasma and the warm-ions plasma with 
a finite temperature; We also show a detailed analysis of the domains of the extended (adiabatic) Mach number; 
Finally, we summarize the conclusions of this study.

The model equations
For deriving the energy-integral equation of the invariant IASWs in the plasma, we need the set of hydrodynamic 
equations for the ions in one dimension (corresponding to the direction in which the compression/rarefaction 
of the ion oscillations would propagate) as follows 

 where ni , vi and pi are the number density, fluid velocity, and the pressure of the ions, respectively, γi is the 
polytropic (adiabatic) index in thermodynamic evolution of the ions, φ is the electrostatic potential of the ion 
waves, and ne is the number density of electrons. Here, Zi denotes the number of charges of the ions that depends 
on the atomic number of the ions. For example, Zi = 1 represents a Hydrogen plasma ( H+1 ions) and Zi = 2 
denotes a Helium plasma ( He+2 ions).

The electrons are imposed on the electrostatic potential of the ion waves when they are pulled by the com-
pression/rarefaction of the ions. So, the potential energy of the electrons in the electrostatic potential of the ions 
is �e = −eφ(x) and the number density of the kappa distributed electrons (see the Supplementary Material) 
is written as

where n∞,e and T∞,e are the number density and the temperature of the electrons at infinity (where the potential 

is zero), and γe is the polytropic index associated with the kappa distributed electrons as γe =
κ0+ 1

2
d�,e

κ0+1+ 1
2
d�,e

 . Here, 
d�,e is the potential degrees of freedom for the electrons in the presence of the ion waves’ potential and it is given 
by the formula 1

2
d�,e = − e�φ(x)�

kBT∞,e
 . Note that if d�,e is positive, then γe is less than one, and if it is negative, then γe 

can be either larger or smaller than one42. Noting that the ion waves’ potential (as opposed to the potential at 
infinity) is positive, φ > 0 , so d�,e is negative and then γe may be either larger or smaller than one.

In this formalism, we have two sub-regions, i.e., the far-equilibrium regions, in which 0 < γe < 0.5 ; and 
the near-equilibrium areas in which 0.5 < γe < 1 . Here, the stationary state with the polytropic index γe = 0.5 
denotes the escape state of the system, where the system can escape from the far-equilibrium regions toward the 
near-equilibrium regions32,39. Two asymptotic limits in this notation are the equilibrium state ( γe → 1 ) and the 
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anti-equilibrium state ( γe → 0 ), where the distribution function collapses. The far-equilibrium regions indicate 
the distributions with high energy tails, where more supra-thermal particles exist in the plasma.

We use a set of well-defined normalized parameters as follows

where, �D,γe =
√

γe
ε0kBT∞,e

e2n∞,e
 is the generalized Debye length via the kappa distributed electrons37, ωpi =

√

Z2
i e

2n∞,i

ε0mi
 

is the ion oscillation frequency, and cs,γe =
√

γe
ZikBT∞,e

mi
 is the generalized ion-sound speed of the plasma by the 

kappa distributed electrons38. Furthermore, n∞,i is the number density of the ions at infinity, where satisfies the 
quasi-neutrality conditions of the plasma as Zin∞,i = n∞,e . A simple relation exists between the ion oscillation 
frequency, the generalized Debye length, and the generalized ion-sound speed as ωpi · �D,γe = cs,γe

38. In the 
asymptotic limit, γe → 1 , the classical relation ωpi · �D,∞ = cs,∞ has been retained between the classical param-

eters, where the �D,∞ =
√

ε0kBT∞,e

e2n∞,e
 and cs,∞ =

√

ZikBT∞,e

mi
 are the classical (Maxwellian) Debye length and the 

ion-sound speed, respectively. Then, the normalized equations for the propagation of the IASWs are written as 

 where σie = T∞,i

T∞,e
 is the fractional temperature of the ions to electrons at the infinity. We have combined the 

momentum transfer equation and the pressure evolution equation in Eq. (4b).

