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Fractional view analysis of sexual 
transmitted human papilloma virus 
infection for public health
Mohammed Cherif Bahi 1,2, Salma Bahramand 3, Rashid Jan 4, Salah Boulaaras 5*, 
Hassan Ahmad 6 & Rafik Guefaifia 5

The infection of human papilloma virus (HPV) poses a global public health challenge, particularly 
in regions with limited access to health care and preventive measures, contributing to health 
disparities and increased disease burden. In this research work, we present a new model to explore 
the transmission dynamics of HPV infection, incorporating the impact of vaccination through the 
Atangana–Baleanu derivative. We establish the positivity and uniqueness of the solution for the 
proposed model HPV infection. The threshold parameter is determined through the next-generation 
matrix method, symbolized by R

0
 . Moreover, we investigate the local asymptotic stability of the 

infection-free steady-state of the system. The existence of the solutions of the recommended model 
is determined through fixed-point theory. A numerical scheme is presented to visualize the dynamical 
behavior of the system with variation of input factors. We have shown the impact of input parameters 
on the dynamics of the system through numerical simulations. The findings of our investigation 
delineated the principal parameters exerting significant influence for the control and prevention of 
HPV infection.

Human papilloma virus is a group of related viruses that can infect the genital area, as well as the mouth and 
 throat1. It is the most common sexually transmitted infection worldwide. This viral infection is primarily spread 
through intimate skin-to-skin contact, typically during sexual activity. Notably, there are various types of HPV, 
and some can cause genital warts, while others are linked to the development of cancers, including cervical, 
anal, penile, and oropharyngeal  cancers2. In fact, HPV is a leading cause of cervical cancer in women. Preventive 
measures include vaccination, which is highly effective in protecting against the most common cancer-causing 
HPV strains. Regular screening for cervical cancer in women is also essential for early detection and treatment. 
Given the prevalence of HPV and its potential health implications, education about safe sexual practices, vac-
cination, and regular medical check-ups are crucial components of public health initiatives aimed at reducing 
the impact of HPV-related diseases. The HPV vaccine was developed to protect against this viral infection. 
Given in a series of doses, the vaccination dramatically reduces the incidence of HPV-related malignancies and 
genital  warts3. Public health recommendations emphasize the necessity of routine vaccination for adolescents 
and young adults to improve health outcomes. There is no specific cure for HPV, the infections often clear on 
their own as the immune system fights the  virus4. However, certain conditions caused by HPV, such as genital 
warts or abnormal cervical cells, can be treated. Always consult with a health care professional for personalized 
advice and treatment options based on your specific situation.

Mathematical models provide a quantitative framework for understanding complex systems and making 
predictions that can guide actions and  policies5–7. These modeling typically involves defining variables, formulat-
ing equations, and using mathematical tools and techniques to interpret and understand complex phenomena, 
facilitating problem-solving and decision-making processes in a systematic and quantifiable  manner8–10. Math-
ematical models have played a pivotal role in elucidating the dynamics of infectious disease transmission and 
devising efficacious interventions for disease  control11–13. Numerous mathematical models have been formulated 
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to conceptualize the key input factors of the dynamics of viral infection within  populations14,15. Many scientific 
endeavors have focused on the mathematical modeling of the progression of cervical cancer in conjunction 
with HPV infection. The objective is to gain a comprehensive understanding of the disease and explore various 
approaches to managing its advancement or halting it altogether. Several mathematical models have employed 
a compartmental approach to study the transmission dynamics of HPV infection in the  population16,17. After 
that, the researchers  in18,19 conceptualized and studied the transmission phenomena of cervical cancer by incor-
porating real parameters from various geographical regions.  In20, a system comprising five differential equations 
characterizing HPV, coupled with four compartments delineating epithelial cells healthy, infected, precancerous, 
and cancerous was delineated. The authors delve into examining the distinct stability of each equilibrium and 
scrutinize the conditions dictating disease extinction or persistence. Addressing the same issue, a recent  study21 
tackles optimal control by incorporating various incidence functions. The authors propose that the two treat-
ments function by impeding new infections and diminishing the population of precancerous cells. In the present 
study, we formulate the dynamics of HPV to elucidate the influence of vaccination, asymptomatic carriers, and 
cervical cancer on the transmission pathway.

In21,22, the researchers introduced a saturated infection rate and two viral infection treatments into their 
model. Biologically, the saturated infection rate signifies the transmission rate of the infection, considering the 
viral density in the vicinity of the healthy epithelial  cell23,24. Furthermore, the first treatment functions to gauge 
the efficacy of drug intervention in preventing new infections, while the second reflects the effectiveness of drug 
treatment in impeding viral  production25. In epidemic models, a fractional framework holds significance as it 
offers a robust mechanism for integrating memory and hereditary property within  systems26,27. Moreover, non-
integer models have the capacity to depict the nonlocal dynamics of biological processes with greater accuracy 
compared to classical  models28,29. Utilizing fractional operators in epidemic models yields more precise outcomes 
for real-world data than traditional integer  models30–32. The complex biological processes can be accurately 
characterized through a fractional framework. Therefore, we choose to represent the dynamics of HPV infec-
tion within this fractional framework, aiming to offer a more precise depiction of the viral infection’s dynamics.

The structure of the paper unfolds as follows: Section “Theory of fractional-calculus” introduces the funda-
mental findings and concepts associated with the Atangana–Baleanu fractional operator. In Section “Fractional 
order model formulation”, we construct a mathematical model for HPV infection, considering vaccination and 
reinfection phenomena. The stability study is detailed in Section “Analysis of the model”, and Section “Fractional-
order model solution” delves into the existence and uniqueness of the solution. Section “Fractional dynamics via 
Newton polynomial” showcases numerical iterative methods and simulation results. Finally, Section “Conclusion” 
provides a summary of the entire work.

Theory of fractional-calculus
In this section, we will unveil pivotal theory of the Atangana–Baleanu operator alongside the classical Caputo 
derivative, as elucidated in  reference33. Additionally, we will delve into the Atangana–Baleanu operator, as out-
lined in  reference33. These basic concepts and findings will be utilized in the analysis of the model.

Definition 2.1 33. Consider a function k such that k : [p, q] → R , then the Caputo fractional derivative of order 
υ on k can be stated pas

where r ∈ Z and υ ∈ (r − 1, r).

Definition 2.2 Suppose a function k such that k ∈ H1(p, q) , q > p , and υ ∈ [0, 1], then AB fractional operator 
in Caputo structure represented by ABC is defined as

Definition 2.3 Integral of AB derivative is represented by ABCp Iυt k(t) and defined as

Since the fractional-order υ → 0 implies that the initial function can be attained.

Theorem 2.1 33. Consider a function k such as k ∈ C[p, q] , then the following holds

Moreover, the Lipschitz holds for the ABC derivative as

Theorem 2.2 33. The following system of fractional differential equation

C
p D

υ
t (k(t)) =

1

Ŵ(r − υ)

∫ t

p
kr(ς)(t − ς)r−υ−1dς ,

ABC
p Dυ

t k(t) =
B(υ)

1− υ

∫ t

p
k′(ς)Eυ

[

− υ
(t − ς)υ

1− υ

]

dς .

ABC
p Iυt k(t) =

1− υ

B(υ)
k(t)+

υ

B(υ)Ŵ(υ)

∫ t

p
k(ς)(t − ς)υ−1dς .

�ABCp Dυ
t (k(t))� <

B(υ)

1− υ
�k(t)�, where �k(t)� = maxp≤t≤q|k(t)|.

�ABCp Dυ
t k1(t)−

ABC
p Dυ

t k2(t)� < ϕ1�k1(t)− k2(t)�.
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has a unique solution of the form

 Fractional order model formulation
In this part, we present a mathematical model of HPV transmission. In formulation of the model, we represent 
the total population by N (t) . According to their illness state, the model splits the whole population into six 
sub-classes: Susceptible S(t) , Vaccinated V(t) , Asymptomatic A(t) , Infected I(t) , Recovered R(t) , and Cervical 
cancer C(t) . Here, the following presumptions are used to build a mathematical model of the human papilloma 
virus. A portion p are vaccinated on the onset of an outbreak and a fraction α of the susceptible are vaccinated. 
After vaccination a portion ϕ of vaccinated individuals moves to susceptible class after losing the effectiveness 
of the vaccination while the recovered individuals lose the immunity with a rate ω and become susceptible. The 
susceptible population is at risk of infection, whether it is from asymptomatic or symptomatic individuals, and 
this risk is quantified by a force of infection denoted as � =