Methods
The linear analysis
By linearizing the Eqs. (4a)–(4c), assuming that the perturbed variables oscillate as exp[i(k ′ · X − ω

′
t)] , where 

k
′ and ω′ are the normalized wave vector and wave frequency, respectively, and X is the position vector, then by 

simultaneously solving the linearized equations and neglecting the terms of the second and higher orders, we 
may find a linear dispersion relation as follows

Noting the normalization given in relations (3), the linear dispersion relation is written in terms of the original 
parameters as

where we have used the inverse transformation as ω′ → ω
ωpi

, k
′ → k�D,γe . The adiabatic index of the ions may 

be considered as γi = 3 for the compression/rarefaction of the ions in one dimension ( di = 1 ). This result agrees 
with the ones in the earlier studies38,39. It has proven that the invariant ion-sound speed increases for the higher 
adiabatic indices, where it tends to the maximum phase speed of IAWs at the isothermal limit γe → 139.

Note that Eq. (6) is the standard dispersion relation formalism of the IAWs in the plasma with observational 
shreds of evidence in laboratories. For example, the experimental examination of the electrostatic waves in a 
pure pair-ion plasma (containing the fullerenes C−

60 and C+
60 ), have been reported by Oohra et al.43, where prop-

erties of the wave propagation along the B-field lines have measured. In this study, three electrostatic modes in 
the estimated dispersion relation have been reported with frequencies as ω

2π
< 8kHz (lower frequency band), 

8kHz < ω
2π

< 32kHz (intermediate-frequency band), and ω
2π

> 32kHz (higher frequency band), where they 
are respectively corresponding to the ion-acoustic waves (IAWs), the backward intermediate-frequency waves 
(IFWs) which are the ion cyclotron waves, and the ion plasma waves (IPWs) or Langmuir waves. The formalism 
of dispersion relation described by Eq. (6) corresponds to the low-frequency band of IAWs.

The nonlinear analysis
For nonlinear analysis of the invariant IAWs, we use Sagdeev’s pseudo-potential approach with some modified 
constraints as presented in detail in Ref.41. Here, we briefly explain this method and the relevant criteria for 
trapping the IASWs or DLs to use it in the next section. Generally, for deriving the energy-integral equation 
corresponding to the arbitrary amplitude solitary waves, we may consider the problem in the reference frame of 
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the wave, by using the Galilean transformation as ξ = x − Vt , where V is the wave speed, and ξ is the common 
variable in the commoving frame. In terms of the mentioned normalized variables, the Galilean transformation 
is ξ ′ = x

′ −Mγ ,et
′ , where ξ ′ = ξ

�D,γe
 , and Mγe = V

cs,γe
 is the adiabatic Mach number, i.e., the fractional wave 

speed to the generalized ion-sound speed. The adiabatic Mach number is related to the ordinary Mach number 
as Mγe =

M∞√
γe

 , where M∞ = V
cs,∞

 is the isothermal Mach number. Then, we may rewrite the transformed 
equations in terms of the common (normalized) variable ξ ′ for deriving the evolution equations of the parameters 
n
′
, v

′
,φ

′ , when the boundary conditions at infinity are n′ → 1 , v′ → 0 and φ ′ → 0 at |ξ ′ | → ∞.
Simultaneously solving the evolution equations by considering the conditions for having a localized solitary 

wave as φ ′
,
dφ

′

dξ
′ ,

d2φ
′

dξ
′ 2 → 0 when |ξ ′ | → ∞ , we may find an energy-integral equation for trapping the IASWs as 

follows

where ψ(φ
′
,Mγe ; γe ,Zi , σie) is Sagdeev’s pseudo-potential function of the plasma, as we will derive it for two 

cases of cold-ion plasma and warm-ion plasma with a finite temperature.
We may examine the trapping IASWs or possible DLs by using the relevant energy-integral equation as 

discussed in Ref.41, where the necessary conditions are as 

	 (i):	 ψ(φ
′
,Mγe ; γe ,Zi , σie) |φ′=0

= 0 (trivial root of pseudo-potential at φ ′ = 0);

	 (ii):	 ∂ψ(φ
′
,Mγe ;γe ,Zi ,σie)

∂φ
′ |

φ
′=0

= 0 (the quasi-neutrality condition of plasma);

	 (iii):	 ∂2ψ(φ
′
,Mγe ;γe ,Zi ,σie)
∂φ

′ 2 |
φ
′=0

< 0 (the threshold of adiabatic Mach number);

	 (iv):	 ψ(φ
′
max ,Mγe ; γe ,Zi , σie) = 0 ( φ ′

max is the nontrivial root of ψ , where ψ(φ
′
,Mγe ; γe ,Zi , σie) < 0 in the 

interval 0 < |φ ′ | < |φ ′
max|).

In the latter condition, φ ′
max stands for the absolute maximum of the potential well (maximum amplitude of 

soliton or possible double layer), which has a central significance for finding the Mach number domains. The 
maximum potential φ ′

max is the intersection of the pseudo-potential function ψ(φ
′
,Mγe ; γe ,Zi , σie) with the φ ′ 

axis for a given Mach number and the other parameters, as the condition (iv) confirms it.
Furthermore, the sufficient conditions for trapping the solitons or possible DLs are as: 

	 (v):	 ∂ψ(φ
′
,Mγe ;γe ,Zi ,σie)

∂φ
′ |

φ
′=φ

′
max

≷ 0 , which satisfies the positive (negative) slope of the pseudo-potential at 

φ
′
max ≷ 0 for trapping the compressive (ratefactice) solitary waves;

	 (vi):	 ∂ψ(φ
′
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= 0 , and ∂
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′ 2 |
φ
′=φ

′
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< 0 , which indicate to the existence of 

a local maximum at φ ′
max ≷ 0 and the possibility of a typical double layer.

For determining the allowed domains of IASWs, we have to find the situation in which all the criteria (i)-(iv) 
(necessary conditions) are satisfied simultaneously together with the condition for the reality of the ions number 
density, by solving the evolution equation of the continuity and momentum transfer equations41. Finally, we may 
analyze the formation condition of the solitary waves, by imposing criterion (v), or the formation condition of 
the possible DLs, by setting criterion (vi).

Results and discussion
Cold‑ion plasma
At first, we consider the cold ions regime, where Ti ≪ Te ( σie = 0 ), as it confirms the suitable excitation of the 
ion oscillations in the plasma. Then, by integrating the transformed equations and considering the boundary 
conditions at infinity, we have the following equations 

 Note that the first equation is derived by simultaneously solving the continuity and momentum transfer equa-
tions in the commoving frame of the wave. It implies a critical potential for establishing the reality of the number 

density for the ions in the compression/rarefaction of the ion waves, as φ ′
cr =

γeM
2
γe

2
 , where φ ′
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′
cr . Note that 
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the reality of the ion number density is disturbed beyond the critical potential (the infinite compression limit), 
and the propagation of solitary waves is impossible.

Multiplying the Poisson Eq. (8b) by dφ
′

dξ
′  , integrating the resultant, and considering the mentioned conditions 

for having localized solitary waves, we may find the energy-integral equation for trapping the IASWs with the 
Sagdeev’s pseudo-potential function as follows

Note that the two conditions (i) and (ii) are spontaneously satisfied for Sagdeev’s pseudo-potential given by Eq. 
(9). Condition (iii) confirms the minimum energy of the ions for possible excitation of the solitary waves, cor-
responding to the threshold Mach number. Imposing this condition to the Eq. (9), we may find (Mγe )min = 1 
for a cold plasma, where it is independent of φ and γe . We may also consider the condition (iv) for analyzing the 
variation (Mγe )max in terms of the maximum potential φ ′

max , as we have depicted it in Fig. 1 for some typical 
adiabatic indices as γe = 0.2, 0.5, 0.7, 0.9 . As we anticipate from the nonlinear plasma physics, it shows that the 
maximum amplitude of the soliton, i.e. φ ′

max , increases with the soliton speed. Moreover, it shows that for a fixed 
Mach number, the maximum amplitude of the soliton increases with γe , i.e., we have the IASWs with higher 
amplitudes towards the equilibrium states.