β[I+γA]

N
 . Here, β is calculated as the product of κ

(the contact rate) and τ(the probability that a contact leads to infection), and γ represents the transmission coef-
ficient for asymptomatic individuals. In cases where γ > 1 , asymptomatic individuals are more likely to infect 
susceptible individuals than symptomatic ones. When γ = 1 , both asymptomatic and symptomatic individuals 
have an equal chance of infecting the susceptible population. However, if γ < 1 , symptomatic individuals have 
a greater likelihood of infecting susceptible individuals compared to asymptomatic ones.

The HPV vaccine is considered to provide only temporary immunity, and individuals who have been vac-
cinated may still have a chance of being infectious or asymptomatic, although this likelihood is relatively low. 
The force of infection for the vaccinated population is denoted as �v = ε� , where ε falls within the range of 0 to 
1. ε represents the proportion of the serotype not covered by the vaccine. Individuals acquiring new infections 
due to the force of infection face dual potential outcomes. They can either undergo asymptomatic infection, 
characterized by a probability denoted as ρ , and subsequently join the asymptomatic class. Alternatively, there 
is a probability of 1− ρ that they progress to the infected class. Within the asymptomatic class, individuals 
encounter two distinct trajectories. They may either manifest disease symptoms or opt for screening, triggering 
a transition into the infected class at a rate represented as θ . Alternatively, they may naturally recover, acquiring 
immunity at a rate denoted as φ . Individuals within the infected class undergo transitions based on treatment. 
At a rate of η , some individuals move to the recovered compartment through effective treatment, where a pro-
portion q successfully joins the recovered class. Others, constituting the remaining (1− q) proportion, opt for 
an alternative treatment path, joining the asymptomatic class. Unfortunately, in cases where the treatment fails, 
individuals may progress to develop cervical cancer at a rate δ , leading to a shift into the cervical cancer com-
partment. Individuals who are afflicted with cervical cancer may face mortality due to the infection, occurring 
at a rate denoted as ξ . Within all compartments, µ represents the natural mortality rate of individuals. The flow 
chart of the transmission dynamics of HPV with the above assumptions is illustrated in Fig. 1. Then, the model 
of HPV with the above assumptions in the form of mathematical expression is as follows:

ABC
p Dυ

t k(t) = u(t),

k(t) =
1− υ

B(υ)
u(t)+

υ

B(υ)Ŵ(υ)

∫ t

p
u(ς)(t − ς)υ−1dς .

Figure 1.  Illustration of the flow chart of the dynamics of the infection of human papilloma virus.
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with appropriate initial condition

The initial conditions for the system of model (1) are all non-negative and represented as follows: 
S(0) = S0,V(0) = V0,A(0) = A0,I(0) = I0,R(0) = R0, C(0) = C0 . The above model (1) in fractional form 
can written as:

where 0 < υ ≤ 1. The adoption of fractional derivatives in epidemic modeling enhances the models’ ability to 
reflect the complexity of real-world scenarios, making them more effective tools for predicting and managing 
the spread of infectious diseases. The Atangana–Baleanu derivative is known for its ability to model non-local 
and non-singular behaviors, which may be crucial for accurately describing certain physical processes. The Atan-
gana–Baleanu derivative provides a flexible mathematical framework that can be adapted to describe systems 
with memory and long-range dependencies. Its versatility makes it suitable for a wide range of applications.

Theorem 3.1 The solutions the system (3) of the disease are nonnegative and bounded for nonnegative initial vales 
of state variables of the system.

The solutions of our fractional system (3) of the disease is evidently constrained and remains nonnegative 
for nonnegative initial values of state variables. Consequently, the system is biologically valid. Further analysis 
of the model will be presented in the upcoming investigation of the system.