In one viewpoint for showing the interval of the Mach number, we may consider φ ′
cr =

γeM
2
γe

2
 as the maxi-

mum width of the possible potential wells, i.e., the maximum possible for the potential, and then by solving the 
inequality ψ(φ

′ = φ
′
cr ,Mγe ; γe) > 0 (the necessary condition for forming a potential well), we can extract the 

maximum possible for the adiabatic Mach number as a function of γe . Then, we may display the interval of the 
adiabatic Mach number as (Mγe )min < Mγe < (Mγe )max in the plane of Mγe versus γe , as we have depicted it 
in Fig. 2. Here, the regions between (Mγe )min and (Mγe )max correspond to the allowed Mach number domains 
in the (γe ,Mγe ) plane. As we see from Fig. 2, in the isothermal limit γe → 1 , the classical Mach number domains 
for a Maxwellian cold plasma may be recovered as 1 < M < 1.5840,44.

Another approach for extracting the solutions of the energy-integral equations is analyzing the allowed 
(φ

′
,Mγe ) domains for trapping the IASWs41. In three panels of Fig. 3, we have displayed the overlap of three 

constraints (iii),(iv) and φ ′
< φ

′
cr in the (φ ′

,Mγe ) planes, where the panels (a), (b) and (c) correspond respectively 
to the plasma with adiabatic indices γe = 0.2 , γe = 0.5 and γe = 0.8 . The horizontal dashed line of these figures 
indicates the threshold Mach number value, (Mγe )min = 1 , where the upper areas of this line correspond to the 

condition ∂
2ψ(φ

′
,Mγe ;γe)

∂φ
′ 2 |

φ
′=0

< 0 , which confirms the existence of a local maximum for the pseudo-potential 

ψ(φ
′
,Mγe ; γe) at zero potential. The left areas of the solid curve satisfy the reality of the ion number density as 

φ
′
< φ

′
cr =

γeM
2
γe

2
 . Furthermore, the dot-dashed curve represents the nonzero roots of the pseudo-potential as 

ψ(φ
′
max ,Mγe ; γe) = 0 , where only the left regions of this curve satisfy the negativity of the pseudo-potential as 

(9)ψ(φ
′
,Mγe ; γe) = γe

[

1−
(

1−
1− γe

γe
φ

′
)

γe
γe−1

]

+ (γeMγe )
2

[

1−

√

1−
2φ

′

γeM2
γe

]

.

Figure 1.   The variation (Mγe )max in terms of φ ′
max for some typical adiabatic indices (the cold-ion limit).
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ψ(φ
′
,Mγe ; γe) < 0 . The dot-dashed and the solid curves converge to the intersection point (φ ′ ⋆

max , (Mγe )max) , 
beyond which the propagation of solitary waves is impossible. The maximum possibilities for the potential and 
the adiabatic Mach numbers, i.e., (φ ′ ⋆

max , (Mγe )max) , for three panels (a), (b), and (c) are respectively (0.17, 1.32) 
when γe = 0.2 , (0.50, 1.41) when γe = 0.5 , and (0.92, 1.51) when γe = 0.8.

As we see from all panels of Fig. 3, the slope of the dot-dashed curve is always positive, i.e.,
∂ψ(φ

′
,Mγe ;γe)
∂φ

′ |
φ
′=φ

′
max

> 0 , and so ψ(φ
′
,Mγe ; γe) has no local maximum for φ ′

max > 0 . It shows that only 
positive polarity IASWs are possible (compressive solitons), and no DLs are possible in the plasma. We have 
displayed the (φ ′

,Mγe ) domains for trapping the IASWs in the kappa-distributed cold plasma in three panels 
of Fig.  3. The allowed adiabatic Mach number domains for the positive polarity IASWs are written as: 
1 < Mγe < 1.32 with the soliton amplitudes as 0 < φ

′
max < 0.17 when γe = 0.2 ; 1 < Mγe < 1.41 with the soliton 

amplitudes as 0 < φ
′
max < 0.50 when γe = 0.5 ; and 1 < Mγe < 1.51 with the soliton amplitudes as 