Analysis of the model
In this section of the, we will investigate our model of HPV for disease-free steady-state, reproduction number 
and local asymptotic stability. Let the disease-free steady-state is denoted by E0 and can be determined by taking 
the steady-state of system (3) without infection, then, we have

Here, we assume that the basic reproduction number is indicated by R0 which can be calculated through different 
technique. We take the following step to determined R0 of our model:

putting � =
β[I+γA]

N
 , we have

Taking the Jacobian of the above, we have F  and V as given below

in which q1 =
ϕ−µ+µp
ϕ+µ

 , q2 =
µp
ϕ+µ

 , k1 = q1 + εq2 , k2 = cd − θη(1− q) , k3 = dγ + θ , k4 = (1− q)ηγ + c , 
a = (�+ µ) , b = (ϕ + ǫ�+ µ) , c = (θ + ϕ + µ) , d = (δ + η + µ) , e = (ω + µ) and f = (ξ + µ) . From the 
above, we have FV−1 as

(1)



































dS
dt = (1− p)�+ ϕV − (ρ�+ µ)S + ωR
dV
dt = p�− (ϕ + ε�+ µ)V
dA
dt = ρ�S + ρε�V + (1− q)ηI − (θ + φ + µ)A
dI
dt = (1− ρ)�S + (1− ρ)ε�V + θA− (δ + η + µ)I
dR
dt = φA+ qηI − (ω + µ)R
dC
dt = δI − (ξ + µ)C,

(2)S(0) ≥ 0, V(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, C(0) ≥ 0.

(3)































ABC
0 Dυ

t S = (1− p)�+ ϕV − (ρ�+ µ)S + ωR,
ABC
0 Dυ

t V = p�− (ϕ + ε�+ µ)V ,
ABC
0 Dυ

t A = ρ�S + ρε�V + (1− q)ηI − (θ + φ + µ)A,
ABC
0 Dυ

t I = (1− ρ)�S + (1− ρ)ε�V + θA− (δ + η + µ)I ,
ABC
0 Dυ

t R = φA+ qηI − (ω + µ)R,
ABC
0 Dυ

t C = δI − (ξ + µ)C,

E0 = (S0,V0, 0, 0, 0, 0).

F =

[

ρ�S + ρε�V
(1− ρ)�S + (1− ρ)ε�V

0

]

,V =

[

(θ + φ + µ)A− (1− q)ηI
(δ + η + µ)I − θA
(ξ + µ)C − δI

]

,

F =





ρβ[I+γA]S

N
+

ρεβ[I+γA]V

N
(1−ρ)β[I+γA]S

N
+

(1−ρ)εβ[I+γA]V

N
0



 ,V =

�

(θ + φ + µ)A− (1− q)ηI
(δ + η + µ)I − θA
(ξ + µ)C − δI

�

.

F =

[

ρβγ k1 ρβk1 0
(1− ρ)βγ k1 (1− ρ)βk1 0

0 0 0

]

, and V =

[

c − (1− q)η 0
−θ d 0
0 − δ f

]

,
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Here, assume that the greatest eigenvalue of FV−1 is denoted by ρ(FV−1) which is κτk1k2k3ρ+(1−ρ)k4
k2

 and the basic 
reproduction number through next-generation matrix method is the greatest eigenvalue of FV−1 , thus, we have

Theorem 4.1 If R0 < 1 , then the steady-state E0 is locally asymptotically stable and is unstable in other cases.

Proof For the required stability result, we take the the Jacobian matrix at E0 as

For the required result, we will show that all the eigenvalues of J (E0) are negative. For which, we take the char-
acteristic equation det[J (E0)− χI] = 0 as:

From the above, the first and second eigenvalue are −µ and −f  which are negative while the other eigenvalues 
can be determined from

here, we have the third and fourth eigenvalue are −b and −e which are negative. The remaining eigenvalues can 
be calculated from

Here, if det(J (E1)) < 0 and trc(J (E1)) > 0 for R0 < 1 , then the disease-free steady-state of our model of HPV 
is locally asymptotically stable. 

Fractional-order model solution
In this section of the manuscript, we will utilize fixed-point theory to confirm the uniqueness and existence of 
solutions of our model of the disease. The described system for HPV with the Atangana-Baleno derivative is 
provided as follows

FV−1 =

�

ρβγ k1 ρβk1 0
(1− ρ)βγ k1 (1− ρ)βk1 0

0 0 0

�







d
k2

(1−q)η
k2

0
θ
k2

c
k2

0
−θδ
fk2

cδ
fk2

1
f







=







ρβk1k3
k2

+
ρβk1
k2

(1−q)ηρβγ k1
k2

+
cρβk1
k2

0
dρβγ k1

k2
+

θρβk1
k2

(1−ρ)(1−q)ηβγ k1
k2

+
(1−ρ)cβk1

k2
0

0 0 0







=







ρβk1k3
k2

ρβk1k4
k2

0
(1−ρ)k1k3

k2

(1−ρ)βk1k4
k2

0

0 0 0






.

R0 =
κτk1k2k3ρ + (1− ρ)k4

k2
.

J (E0) =















−µ ϕ βγ q1 βq1 ω 0
0 − b βεγ q2 βεq2 0 0
0 0 ρβγ k1 − c ρβk1 − (1− q)η 0 0
0 0 (1− ρ)βγ k1 + θ (1− ρ)βk1 − d 0 0
0 0 φ qη − e 0
0 0 0 δ 0 − f















.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−µ− χ ϕ βγ q1 βq1 ω 0
0 −b− χ βεγ q2 βεq2 0 0
0 0 [ρβγ k1 − c] − χ ρβk1 − (1− q)η 0 0
0 0 (1− ρ)βγ k1 + θ [(1− ρ)βk1 − d] − χ 0 0
0 0 φ qη −e − χ 0
0 0 0 δ 0 −f − χ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

∣

∣

∣

∣

∣

∣

∣

−b− χ βεγ q2 βεq2 0
0 [ρβγ k1 − c] − χ ρβk1 − (1− q)η 0
0 (1− ρ)βγ k1 + θ [(1− ρ)βk1 − d] − χ 0
0 φ qη −e − χ

∣

∣

∣

∣

∣

∣

∣

= 0,

J (E1) =

[

ρβγ k1 − c ρβk1 − (1− q)η
(1− ρ)βγ k1 + θ (1− ρ)βk1 − d

]

.
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this can be further expressed as follows:

In this context, we have the state variables represented by w(t) = (S ,V ,A,I ,R, C) , and J  is a continuous func-
tion. To clarify, the vector function J  can be more clearly expressed as follows:

with appropriate initial conditions specified as w0(t) = (S(0),V(0),A(0),I(0),R(0), C(0)) , and furthermore, 
the function J  satisfies the Lipschitz condition as outlined below:

Subsequently, we will explore the uniqueness and existence of system (4) in the following outcome.

Theorem 5.1 A unique solution for the suggested system (4) of HPV is present if the following condition is met

Proof To establish the intended result, we apply the AB fractional integral (2.3) to the system (5) which provide 
the following

Consider the interval (0,T ) represented as I, and the operator � : P(I , R6) → P(I, R6) is defined as follows:

Then, Eq. (8) can be written as

the supremum norm over the set I is represented by ‖.‖I , and defined as

One can observe with patience that P(I , R6) forms a Banach space equipped with the norm ‖.‖I . Moreover, it 
is evident that

both w(t) and K(t,̟) are members of P(I , R6) and P(I2, R) , respectively, in a way that

Using the definition of � as outlined in (10), we obtain the following result

Furthermore, by making use of the Lipschitz condition (6) and the outcome from (12), the following is derived

(4)































ABC
0 Dυ

t S = (1− p)�+ ϕV − (ρ�+ µ)S + ωR,
ABC
0 Dυ

t V = p�− (ϕ + ε�+ µ)V ,
ABC
0 Dυ

t A = ρ�S + ρε�V + (1− q)ηI − (θ + φ + µ)A,
ABC
0 Dυ

t I = (1− ρ)�S + (1− ρ)ε�V + θA− (δ + η + µ)I ,
ABC
0 Dυ

t R = φA+ qηI − (ω + µ)R,
ABC
0 Dυ

t C = δI − (ξ + µ)C,

(5)
ABC
0 Dυ

t w(t) = J (t,w(t)),
w(0) = w0, 0 < t < T < ∞.

J =















J1

J2

J3

J4

J5

J6















=















(1− p)�+ ϕV − (ρ�+ µ)S + ωR
p�− (ϕ + ε�+ µ)V

ρ�S + ρε�V + (1− q)ηI − (θ + φ + µ)A
(1− ρ)�S + (1− ρ)ε�V + θA− (δ + η + µ)I

φA+ qηI − (ω + µ)R
δI − (ξ + µ)C















,

(6)�J (t, l1(t))− J (t, l2(t))� ≤W�w1(t)− w2(t)�.