0 < φ
′
max < 0.92 when γe = 0.8 . We see that the allowed (φ ′

,Mγe ) domains extend towards the isothermal limit 
γe → 1 . A typical adiabatic Mach number in the allowed regions of (Mγe )min < Mγe < (Mγe )max corresponds 
to a potential well in the related area 0 < φ

′
< φ

′
max , where φ ′

max is the relevant soliton amplitude.
In Fig. 4, we have plotted the variation of Sagdeev’s pseudo-potential function in terms of γe for a fixed adiaba-

tic Mach number as Mγe = 1.3 (panel (a)), and also the related soliton profiles by numerically solving the 

energy-integral equation 1
2
(
dφ

′

dξ
′ )

2 + ψ(φ
′
,Mγe ; γe) = 0 (panel (b)). The width and amplitude of the IASWs 

increase with γe.
Furthermore, in panel (a) of Fig. 5, we have plotted the variation of the pseudo-potential function in terms 

of Mγe for a fixed polytropic index as γe = 0.8 , and also the related soliton profiles as depicted in the panel (b). 
We see that the solitary wave profile becomes sharper for the solitons with higher speeds, where Mγe increases.

Warm‑ion plasma with finite temperature
For a warm plasma with finite temperature ions, by integrating the transformed continuity and momentum 
transfer equations (in terms of ξ ′ ) and imposing the boundary conditions at infinity, we may find the following 
multi-dimensional equation in terms of n′

For finding an explicit Sagdeev’s pseudo-potential function, we consider the adiabatic ions in one dimension 
compression/rarefaction, where di = 1 and γi = 3 , then the Eq. (10) becomes a fourth order equation in terms 
of n′ as follows

(10)
(

2σie

Ziγe
·

γi

γi − 1

)

n
′γi+1

+

(

M
2
γe
−

2φ
′

γe
+

2σie

Ziγe
·

γi

γi − 1

)

n
′ 2
+M

2
γe

= 0.

Figure 2.   The allowed domains of (γe ,Mγe ) for the IASWs (the cold-ion limit).
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Figure 3.   The allowed (φ ′
,Mγe ) domains for trapping the positive polarity IASWs in the cold-ions plasma: (a) 

when γe = 0.2 , in which 1 < Mγe < 1.32 and 0 < φ
′
max < 0.17 ; (b) when γe = 0.5 , in which 1 < Mγe < 1.41 

and 0 < φ
′
max < 0.50 ; and (c) when γe = 0.8 , in which 1 < Mγe < 1.51 and 0 < φ

′
max < 0.92.
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where it has two (acceptable) positive solutions as follows

For determining the acceptable branch of n′
± , the following conditions have to be considered

•	 The positivity of n′,
•	 The reality of n′,
•	 n

′
 has to tend smoothly to n′ → 1 , at the equilibrium state φ ′ → 0,

•	 n
′
 has to tend smoothly to n′ → 1

√

1− 2φ
′

γeM
2
γe

 , at the cold ions limit σie → 0.

Considering these conditions shows that only n′
− satisfies the correct cold ions limit at σie → 0 , where its reality 

gives a critical potential as

(11)
3σie

Ziγe
n
′ 4
−

(

M
2
γe
−

2φ
′

γe
+

3σie

Ziγe

)

n
′ 2
+M

2
γe

= 0,

(12)n
′
± =

1
�

6σie
Ziγe







M
2
γe
+

3σie

Ziγe
−

2φ
′

γe
±

�

�

M2
γe
+

3σie

Ziγe
−

2φ
′

γe

�2

−
12σie
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Figure 4.   (a) The variation of Sagdeev’s pseudo-potential function; and (b) The variation of soliton profile; for 
the cold-ions plasma in terms of γe for the fixed adiabatic Mach number Mγe = 1.3.
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We may derive the critical potential by considering the positivity of the expression under the square root sym-
bol in Eq. (12), where we have rearranged it as the completed square. Note that we have real solutions for the 
potentials in the range 0 ≤ φ

′
< φ+

cr . Furthermore, n′
− satisfies the proper equilibrium limit at φ ′ → 0 , when the 

adiabatic Mach number takes the following values

The transformed Poisson equation for this case is the same as Eq. (8b) with n′
− instead of n′ . Inserting n′

− to the 
Poisson equation, multiplying it by dφ

′

dξ
′  , and integrating by considering the boundary conditions for having a 

localized solitary wave, we may find the following Sagdeev’s pseudo-potential function

(13)φ+
cr =

1

2

(

√
γeMγe −

√

3σie

Zi

)2

.