(7)
(1− υ)

ABC(υ)
V +

υ

ABC(υ)Ŵ(υ)
T υ
maxV < 1.

(8)w(t) = w0 +
1− υ

ABC(υ)
J (t,w(t))+

υ

ABC(υ)Ŵ(υ)

∫ t

0
(t −̟)υ−1J (̟ ,w(̟))d̟ .

(9)�[w(t)] = w0 +
1− υ

ABC(υ)
J (t,w(t))+

υ

ABC(υ)Ŵ(υ)

∫ t

0
(t −̟)υ−1J (̟ ,w(̟))d̟ .

(10)w(t) = �[w(t)],

(11)�w(t)�I = sup
t∈I

�w(t)�, w(t) ∈ P .

(12)
∥

∥

∥

∥

∫ t

0
K(t,̟)w(̟)d̟

∥

∥

∥

∥

≤ T �K(t,̟)�I�w(t)�I ,

(13)�K(t,̟)�I = sup
t,̟∈I

|K(t,̟)|.

(14)
��[w1(t)] −�[w2(t)]�I ≤

∥

∥

∥

∥

(1− υ)

ABC(υ)
(J (t,w1(t))− J (t,w2(t))+

υ

ABC(υ)Ŵ(υ)

×

∫ t

0
(t −̟)υ−1(J (̟ ,w1(̟))− J (̟ ,w2(̟)))d̟

∥

∥

∥

∥

I

.
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As a result, we get the following

where

It is clear that if condition (7) holds, then � is a contraction. This, in turn, implies that the HPV system (4) pos-
sesses a unique solution. 

Fractional dynamics via Newton polynomial
In this section of the paper, our focus is on the numerical solution of our system (4) of the infection. To do this, 
we consider the below stated Atangana–Baleanu derivative system

transform the previously stated equation into the subsequent form according  to34:

the above at tr+1 = (r + 1)�t can be stated as

this can be further transformed into:

In the subsequent phase, we employ the Newton polynomial method to estimate f(t, g(t)) as follows

Utilizing the above stated polynomial in (20), we get that

Moreover, we get

(15)��[w1(t)] −�[w1(t)]�I ≤

[

(1− υ)V

ABC(υ)
+

υ

ABC(υ)Ŵ(υ)
VT υ

max

]

�w1(t)− w2(t)�I .

(16)��[w1(t)] −�[w1(t)]�I ≤D�w1(t)− w2(t)�I,

D =
(1− υ)V

ABC(υ)
+

υ

ABC(υ)Ŵ(υ)
VT υ

max.

(17)ABC
0 Dυ

t g(t) = f (t, g(t)),

(18)g(t)− g(0) =
1− υ

AB(υ)
f (t, g(t))+

υ

AB(υ)Ŵ(υ)

∫ t

0
f (θ , g(θ))(t − θ)(υ−1)dθ ,

(19)g(tr+1)− g(0) =
1− υ

AB(υ)
f (tr , g(tr))+

υ

AB(υ)Ŵ(υ)

∫ tr+1

0
f (θ , g(θ))(tr+1 − θ)(υ−1)dθ ,

(20)g(tr+1) = g(0)+
1− υ

AB(υ)
f (tr , g(tr))+

υ

AB(υ)Ŵ(υ)
�r
ı=2

∫ tı+1

tı

f (θ , g(θ))dθ .

(21)
Pr(θ) =f (tr−2, g(tr−2))+

f (tr−1, g(tr−1))− f (tr−2, g(tr−2))

�t
(θ − tr−2)

+
f (tr , g(tr))− 2f (tr−1, g(tr−1))+ f (tr−2, g(tr−2))

2(�t)2
× (θ − tr−2)(θ − tr−1).

(22)

gr+1 =g0 +
1− υ

AB(υ)
f (tr , g(tr))

+
υ

AB(υ)Ŵ(υ)

r
∑

ı=2

∫ tı+1

tı

(

f (tı−2, g
ı−2)

+
f (tı−1, g

ı−1)− f (tı−2, g
ı−2)

�t
(θ − tı−2)

+
f (tı , g

ı )− 2f (tı−1, g
ı−1)+ f (tı−2, g

ı−2)

2(�t)2
(θ − tı−2)(θ − tı−1)

)

(tr+1 − θ)υ−1dθ .

(23)

gr+1 =g0 +
1− υ

AB(υ)
f (tr , g(tr))

+
υ

AB(υ)Ŵ(υ)

r
∑

ı=2

(∫ tı+1

tı

f (tı−2, g
ı−2)(tr+1 − θ)υ−1dθ

+

∫ tı+1

tı

f (tı−1, g
ı−1)− f (tı−2, g

ı−2)

�t
(θ − tı−2)(tr+1 − θ)υ−1dθ

+

∫ tı+1

tı

f (tı , g
ı )− 2f (tı−1, g

ı−1)+ f (tı−2, g
ı−2)

2(�t)2
(θ − tı−2)(θ − tı−1)(tr+1 − θ)υ−1dθ

)

,
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the following result is achieved after simplification

the integrals above can be evaluated using the following method

where V1 = 2(r − ı)2 + (3υ + 10)(r − ı)+ 2υ2 + 9υ + 12, and V2 = 2(r − ı)2 + (5υ + 10)(r − ı)+ 6υ2

+18υ + 12 . After simplification, we get that

 We will employ the aforementioned approach to depict the time series of the proposed infection model. Time 
series analysis holds significant importance in comprehending, monitoring, and managing diseases. It furnishes 
valuable insights into the dynamics of the disease, aids in the early detection of outbreaks, and enables the 
assessment of intervention effectiveness. This, in turn, contributes to more informed and targeted public health 
initiatives. The numerical values of system parameters and state variables will be assumed for computational 
purposes. Various simulations will be conducted to illustrate how these parameters impact the infection system.

In the initial simulation, illustrated in Figs. 2 and 3, we scrutinized the impact of the fractional parameter υ 
on the dynamics of HPV. In Fig. 2, we consider the values of υ to be 1.00, 0.95, 0.90,  and 0.85, while in Fig. 3, 
the value of υ is varied as 0.80, 0.70, 0.60,  and 0.50. This systematic exploration of diverse values for the input 
parameter υ allows us to thoroughly investigate the characteristic solution pathways of the system. The outcomes 
of these simulations unequivocally highlight the substantial influence exerted by the fractional parameter on 
the dynamics of the infection. Notably, υ emerges as a promising tool for effectively managing the spread of the 
infection within the community. Therefore, we strongly advocate for a more in-depth exploration and analysis 
of this fractional parameter by policymakers to enhance their understanding of its potential in mitigating the 
impact of the infection on public health. This comprehensive investigation can contribute valuable insights for 
developing targeted strategies in the control and prevention of the infection. Figure 4 depicts the impact of the 
input parameter β on the dynamics of HPV infection. In this simulation, we considered β values of 0.20, 0.40, 

(24)

gr+1 =g0 +
1− υ

AB(υ)
f (tr , y(tr))

+
υ

AB(υ)Ŵ(υ)

r
∑

ı=2

f (tı−2, g
ı−2)�t

∫ tı+1

tı

(tr+1 − θ)υ−1dθ

+
υ

AB(υ)Ŵ(υ)

r
∑

ı=2

f (tı−1, g
ı−1)− f (tı−2, g

ı−2)

�t

∫ tı+1

tı

(θ − tı−2)(tr+1 − θ)υ−1dθ

+
1

Ŵ(υ)

r
∑

ı=2

f (tı , g
ı )− 2f (tı−1, g

ı−1)+ f (tı−2, g
ı−2)

2(�t)2

×

∫ tı+1

tı

(θ − tı−2)(θ − tı−1)(tr+1 − θ)υ−1dθ ,

(25)

∫ tı+1

tı

(tr+1 − θ)υ−1dθ =
(�t)υ

υ

(

(r − ı + 1)υ − (r − ı)υ
)

∫ tı+1

tı

(θ − tı−2)(tr+1 − θ)υ−1dθ =
(�t)υ+1

υ(υ + 1)

(

(r − ı + 1)υ(r − ı + 3+ 2υ)

− (r − ı)υ(r − ı + 3+ 3υ)

)

∫ tı+1

tı

(θ − tı−2)(θ − tı−1)(tr+1 − θ)υ−1dθ =
(�t)υ+2

υ(υ + 1)(υ + 2)