(14)Mγe >

√

3σie

Ziγe
.

Figure 5.   (a) The variation of Sagdeev’s pseudo-potential function; and (b) The variation of soliton profile; for 
the cold-ions plasma in terms of Mγe for the fixed polytropic index γe = 0.8.
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where � is defined as follows

and �0 = �(φ
′ = 0) . The method for deriving the energy-integral equation and Sagdeev’s pseudo-potential 

function in the case of warm plasma exists in the Supplementary Material.
As we mentioned, the minimum energy of the ions for possible excitation of the solitary waves corresponds 

to the threshold Mach number. It is given by using the relation ∂
2ψ(φ

′
,Mγe ;γe ,Zi ,σie)
∂φ

′ 2 |
φ
′=0

= 0 . In the cold-ion 

plasma limit, this condition led to (Mγe )min = 1 . However, for the warm ion plasma, imposing this condition 
yields a criterion as a function of the other parameters, i.e., γe ,Zi and σie . In Fig. 6, we have depicted this condi-
tion for the fixed parameters Zi = 1 and σie = 0.1 , which indicates that the variation of (Mγe )min in terms of γe 
has two branches. In this figure, we have also depicted the allowed domains for satisfying the proper equilibrium 
limit at φ ′ → 0 , as formulated in the relation (14). Figure 6 shows that only the upper branch is acceptable, 
denoting the valid variation of (Mγe )min in terms of γe . It shows the threshold of Mach number decreases by 
increasing the polytropic index γ.

We may extend the analysis discussed in the prior section to Sagdeev’s pseudo-potential function for the 
warm plasma as follows. The panel (a) in Fig. 7 shows the variation (Mγe )max in terms of the maximum potential 
φ

′
max for some adiabatic indices as γe = 0.3, 0.5, 0.7, 0.9 and for the fixed parameters Zi = 1 and σie = 0.1 , while 

the panel (b) is depicted for some fractional ion to electron temperatures as σie = 0.01, 0.05, 0.1, 0.2 and for the 
fixed parameters Zi = 1 and γe = 0.7 . Fig. 7) confirms the result of the prior section. It also shows that for a fixed 
Mach number, the maximum amplitude of the soliton decreases with σie , i.e., we have the IASWs with smaller 
amplitudes in the plasmas with warmer ions.

In three panels of Fig. 8, we have depicted the domains of adiabatic Mach number Mγe in terms of γe , where 
the panels (a),(b) and (c) correspond respectively to the case with σie = 0.1 , σie = 0.01 and the asymptotic limit 
σie → 0 , where Zi = 1 for all of them. The regions between (Mγe )min and (Mγe )max correspond to the allowed 
Mach number domains in the (γe ,Mγe ) plane. Figure 8 shows that the allowed domains of the IASWs shrink 
with the temperature of the plasma ions. Significantly, the panels (c) of Fig. 8 at the cold-ion limit σie → 0 is 

(15)
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Figure 6.   The variation (Mγe )min in warm plasma in terms of γe for the fixed parameters Zi = 1 and σie = 0.1 . 
The upper branch is acceptable, where the true equilibrium limit at φ ′ → 0 is satisfied.
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in agreement with the result of cold plasma model, as given in Fig. 2. Furthermore, the allowed Mach number 
domain tends smoothly to the classical interval 1 < Mγe < 1.58 at the asymptotic limits γe → 1 and σie → 040.