×

[

(r − ı + 1)υV1 − (r − ı)υV2

]

,

(26)

gr+1 =g0 +
1− υ

AB(υ)
f (tr , g(tr))

+
υ(�t)υ

AB(υ)Ŵ(υ + 1)

r
∑

ı=2

f (tı−2, g
ı−2)[(r − ı + 1)υ − (r − ı)υ ]

+
υ(�t)υ

AB(υ)Ŵ(υ + 2)

r
∑

ı=2

[f (tı−1, g
ı−1)− f (tı−2, g

ı−2)]

×

(

(r − ı + 1)υ(r − ı + 3+ 2υ)− (r − ı)υ(r − ı + 3+ 3υ)

)

+
υ(�t)υ

2AB(υ)Ŵ(υ + 3)

r
∑

ı=2

[f (tı , g
ı )− 2f (tı−1, g

ı−1)+ f (tı−2, g
ı−2)]

×

[

(r − ı + 1)υV1 − (r − ı)υV2

]

.
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0.60, and 0.80. Our observations highlight the crucial role of this parameter, indicating a direct association with 
an increased risk of the infection.

In Figs. 5 and 6, we have illustrated the biological implications of varying input parameters ρ and θ on the 
dynamics of HPV. In Fig. 5, we explored the effects of different values of ρ (0.45, 0.55, 0.65, and 0.75), while 
maintaining θ at values of 0.2, 0.3, 0.4, and 0.5 in Fig. 6. Our investigation specifically focuses on discerning 
how changes in these parameters influence the behaviors of asymptomatic and infected individuals within the 
HPV system. In the conclusive simulation, depicted in Fig. 7, we investigated the impact of the input parameter 
η on the solution pathways of HPV infection. For this analysis, we considered values of η as 0.25, 0.30, 0.35, and 
0.40. The observation centered on understanding how variations in η contribute to the dynamics of the asymp-
tomatic and infected classes within the model. These insights hold significant relevance for informing public 
health strategies, intervention measures, and the formulation of effective control policies aimed at managing 
and mitigating the repercussions of infectious diseases on populations. Understanding the intricate relationships 
between input parameters and the dynamics of HPV infection is essential for the development of targeted and 
efficient approaches to tackle such public health challenges.
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Figure 2.  Time series analysis of the proposed model of HPV with the variation of the input factor υ , i.e., 
υ = 0.85, 0.90, 0.95, 1.00.
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Conclusion
The infection HPV had posed a global public health challenge, especially in regions with limited access to health-
care and preventive measures, contributing to health disparities and an increased disease burden. In our research, 
we structured a mathematical model for the transmission dynamics of HPV infection with the effect of vaccina-
tion, asymptomatic carrier and cervical cancer. We have shown that the solution of the recommended model are 
positive and bounded for positive initial values of state variables. We utilized the next-generation matrix method 
for the calculation of the basic reproduction number R0 . In addition to this, we proved that the infection-free 
steady-state of the system are locally asymptotically stable for R0 < 1 and unstable in other cases. The existence 
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Figure 3.  Time series analysis of the proposed model of HPV with the variation of the input factor υ , i.e., 
υ = 0.5, 0.6, 0.7, 0.8.
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of the solution has been investigated with the help of fixed-point theory. We introduced a numerical scheme to 
elucidate the dynamic behavior of the system, aiming to demonstrate the influence of the system’s input param-
eters. The most critical factors of the proposed system has been visualized and are recommended to the policy 
makers for the control and management of the infection. In the future research work, we will examine the impact 
of pulse vaccination on the dynamics of HPV infection. Additionally, we intend to incorporate the dynamics of 
HPV infection within a stochastic framework and conduct a comparative analysis of their respective outcomes.
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Figure 4.  Graphical view analysis of the dynamical behaviour of our model of HPV with different values of 
input factor β , i.e., β = 0.20, 0.40, 0.60, 0.80.
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Figure 5.  Graphical view analysis of the dynamical behaviour of our model of HPV with different values of 
input factor ρ , i.e., β = 0.45, 0.55, 0.65, 0.75.
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Figure 6.  Illustration of the tracking paths of the suggested model of HPV with the variation of the input 
parameter θ , i.e., θ = 0.20, 0.30, 0.40, 0.50.
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