In four panels of Fig. 9, we have compared the allowed (φ ′
,Mγe ) domains by variations of the polytropic 

index γe and the fractional temperature σie . Here, the panel (a) corresponds to the plasma with γe = 0.3 and 
σie = 0.1 , the panel (b) corresponds to the values γe = 0.5 and σie = 0.1 , the panel (c) corresponds to the values 
γe → 1 and σie = 0.1 , and the panel (d) corresponds to the asymptotic limits γe → 1 and σie → 0 , where Zi = 1 
for all of them. Figure 9 shows that both (Mγe )min and (Mγe )max decrease with γe towards the equilibrium state 

Figure 7.   The variation (Mγe )max for a warm plasma in terms of φ ′
max : (a) for some adiabatic indices and 

the fixed parameters Zi = 1 and σie = 0.1 ; (b) for some fractional ion to electron temperatures and the fixed 
parameters Zi = 1 and γe = 0.7.
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at γe → 1 , and also they fall with the temperature of the plasma ions. The panel (d) of Fig. 9 is in agreement with 
the (φ,M) domains of cold-ion plasma with isothermal electrons41.

Our analysis shows that the maximum intervals of the allowed adiabatic Mach numbers and the allowed 
potentials for the propagation of IASWs happen at the limit of isothermal electrons ( γe → 1 ) and in the case 
of the cold-ion limit ( σie → 0 ), where they are given by 1 < Mγe < 1.58 and 0 < φ

′
max < 1.26 , as addressed in 

the classical plasmas45.

Figure 8.   The variation of the allowed (γe ,Mγe ) domains in a warm plasma, when Zi = 1 and (a) σie = 0.1 ; (b) 
σie = 0.01 ; and (c) σie → 0 (the cold-ion limit).
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Panel (a) of Fig. 10 shows the variation of pseudo-potential function for the warm plasma in terms of γe for 
the fixed parameters as Mγe = 1.3 , σie = 0.1 and Zi = 1 , and the related soliton profiles as given in the panel 
(b). It confirms again that the width and amplitude of the IASWs increase with γe , in agreement with the result 
derived by the perturbation technique39.

Furthermore, in panel (a) of Fig. 11, we have plotted the variation of the pseudo-potential function in terms 
of σie for the fixed parameters as γe = 0.7 , Mγe = 1.2 , and Zi = 2 (denoting to the plasma with He2+ ions), and 
also the related soliton profiles as depicted in the panel (b). It shows that the width and amplitude of the IASWs 
decrease with the temperature of the ions, in agreement with the related result as derived by the perturbation 
technique39.

Finally, panel (a) of Fig. 12 depicts the variation of the pseudo-potential function in terms of Mγe for the 
fixed parameters as γe = 0.7 , σie = 0.05 , and Zi = 1 (denoting to the plasma with H+ ions), and also the related 

Figure 9.   The variation of the allowed (φ ′
,Mγe ) domains in a warm plasma with Zi = 1 : (a) when γe = 0.3 and 

σie = 0.1 ; (b) when γe = 0.5 and σie = 0.1 ; (c) when γe → 1 (the isothermal limit) and σie = 0.1 ; and (d) when 
γe → 1 and σie → 0 (the cold-ion limit).
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soliton profiles as plotted in the panel (b). It confirms that with increasing Mγe , the solitary wave profile becomes 
sharper, which is in agreement with the similar result as derived by the perturbation technique39.

We note that the relevant kappa and polytropic indices used in the numerical analysis of this paper are very 
close to the reported data in various regions of space physics. We may categorize the observational data into three 
regions: (i) The far-equilibrium regions, where the related thermodynamic processes are sub-isothermal and the 
polytropic indices are in the range γe < 1 . For example, the ambient solar wind (SW) regions with κ0 ∼ 046, where 
the polytropic index of kappa distributed particles is very close to the anti-equilibrium state γe ∼ 039; the outer 
heliosphere regions with κ0 ∼ 0.1347 and γe ∼ 0.1139; and the inner heliosheath (IH) regions with κ0 ∼ 0.2512 and 
γe ∼ 0.239. (ii) The regions close to the thermal equilibrium, where the related thermodynamics processes are 
isothermal, and the polytropic indices are γe ∼ 1 . The hotter and denser space plasmas belong to this case., e.g., 
the lower solar corona e− with κ0 ∼ 15.548 and γe ∼ 0.9439; the HII e− regions with κ0 ∼ 10.549 and γe ∼ 0.9139; 
and the planetary nebulae with κ0 ∼ 10050, where the polytropic index is very close to γe ∼ 139. (iii) The regions 
in which thermodynamics processes are close to the escape state, where the transitions between the near/far-
equilibrium states may happen. We may refer to the slow solar wind e− (Ulysses) plasmas with κ0 ∼ 0.951, where 
the polytropic index is given by γe ∼ 0.4739; and the fast solar wind He+ plasmas with κ0 ∼ 1.1552 and γe ∼ 0.5339.

Figure 10.   (a) The variations of pseudo-potential function; and (b) The variations of soliton profile; in terms of 
γe for a warm plasma when Mγe = 1.3 , σie = 0.1 and Zi = 1.
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Conclusion
In this paper, we studied the propagation and the allowed domains of the IASWs in space plasmas with invari-
ant kappa-distributed electrons and adiabatic ions. We discussed the nonlinear features of the invariant IAWs 
by deriving the energy-integral equation in Sagdeev’s pseudo-potential approach. The structure of solitary wave 
solutions was studied in terms of the polytropic index associated with the kappa distributed electrons ( γe ), the 
adiabatic (extended) Mach number ( Mγe ), and the fractional ion to electron temperature ( σie ). The value of the 
polytropic index varies between 0 < γe ≤ 1 , where lower/higher indices show whether the plasma is far from/
close to the equilibrium state. We derived and analyzed Sagdeev’s pseudo-potential function for two cases, i.e., 
the cold-ion plasma and the warm plasma with finite-temperature ions. The allowed domains of IASWs were 
presented both in (γe ,Mγe ) plane and in (φ ′

,Mγe ) plane. The summary of our results is as follows:

•	 As we anticipate from the nonlinear plasma physics, the maximum amplitude of the soliton increases with 
the soliton speed.

•	 The width and amplitude of the IASWs increase towards the equilibrium state, while they decrease with the 
temperature of the ions.

•	 The solitary wave profile becomes sharper with increasing Mγe (for the solitons with more speeds).
•	 The maximum amplitude of the soliton decreases with the fractional ion to electron temperature, i.e., the 

IASWs with smaller amplitudes happen in the plasmas with warmer ions.

Figure 11.   (a) The variations of pseudo-potential function; and (b) The variations of soliton profile; in terms of 
σie for a warm plasma when γe = 0.7 , Mγe = 1.2 , and Zi = 2 (denoting the He2+ ions).
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•	 In the case of cold-ion plasma, the threshold of Mach number (the minimum energy of the ions for possible 
excitation of the solitary waves) is independent of γe , where it is given by (Mγe )min = 1 . On the other hand, 
the threshold of Mach number in the case of warm ion plasma is a function of the other parameters, i.e., γe , 
σie , and Zi.

•	 In the cold-ion plasma, the allowed (φ ′
,Mγe ) domains is extended towards the isothermal plasma at the limit 

γe → 1.
•	 The temperature ratio is an essential factor for determining the maximum amplitude and allowed domains 

of the IASWs. Changing the ion temperature significantly modifies the maximum amplitude of the soliton.
•	 In a warm plasma, both the lower and upper limits of the Mach number, i.e., (Mγe )min and (Mγe )max , 

decrease towards the equilibrium state at the limit γe → 1 , and also they decrease with the temperature of 
the plasma ions. Then, the allowed domains of the IASWs are shrunk (reduced) with the temperature of the 
plasma ions.

Figure 12.   (a) The variations of pseudo-potential function; and (b) The variations of soliton profile; in terms of 
Mγe for a warm plasma when γe = 0.7 , σie = 0.05 , and Zi = 1 (denoting the H+ ions).
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•	 Generally, the maximum intervals of the allowed adiabatic Mach numbers and qualified potentials for the 
propagation of IASWs happen at the asymptotic limits γe → 1 (the isothermal electrons) and σie → 0 (the 
cold-ion limit), where they are given by 1 < Mγe < 1.58 and 0 < φ

′
max < 1.26.

Data availability
Some methods used during this study are included in the “Supplementary Material” file. This article is a theo-
retical (analytical) study without generating new data. All data used during numerical analysis of this study are 
addressed in this published article.
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